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A two-dimensional continuous dynamic programming (2DCDP) method is
proposed for two-dimensional (2D) spotting recognition of images. Spotting
recognition is the simultaneous segmentation and recognition of an image by
optimal pixel matching between a reference image and an input image. The
proposed method performs optimal pixel-wise image matching and 2D pixel
alignment, which are not available in conventional algorithms. Experimental
results show that 2DCDP precisely matches the pixels of nonlinearly deformed
images.

1. Introduction

Pattern matching for the 2D objects is a most important problem in image
processing. One-dimensional nonlinear pattern matching almost always uses dy-
namic programming (DP)-based 21),28), automaton-based 17), or hash-based 1),35)

methods. In 2D pattern matching, optimal pixel matching between images is
widely used in the image processing 8) for tasks such as recognition 7), retrieval 9),
registration 27),39), and three-dimensional (3D) reconstruction from stereoscopic
and/or time series images 20),24),31).

Image registration is achieved by using feature point matching 13),30), histogram
matching 10), template matching 26), gradient-based matching 25), baseline match-
ing 36), or a combination of these matching methods 12). Matching methods are
usually categorized as suitable for either linear or nonlinear matching. It is always
difficult to achieve perfect image matching. It should be noted that feature point
matching is used in other matching methods as the starting point for matching
because it is only weakly affected by pixel coordination and it is possible to iden-
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tify stabilized feature points by sparse coding. At this time, finding feature points
is a major problem. Lukas, et al. use object corners 30), Lowe detects scale invari-
ant feature transformations (SIFT) 13), and other researchers use other feature
point methods for the matching 5),14),15). Several feature point matching methods
are robust against affine transformation variations or scaling because they take
advantage of point-to-point matching algorithms.

We propose another nonlinear approach to 3D shape reconstruction without
using a tracking procedure. Unlike the images in previous work that are assumed
to be linear-transformed or affine-transformed, most real-world images are non-
linearly deformed when compared with those captured at a different time or from
a different viewpoint. In addition, for strict matching, image registration can be
made more precise and accurate if we match the images at the pixel level rather
than at the feature point level. Segmentation, on the other hand, is a challeng-
ing problem that also needs to be solved. Our objective is to develop a method
that is able to solve both these problems, namely nonlinear deformation and seg-
mentation. Moreover, we aim to enhance the method to obtain optimal pixel
correspondence by aligning the nonlinear deformation of pixels between images.

Our approach is based on previous studies of the 2D extension to DP matching
(see Fig. 1) 18),34). There have been several studies on applying DP-based match-
ing to 2D data such as real-world images. DP-based matching was originally
developed for one-dimensional data sequences. Myers and Rabiner introduced
dynamic time warping (DTW) 16) for connected word recognition. Uchida and
Sakoe developed 2D warping (2DW) by extending one-dimensional DTW 32),33)

(bottom-right of Fig. 1). They argued that 2DW has a pattern combination
problem in the vertical and horizontal correlation 34), so its calculation time be-
comes nondeterministic polynomial-time hard. Furthermore, 2DW requires a
pre-segmentation of images for identifying the matching area because it needs
fixed start and end points as its input. Thus, the result of 2DW matching is
affected by background, and it is not enable to realize spotting recognition.

On the other hand, Continuous DP (CDP) 23), a well-known spotting method,
uses simultaneous recognition and segmentation, so there is no need to pre-
segment the input time sequence. CDP has been applied to continuous
sound 23),37) and gesture recognition 22). It is superior to conventional DTW be-
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2 Full Pixel Matching between Images for Non-linear Registration of Objects

Fig. 1 State of arts for two-dimensional expansion of DTW and CDP.

cause it does not require pre-segmentation. Therefore, a 2D extension of CDP is
able to overcome the problems of 2DW matching.

