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This paper proposes a method for acquiring the prior probability of human
existence by using past human trajectories and the color of an image. The
priors play an important role in human detection as well as in scene under-
standing. The proposed method is based on the assumption that a person can
exist again in an area where he/she existed in the past. In order to acquire the
priors efficiently, a high prior probability is assigned to an area having the same
color as past human trajectories. We use a particle filter for representing and
updating the prior probability. Therefore, we can represent a complex prior
probability using only a few parameters. Through experiments, we confirmed
that our proposed method can acquire the prior probability efficiently and use
it to realize highly accurate human detection.

1. Introduction

In recent years, human beings have been increasingly subjected to visual
surveillance. Because manned observation is unfeasible, sophisticated techniques
such as Ref. 1) that can extract important and useful information automatically
are required. In particular, understanding human activities is one of the most
essential and important issues in visual surveillance.

In order to understand human activities from videos, many researchers have
been considering the prior probability of human existence in the context of an
observed scene. The priors have several applications, as given below.

First, they can be used to improve the performance of human detectors and
human trackers. Occasionally, it is difficult to detect and track walking persons
using only the appearance within a local image patch because even well-trained
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human detectors fail when there is no difference between the image patterns of
persons and other objects in their environments. If the probability of human
existence at each position in an image is available, it is possible to avoid over-
and miss-detection and improve the performance of human detectors and track-
ers 2)–4).

Additionally, the distribution of the priors reveals considerable information
about an observed scene. For example, if there are some locations that attract
people, the spatial distribution would be uneven. Similarly, temporal variations
may indicate that the flow of walking persons changes for some reason. Such
information is useful for providing adequate services such as guidance for visitors.

Some research groups have already proposed methods for obtaining the priors
of human existence; these methods can be divided into several categories. First,
if the map of a scene is known, it can be used to derive priors directly 2). Some
methods that estimate the geometric structure of a scene 5) can be used for ac-
curate human detection 3). Because the geometric structure of a scene directly
affects human actions in a scene, these methods are quite natural and straight-
forward. If no information about the geometric structure is available, we can
acquire the priors from observed human trajectories. As described in Ref. 4), by
accumulating trajectories in long sequences, it is possible to estimate the priors
in a scene.

In this study, we propose an efficient method that acquires the priors of human
existence from time-series images of a scene. This method employs the human
trajectories and color information of the images. If a few static cameras are used
for surveillance and the structure of observing scenes remains unchanged, it is
easy to obtain the priors for each camera manually. However, it is not feasible
to obtain the priors for thousands of cameras or to maintain changing priors of
the scenes when the camera changes its viewing direction or the scene structure
varies. The proposed method is intended to be applied to such situations.

As described above, human trajectories are a cue that can be used to estimate
the prior particularity when no geometric structure is available. However, a
large number of trajectories are required for accurate estimation. For example,
if people walk along wide roads such as those shown in Fig. 1 and Fig. 2, the
motion trajectories will exhibit a sparse distribution on the road. Hence, in
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Fig. 1 Scene 1. Fig. 2 Scene 2.

order to obtain the optimal priors, which should be uniform on the road, we have
to collect a large number of trajectories. Therefore, we also employ the color
information of the images. We assume that pixels corresponding to the same
region such as a road should have similar color. Higher priors will be assigned to
similarly colored areas having past motion trajectories.

Additionally, we use a particle filter for representing and updating the priors.
This makes it possible to represent the complicated distribution of the priors and
to adapt the distribution to scene changes such as the movement of background
objects. Furthermore, it can capture the “dynamics” of the priors that would
reflect the context of a scene, as described above.

2. Prior Probability of Human Existence

Before describing the proposed method, we introduce the definition of the prior
probability distribution of human existence and describe how it can be used in
practical applications.

2.1 Definition and Representation of Human Existence Priors
Our main objective is to understand large-scale events occurring in the real

world in a manner similar to humans. To do so, we have to employ and integrate
various types of information and knowledge efficiently. Among the available
information, the “context” of a scene would play an important role, and some
works that make use of the context have already been proposed. The literature

mentioned in Section 1 are typical examples of such works. The context would
have various meanings depending on the application and situation. The human
existence prior is one of the fundamental features that describes the context of a
scene.

The main factors that determine the priors are as follows:
Geometric Structure: People are naturally more likely to walk on horizontal

planes in a scene, such as roads, than in other areas, such as walls or the roofs
of buildings. Knowing such structures, i.e., geometric structures, in advance,
helps in the acquisition of priors.

Semantic Structure: Some areas in a scene have special meaning; for exam-
ple, a large number of people tend to move in and out of a structure near the
entrance and exit. If there is an information board on a road, people are likely
to walk near it. Structures that give meaning to a certain area are called se-
mantic structures. In addition to the geometric structure shown above, such
semantic knowledge provides valuable and meaningful information that can
be used for obtaining priors.

While geometric structures have already been used for obtaining priors 2),3), as
discussed in Section 1, few studies have investigated the use of semantic struc-
tures. This might be because a variety of semantic structures are available and
there is no definite method for obtaining and representing them.

In this study, as discussed in Section 1, we make use of human motion tra-
jectories and image colors to obtain the human existence priors. We regard the
color information as a fundamental feature that indicates the geometric structure.
This is based on the assumption that a geometrically uniform region has a uni-
form color. On the other hand, the human motion trajectories can be regarded
as a cue that can be used for estimating the priors derived from the geometric
structure as well as the semantic structure, such as the flow of walking people.

As discussed in Section 1, although the geometric structure is an important
cue for robust pedestrian detection, it is not always easy to obtain the geometric
structure accurately, especially for outdoor scenes. In contrast, the human motion
trajectories reflect both the geometric and the semantic structure and can be used
for estimating the human existence priors. However, it is sometimes inefficient
to estimate the priors solely by the past trajectories, as discussed in Section 1.
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From this viewpoint, in this study, the proposed method estimates the priors by
using both the image colors and the human motion trajectories.

Clearly, the priors P (p) differ according to the position in an image. Therefore,
we have to maintain the value of P (p) at each position. However, maintaining
each value of P (p) is inefficient, and these values have redundancy in a spatial
domain. Therefore, we use the framework of a particle filter, that is, the prior
distribution is approximated by the density of particles. This enables us to update
the distribution efficiently.

2.2 Application of Human Existence Priors
As already discussed in Section 1, the priors P (p) can be used for improving

the performance of human detectors and human trackers. Human detectors often
make use of an intensity pattern in a local image window 6). In other words, they
do not consider information of other areas, such as the co-ocurrence with other
objects or the 2D or 3D positions in a scene. The use of human existence priors
P (p) will supplement the use of human detectors, and it is expected to lead to
an improvement in their performance, as demonstrated in some studies 2)–4).

In the framework of Bayes’ rule, this can be written as follows:

P (p|Y ) =
P (Y |p)P (p)

P (Y )
, (1)

where Y denotes an observed image and p indicates the existence of a person
at a certain position. Obviously, both the prior P (p) and the likelihood P (Y |p),
which can be estimated by the human detectors, provide the posterior probability
P (p|Y ) that is used for determining whether a person exists or not. Bayes’ rule
also indicates the importance of the human existence prior P (p).

Additionally, the distribution of the priors reveals considerable information
about an observed scene. For example, suppose a system provides adequate in-
formation according to the condition of a walking person and the situation of a
scene. Toward this end, we have to extract comprehensive features that char-
acterize the condition and situation from the observed trajectories. We believe
that the temporal variation of the prior distributions would be one such fea-
ture. In this study, although we do not show applications and results supporting
this claim, we believe that our method is applicable to human detection as well
as various other applications. For example, the temporal variation would show

the time-varying attention of pedestrians walking on the road. This would be
applicable when considering marketing strategies.

3. Efficient Acquisition of Human Existence Priors

We describe our proposed method in this section.
3.1 Overview of Proposed Method
Let Yt = {y1, y2, · · · , yt} denote a sequence of observed images from time 1 to

t and Ψt be a group of detected human trajectories in Yt. The proposed method
estimates the priors using them. In order to make it clear what is used for the
estimation, we denote the priors P (pt|Yt′ , Ψt′) that represent the priors at time
t estimated by using observed images and human trajectories from time 1 to t′.

Figure 3 shows the process flow of the proposed method at a certain time
t. Before starting the processing at time t, the priors P (pt−1|Yt−1, Ψt−1) were
obtained. Using this method, we first perform human detection for the observed
image yt at time t ((1) in Fig. 3). As shown in Eq. (1), the detection is carried
out by applying a certain threshold to the posterior probability P (p|Y ) obtained
by both the priors and a human detector. As the result of the human detection,
we obtain the human trajectories Ψt. Then, the priors P (pt−1|Yt−1, Ψt−1) are
updated to P (pt|Yt, Ψt) using Yt and Ψt ((2) in Fig. 3).