The first trial to 2D extension of CDP, proposed by Nishimura, et al. 18), applies
CDP twice, firstly to calculate the differences of pixel intensity between input and
reference images, accumulating a series of results for each row in the input image
in the row direction, and secondly to accumulate the results for all rows aligned
in the column direction. Therefore, this method is not considered a full 2D
extension of CDP. It was extended by Suto, et al. for arbitrary-shaped queries 29).
Iwasa, et al. proposed a modification of Suto’s method to enable continuous and
monotonic pixel alignment 11). However, these three methods still suffer pixel
alignment errors because of the separation into column and row directions when
accumulating the local distances between pixels in the two images (top-middle of
Fig. 1). Moreover, Iwasa’s method tends to miss matching pixels between images

derived from a type of post-processing. To deal with the problems in all these
methods, Yaguchi, et al. 38) proposed an accumulation and backtracking method
to create a fully 2D extension of CDP.

Based on Yaguchi’s approach, our method is a development that enables the
simultaneous accumulation of local distances in both row and column directions.
It optimally accumulates distances between corresponding pixels in two images,
starting with the pixels in one corner of the reference image and moving toward
those in the opposite corner. Because the pixels used in the reference image are
positioned obliquely to each other, the total distances of pixels from the start to
the end points can be obtained by simply adding up the distances in the row and
column directions. Each pixel location in the input image is assumed to be the
end point for the corresponding accumulation of local distances, and the optimal
accumulation value is stored at that location. The location of the pixel in the
local area of the input image that has the local minimum optimal accumulation
value will be selected as the spotting point of the reference image. A segmented
area of the input image is then extracted using backtracking of the matching
paths, which are constructs of a mesh plane. This method is a true 2DCDP.
It ensures complete 2D alignment of the pixels in the input image by matching
to all pixels in the reference image. In addition, this 2DCDP achieves spotting
recognition by extracting pixel correspondence between input and reference im-
ages, and recognizing labeled information in the reference image via the pixel
correspondence of the two images.

The remainder of this paper has three sections. Section 2 describes the algo-
rithm for our optimal pixel matching method. Section 3 describes our spotting
recognition experiments and their results. Finally, Section 4 summarizes the key
points and identifies some future work.

2. 2DCDP: An Optimal Pixel Matching Method

2.1 The Road Map of the DP Algorithm
The DP algorithm is designed to solve sequential decision problems. Such

problems are usually expressed in terms of an automaton or a tree structure.
The DTW algorithm 16) is used to accumulate the minimum number of errors
from the start to the end point under the principle of optimality. For large-
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scale input data, DTW needs to extract short segments for matching. Then,
when DTW processes the large-scale input data, it will set many start and end
points in the input sequence, and will duplicate many processes in calculating the
accumulation values. CDP is able to reduce the calculation time of duplicated
processes compared with DTW, and enables start-point-free nonlinear sequential
data matching 23).

In image processing, spotting recognition is used to identify segmentation and
nonlinear pixel movement by using a reference image. The conventional 2DW
method 34) is unable to segment into an input image because it requires pre-
segmentation for matching, similarly to DTW. In this paper, we introduce a
method that is able to perform spotting recognition, and we develop a 2D exten-
sion, derived from CDP, for spotting recognition.

2.2 Definition of the 2DCDP Algorithm
2DCDP is an extension of CDP 23) to 2D correlation, and is an effective algo-

rithm for full-pixel matching (top-right part of Fig. 1). The pixel coordinates of
input image S and reference image R are defined by:

S � {(i, j)|1 ≤ i ≤ I, 1 ≤ j ≤ J} (1)
R � {(m,n)|1 ≤ m ≤ M, 1 ≤ n ≤ N}. (2)

The pixel value at location (i, j) of the input image Sp is Sp(i, j) = {r, g, b}, and
the pixel value at location (m,n) of the reference image Rp is Rp(m,n) = {r, g, b},
where r, g, and b are normalized red, green, and blue values respectively, and
(0 ≤ {r, g, b} ≤ 1).

We define the mapping R → S, (m,n) ∈ R and (ξ(m,n), η(m,n)) ∈ S by:
(m,n) =⇒ (ξ(m,n), η(m,n)), (3)

set the end location for pixel matching as:

ξ(M,N) = î, η(M,N) = ĵ, (4)

and the point of (̂i, ĵ) as a nomination of the spotting point.
Next, we set the local distance d(i, j,m, n) as the difference value between

Sp(i, j) and Rp(m,n), and set w(i, j,m, n) as the weighted value of each local
calculation. The accumulated local minimum D(i, j,m, n) is used to evaluate the
decision sequence, and is defined as:

Fig. 2 Variation of candidate local paths. Paths are set as (1) same size, (2) same size and
negative 45-degree rotation, (3) same size and positive 45-degree rotation, (4) dou-
bled, (5) doubled and negative 45-degree rotation, (6) doubled and positive 45-degree
rotation, and (7) a shrinking path.