Fig. 3 Efficient acquisition of human existence priors—overview of proposed method.
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These processes are iteratively conducted so that the priors adapt to variations
in a scene. Note that our current implementation uses uniform priors at initial
time t = 1.

Updating the priors is a crucial step in the proposed method. As mentioned
above, we employ the framework of a particle filter in order to represent the
complicated distribution of the priors efficiently and to adapt to the temporal
variation of the priors’ distributions efficiently. This is described in detail in the
following section.

3.2 Representing and Updating Priors Using Particle Filters
Figure 4 shows how the priors are updated using the particle filter. As

mentioned in the previous section, the prior P (pt−1|Yt−1, Ψt−1) is updated by
using observed images Yt and detected human motion trajectories Ψt. We
represent the priors by the spatial distribution of a set of weighted samples
St|t′ = {sit|t′ |i = 1, 2, . . . , N} where sit|t′ denotes the i-th particle at time t

estimated from the data until time t′. Namely, P (pt|Yt, Ψt) is represented by the
samples St|t. In keeping with the normal usage of the particle filter, the update
is conducted as follows:
(1) Estimating Current State

From the previous sample set St−1|t−1, we estimate the current set St|t−1.
This estimation is performed using a state transition model St|t−1 =

Fig. 4 Updating priors using particle filters.

F (St−1|t−1, Yt−1, Ψt−1). The estimated sample set denotes the priors
P (pt|Yt−1,Ψt−1) that are derived from images and trajectories until time
t− 1.

(2) Computing Weight of Each Particle
Then, we compute a set of weights Ωt = {ωit} for the estimated current par-
ticles St|t−1 using the observation at time t. We introduce a weight function
ωit = H(sit|t−1, Yt, Ψt) for the computation.

(3) Re-sampling According to Ratios of Weights
Finally, we derive a particle set St|t by re-sampling St|t−1 according to the
weights ωit. Specifically, the number of new particles located at the same
position as the particle sit|t−1 is determined so that it is proportional to the

ratios of the weights ωi
t∑

i
ωi

t

.

The obtained St|t represents the probability distribution P (pt|Yt,Ψt), which
will be used as a prior at the next time t+ 1.

In the above procedures, the state transition model St|t−1 = F (St−1|t−1, Yt−1,

Ψt−1) makes use of the color information observed in an image. The weights ωit
are determined mainly depending on past human motion trajectories. These are
described in detail in the following sections.

3.2.1 Estimating Current State Using Color Information
As described in the previous sections, we assume that people are likely to

appear in the regions that have a color similar to that of the regions they have
already passed through. Based on this assumption, we move the i-th particle at
time t − 1, which has coordinates φit−1 = (xit−1, y

i
t−1) as its state, to a position

having a color similar to that of the current position. Figure 5 illustrates this
process.

Let c denote a 3D vector that represents the RGB color, cit be the color of the
position where particle sit|t exists, and cφt be the color at position φ.

First, we obtain color cit−1 corresponding to particle sit−1|t−1. Before obtaining
the current state, i.e., position, of the particle, we randomly select a color similar
to cit−1 as

c′it = cit−1 + kt, (2)
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Fig. 5 Estimating current state using color information.

where kt is a 3D vector in which each component is a small number such as
kt ∈ [−5, 5]. Then, we find a position φit where the color is the same as or similar
to that of c′it by minimizing the L2-norm

di =
∣∣∣cφt − c′it

∣∣∣ , (3)

where cφt denotes the colors of all pixels in the observed image. When we find
φit = arg minφdi for a particle at time t, an approximate nearest neighbor (ANN)
search 7) is applied for efficient computation. As a result of this processing, the
position φit is selected as the current state, i.e., position, of the particle sit|t−1.

3.2.2 Computing Weight of Each Particle Using Past Motion Tra-
jectories

Next, we compute a weight for each particle. This weight shows how the particle
is likely to exist; in other words, how people are likely to exist at a position that
corresponds to the particle.

To compute the weight, we define a type of distance between a particle and
past motion trajectories. The distance depends on both the Euclidean distance
between the particle and the trajectories and the difference between their colors.
This is described in detail in the following sections.

3.2.2.1 Euclidean Distance to Past Trajectories
As we introduced in Section 3.2, a set of trajectories observed between time

1 and time t is denoted by Ψt = {ψ1, ψ2, · · · , ψNtrj
t

}, where ψi is a respective
trajectory and N trj

t is the number of trajectories observed. Let φit be the position
of the i-th particle at time t.

Because the weight will be large at a position where people are likely to exist,
the weight Litrj(t) derived from the Euclidean distance is given as:

Litrj(t) =
1√

2πσ1

exp

(
−d

i
trj(t)

2

2σ2
1

)
, (4)

where ditrj(t) denotes the minimum distance between the i-th particle and the
positions in the observed trajectories Ψt, defined as:

ditrj(t) = min
ψi∈Ψt, χi∈ψi

∣∣φit − χi
∣∣ , (5)

where χi ∈ ψi is a respective position included in the trajectory ψi.
3.2.2.2 Difference in Color to Past Trajectories
In addition to the Euclidean distance, we incorporate the similarity of color

information into the weight. This is because if only the distance to past trajec-
tories is considered, more trajectories passing the road overall would be required
to obtain adequate priors.

First, we segment an input image using the method described in Ref. 8) as
shown in Fig. 6 (a). Although this method would not provide accurate segmen-
tation, it is not necessary for us to obtain accurate segments because here, the
purpose of segmentation is to obtain roughly uniform regions in an image.

Then, when the motion trajectories are observed, we integrate a segment that
corresponds to the trajectories, into one segment as shown in Fig. 6 (1). Finally,
we assign a uniform weight that has a high value when a particle lies in the
integrated segment, shown with green color in the bottom row of Fig. 6, and a
low weight when the particle lies outside the region. This weight function can be
written as

diseg = Z(φit), (6)

Licolor(t) =
1√

2πσ2

exp

(
−d

i
seg

2

2σ2
2

)
, (7)
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Fig. 6 Color region integration for computing weight of each particle.

where Z(·) denotes the difference derived from the color at the particle; if it lies
in the integrated region, it will be small, otherwise it will be high. The function
Z(·) is intended to able to represent the likelihood derived from the geometric
structure. For example, if the height in a 3D space is available for each pixel,
Z(·) would be the differences in the heights from past human trajectories. In the
current implementation, however, it simply takes 0 for the integrated region and
1 otherwise.

Now we have two types of weight functions. Finally, these functions are in-
tegrated, as given by Eq. (8), and used for determining the weight of the i-th
particle at time t:

ωit = Litrj(t) + Licolor(t). (8)

3.3 Computing Prior Using Particles
When we make use of the prior, a set of particles St|t−1 is transformed to the

prior P (pt|Yt−1, Ψt−1) at position (x, y) as:

P (pt|Yt−1, Ψt−1) = αK(x, y, σ3) ∗
∑
i

ρ(x, y, sit|t−1), (9)

where K denotes a Gaussian kernel that has variance of σ3 and the operation ∗
denotes a convolution. ρ takes 1 if a particle sit|t−1 exists at (x, y) and takes 0
otherwise. Their sum at a certain position gives the number of particle located
there. Note that when we utilize the priors for certain applications, such as
pedestrian detection shown in the next section, the relative difference of the
priors among positions in an image plays an important role. Therefore, the scale
factor α can be ignored.

4. Experiments

This section presents the experimental results that show the effectiveness of
the proposed method.

As discussed in the previous section, we have to give parameters for the pro-
posed method. Based on some preliminary experiments, we used σ1 = 30,
σ2 = 80, σ3 = 150, and the number of particles N = 8000 in the following
experiments, unless otherwise stated.

4.1 Videos and Trajectories for Experiments
We conducted two kinds of experiments. In Experiment 1, we captured two

outdoor videos for the experiments, as shown in Fig. 1 and Fig. 2. For each video,
human motion trajectories were given manually, as shown in Fig. 8 and Fig. 10.
Using this data, we show the results of acquiring human existence priors and
human detection using the acquired priors. This experiment aims to confirm the
basic effectiveness of our method.

We then tested the proposed method under a more realistic scenario in Exper-
iment 2. We made use of a longer video sequence, as shown in Fig. 7, which is
part of the PETS 2006 benchmark data 9). In this experiment, human motion
trajectories were given by a simple pedestrian detector using the HOG features 6)

and the SVM classifier 10).
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Fig. 7 Scene 3 (PETS 2006 dataset).

4.2 Quantitative Comparison of Pedestrian Detection Results
For both Experiment 1 and 2, we quantitatively evaluated the effectiveness of

the proposed method by comparing pedestrian detection results with a ground
truth given manually.