D(̂i, ĵ,m, n) = (5)

1
W

min
ξ,η

{
M∑

m=1

N∑
n=1

w(ξ(m,n), η(m,n),m, n)d(ξ(m,n), η(m,n),m, n)

}
.

Then ξ∗(m,n) and η∗(m,n) are used to represent the optimal solutions in ξ(m,n)
and η(m,n) respectively, where W is the optimal accumulated weight:

W =
∑
m,n

w(ξ∗(m,n), η∗(m,n),m, n). (6)

To ensure monotonicity in non-linear pixel matching, K(m,n) = {ξ(m −
1, n), η(m − 1, n)} and L(m,n) = {ξ(m,n − 1), η(m,n − 1)} are used to de-
fine the sets of points that are movable in the i and j directions in the input
image, taken from the movements in the m and n directions in the reference
image (Fig. 2). Also, to ensure continuity in two-dimensional pixel correlation,
the following equation decides the a suitable corresponding pixel of (m−1, n−1)
from three corresponding pixels (m,n), (m − 1, n) and (m,n − 1) (Fig. 3):

(ξ(m − 1, n − 1), η(m − 1, n − 1)) ∈
K(m,n) ⊗ L(m − 1, n) ∩ L(m,n) ⊗ K(m,n − 1). (7)

Here, the operator ⊗ represents the connection between a set of points on the
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4 Full Pixel Matching between Images for Non-linear Registration of Objects

Fig. 3 Example explaining the roles of L(m, n) and K(m, n), which guarantee the 2D con-
straint between a reference image and an input image. This figure shows only one case
(linear matching) among the possible cases for optimal matching of local images, which
include many different cases of nonlinear optimal matching of local areas.

Fig. 4 Computation sequences and the rank of accumulation. A high-rank calculation node
affects two lower-rank nodes directly, and all nodes that belong to the calculation node
indirectly.

left and a set of points on the right.
To calculate the accumulated local distance, each accumulated local mini-

mum D(i, j,m, n) is derived from two previous accumulated local minimum
D(i′, j′,m−1, n) and D(i′′, j′′,m, n−1). In this way, we define the rank l = m+n,
as shown in Fig. 4, to smoothly calculate the accumulated local minimum.

Totally, an corresponding pixels set between input and reference images is
detetcted into four-dimensional space at 2DCDP calculation as Fig. 5.

2.3 Implementation of Local Distance
The accumulation of the local distance in full-pixel matching requires simulta-

neous accumulation in the m and n directions for each pixel. In the accumula-

Fig. 5 Determination of a segmented area obtained by projecting optimal paths in the 3D
space on the input image.

tion calculation, the accumulated values are optimally selected in two directions.
However, many formulas could be used to calculate the local distance value pro-
vided the value is normalized (0 ≤ d ≤ 1), because the accumulated distance is
calculated by just adding up the local distance values. In our experiments, the
pixel distance is as follows:

d(i, j,m, n) =
1
3

3∑
k=1

|Spk(i, j) − Rpk(m,n)|, (8)

where the variable k indicates the k-th element of Sp(i, j) and Rp(m,n). Then
the variance range of d(i, j,m, n) is set as 0 ≤ d(i, j,m, n) ≤ 1.

2.4 Algorithm for Optimal Local Distance Accumulation
2DCDP selects two local paths that are needed to check the connection of the

four points (m,n), (m−1, n), (m,n−1), and (m−1, n−1) that form a quadrangle
(Fig. 3 and Fig. 6). As shown in Fig. 2, 2DCDP defines seven paths for each m

and n direction as the local accumulation paths, namely (1) same size, (2) same
size and minus 45-degree rotation, (3) same size and plus 45-degree rotation,
(4) doubled, (5) doubled and minus 45-degree rotation, (6) doubled and plus
45-degree rotation, and (7) a shrinking path. Each accumulation point has four
values, as shown in Fig. 7. If these four points (m,n), (m−1, n), (m,n−1), and
(m− 1, n− 1) keep to form a quadrangle similar to that in Fig. 3 at accumlation
calculation, we need to check the whole enable patterns that are derived from the
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Fig. 6 Constraint conditions for neighboring pixels. Each i and j direction can connect seven
candidate pixels. 2DCDP selects the node that has a minimal accumulation value from
among these paths.