Pedestrian detection is carried out by applying the detector described in the
previous section. From Eq. (1), the posterior probability can be written as:

P (p|Y ) ∝ P (Y |p)P (p). (10)
Here we assume that the likelihood P (Y |p) is equivalent to the output of the
SVM classifier used in the pedestrian detector. The priors P (p) are given using
three different methods, including the proposed method, as follows:
(1) Uniform Priors P (p) take a constant value for an image. This is equiva-

lent to performing pedestrian detection without considering priors.
(2) Priors from Trajectories Positions in past human trajectories are accu-

mulated. Then, when performing human detection, the accumulated posi-
tions are examined and a high prior is assigned if the current position is on
or near the past trajectories.

(3) Priors from Trajectories and Color — Proposed The priors are as-
signed using the method described in Section 3. The is the proposed method
in this paper.

For quantitative comparison, we compute the precision, recall, and F-value,
respectively defined as follows:

Fig. 8 Scene 1: human motion trajectories. Fig. 9 Scene 1: particle distribution.

Fig. 10 Scene 2: human motion trajectories. Fig. 11 Scene 2: particle distribution.

Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

F = 2/
(

1
Precision

+
1

Recall

)
, (13)

where TP, FP, and FN denote True-Positive, False-Positive and False-Negative,
respectively. It is evident from the definitions that larger values correspond to
good performance. Note that in order to compute these values we need to apply
a certain threshold to the product of P (Y |p) and P (p) in Eq. (10). The values
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Fig. 12 Scene 1: human existence priors by
proposed method.

Fig. 13 Scene 2: human existence priors by
proposed method.

shown in the following sections are the results when their F-values are the best
among the results using various threshold values.

4.3 Experiment 1 — Estimation Results Using Manually Selected
Human Trajectories

First, we show the results using manually selected human trajectories for 200
images. The distribution of the obtained particles are shown in Fig. 9 and
Fig. 11. From the results, we can see that particles are distributed not only
on the past trajectories but also in the area that has a color similar to that of the
trajectories. Note that there are 10 trajectories for Scene 1 and 23 trajectories
for Scene 2.

Then, Fig. 14, Fig. 15, and Fig. 16 show the results of human detection. Ta-
ble 1 shows the maximum values of the precision, recall, and F-value for each
method. For these cases, detection is done for 20 pedestrians.

From these results, it is evident that the performance of the human detector
with the proposed priors is the best among the three detectors. When we employ
uniform priors, the precision is low. This is because the detector only considers
local image patterns and it cannot classify the difference between an actual person
and other areas that have similar texture pattern. Although the priors from
motion trajectories can be used to avoid such errors, this also reduces the recall
rate because the distribution of the priors is too sparse for the observed scene.

Fig. 14 Human detection: uniform priors. Fig. 15 Human detection: priors by
trajectories.

Fig. 16 Human detection: priors by trajectories and color.

Table 1 Quantitative comparison of human detectors — Experiment 1.

Detector Precision Recall F-value
Uniform Priors 0.63 0.83 0.72
Priors by Traj. 0.89 0.60 0.72

Priors by Traj. and Color 0.95 0.90 0.93

4.4 Experiment 2 — Estimation Results Using Automatically De-
tected Human Trajectories

The results shown in the previous section demonstrate the effectiveness of the
proposed method. However, when we apply the method to actual application
scenarios, it is impossible to avoid errors in human detection. In order to see the
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Fig. 17 Scene 3: a sample of human detection results in Experiment 2.

(i) Particle Distribution (ii) Acquired Priors

Fig. 18 Scene 3: human existence priors by proposed method.

influence of errors on acquired priors, we applied the method to the scene shown
in Fig. 7. This video consists of around 3,000 frames, and we applied the human
detector to the video as discussed in Section 4.1. There would be more errors in
human detection because of objects in the scene that have a similar appearance
to actual humans. Actually, when we applied the human detector using a simple
HOG feature and SVM classifier 6), there were some errors as shown in Fig. 17.

First, we applied the proposed method to 2,500 images of the data set. The
obtained human existence priors are shown in Fig. 18. Using the priors, we

Table 2 Quantitative comparison of human detectors for PETS 2006 data — Experiment 2.

Detector Precision Recall F-value
Uniform Priors 0.52 0.82 0.63
Priors by Traj. 0.67 0.68 0.68

Priors by Traj. and Color 0.77 0.74 0.76

carried out pedestrian detection for the remaining 500 images and compared the
results with the other methods as in Section 4.3. Table 2 shows the results.
Note that we used 38 people walking on the road for learning and 12 people for
testing.

Although the results are not as good as the previous experiment, we can see
similar characteristics in the results. That is, the uniform priors give poor results,
and considering solely human trajectories decreases the recall rate. In contrast,
the proposed method has the best performance among the three methods. Note
that this table shows the results which have the best F-value under different
threshold values. If looking only at the difference in the recall ratios, the uniform
priors seem to be the best among the three methods. However, this is not the
case because the results of the uniform priors have the worst F-value, that is,
many False-Positive samples appeared in the results.

The reason for the poor results of the proposed method is that no particle
is generated at a position where no pedestrian has been detected since the be-
ginning. For such regions the priors become small and a person appearing at
the position is not detected unless a relatively large likelihood is given by the
human detector from the definition of Eqs. (1) and (9). This cannot be avoided
completely because of the nature of the proposed method. We would be able to
reduce such False-Negative samples by adding a fixed value to the estimated prior
and/or adjusting the threshold value. However, this is equivalent to discarding
the past information and causes more False-Positive samples. This is a common
issue when we employ the “memory” of past events for understanding current
events. Incorporating other kinds of information, such as the semantic structure
obtained in advance, would enable us to cope with this issue.

4.5 Comparing Time-varying Priors
Next, we show the detailed evaluation results in order to demonstrate the

characteristics and appropriateness of the proposed method.
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100th Frame 500th Frame 1000th Frame 2500th Frame

(a) Proposed method using 8,000 particles

(b) Weights are computed by the distance to past trajectories

(c) Proposed method using 1,000 particles

Fig. 19 Time-varying priors obtained by three methods for Scene 3.

As discussed in the previous sections, our method makes use of both past tra-
jectories and color information in the observed images. First, we can see that
this combination works adequately. The top row of Fig. 19 shows the time-
varying priors given by the proposed method for Scene 3, and the second row
shows the priors obtained by the method that only utilizes past human trajecto-
ries, Licolor(t) = 0 in Eq. (8), for the same scene. As shown in Fig. 7, there is a
wide passage in the image and high priors should be given there. By comparing
these two results, it is evident that the proposed method yields approximately
uniform priors on the passage using fewer images. This enables us to avoid the
False-Negative errors discussed in the previous section.

The bottom row of the figure shows the results using 1,000 particles to represent
the priors. As discussed at the beginning of Section 4, we used 8,000 particles in
the previous experiments as well as in the top row of Fig. 19. The results show

that using more particles produces more uniform priors. In this case, as discussed
above, because the priors should be uniform, the results in the top row are better
than the results in the bottom row.

From these results, we can see that considering both trajectories and color
information makes it possible to estimate the priors efficiently. In addition we
must use a high enough number of particles to estimate the priors correctly. From
our observation, it is sufficient to use around 8,000 particles for the scenes used
in the experiments. The appropriate number of particles depends on the area
where pedestrians pass in an image.

5. Conclusion

In this study, we have proposed a method for acquiring the prior probability
of human existence by using both past human trajectories and the color of an
image. The proposed method is based on the assumption that a person can exist
again in an area where he/she existed in the past. Through experiments, we
confirmed that our proposed method can acquire the prior probability efficiently,
and use it to realize highly accurate human detection.

As a future work, by incorporating sophisticated techniques which estimate
the geometric structure discussed in Section 2, human existence priors could be
estimated more accurately. As already discussed, we regarded the color at each
pixel in an image as a fundamental feature representing the geometric structure,
that is, regions having the same geometric properties have the same color. How-
ever, this assumption is not always satisfied. For example, a road is sometimes
composed of two or more colors as shown in Fig. 7. In such cases, the proposed
method does not estimate human existing priors correctly unless people are walk-
ing on all of the color regions. More sophisticated methods for estimating the
geometric structure such as Ref. 5) are required in such cases.

In addition, it is possible and necessary to take into account higher information
in order to represent and utilize the context of observing a scene. For example,
while some works exploit a human motion model for predicting the current posi-
tion of a person from its past trajectory 11), considering motion flow on the road
as a context of the scene enables us to improve the accuracy of human tracking.
However, when we incorporate higher contextual information such as motion flow,
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it would become difficult to capture events which have never occurred. This is
a common issue of “memory-based” methods such as Ref. 12) and the proposed
one. We will explore solutions for this fundamental and challenging issue.
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