Fig. 7 Definition of the accumulation calculation of D(̂i, ĵ, m, n) projected in (m, n) space.
This implementation avoids duplication of accumulating nodes that are connected in-
directly.

above local accumulation paths, and the number of enable patterns are 165 which
are derived from constraints condition expressed by Fig. 6. This checking proce-
dure could spend much time on unnecessary recalculating operations. Therefore,
we do not mention about optimality of “path direction” in this accumlation cal-
culation. Alternatively, accumlation calculation keeps optimality of accumlated
value. We set four values for the accumulating calculation of dxx, dxy, dyx, and
dyy, as shown in Fig. 7, to take over low-level accumulation results and retain the

path constraints. These four values enables to keep sum up equally. In addition,
we set the path weights, as shown in Fig. 2, to simplify the algorithm. Then all
path weight values will be set to w(i, j,m, n) = 1.

The algorithm for the accumulation of a local minimum is shown in terms of
the following equations:

For l = 2, l ≤ M + N − 1, l = l + 1
For m = 1 and n = l, m ≤ M and 1 ≤ N , m = m + 1 and n = n − 1
If n > N : continue.

Path selection:

(i′, j′,m − 1, n) � (9)

argmin
{i′,j′}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(i − 1, j,m − 1, n) − dyx(i − 1, j,m − 1, n)
D(i − 1, j − 1,m − 1, n) − dyx(i − 1, j − 1,m − 1, n)
D(i − 1, j + 1,m − 1, n) − dyx(i − 1, j + 1,m − 1, n)

D(i − 2, j,m − 1, n) − dyx(i − 2, j,m − 1, n)
D(i − 2, j − 1,m − 1, n) − dyx(i − 2, j − 1,m − 1, n)
D(i − 2, j + 1,m − 1, n) − dyx(i − 2, j + 1,m − 1, n)

D(i, j,m − 1, n) − dyx(i, j,m − 1, n)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(i′′, j′′,m, n − 1) � (10)

argmin
{i′′,j′′}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(i, j − 1,m, n − 1) − dxy(i, j − 1,m, n − 1)
D(i − 1, j − 1,m, n − 1) − dxy(i − 1, j − 1,m, n − 1)
D(i + 1, j − 1,m, n − 1) − dxy(i + 1, j − 1,m, n − 1)

D(i, j − 2,m, n − 1) − dxy(i, j − 2,m, n − 1)
D(i − 1, j − 2,m, n − 1) − dxy(i − 1, j − 2,m, n − 1)
D(i + 1, j − 2,m, n − 1) − dxy(i + 1, j − 2,m, n − 1)

D(i, j,m, n − 1) − dxy(i, j,m, n − 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

Accumulation of four values:

dxx(i, j,m, n) � d(i, j,m, n) + dxx(i′, j′,m − 1, n) (11)
dxy(i, j,m, n) � dxy(i′, j′,m − 1, n) + dyy(i′, j′,m − 1, n) (12)
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6 Full Pixel Matching between Images for Non-linear Registration of Objects

dyx(i, j,m, n) � dyx(i′′, j′′,m, n − 1) + dxx(i′′, j′′,m, n − 1) (13)
dyy(i, j,m, n) � d(i, j,m, n) + dyy(i′′, j′′,m, n − 1), (14)

Accumulation of local minimum value:

D(i, j,m, n) � dxx(i, j,m, n) + dxy(i, j,m, n) +
dyx(i, j,m, n) + dyy(i, j,m, n). (15)

Equations (9)–(15) imply that an accumulated value D(i, j,m, n) is recursively
calculated by D(i′, j′,m−1, n) and D(i′′, j′′,m, n−1) following the application of
DP. The path configuration in Fig. 2 enables infinite path shrinking. Therefore,
in our experiment, we counted the number of times shrinking occurred and set
a limit for the number of consecutive path-shrinkage occurrences. Finally, the
optimal spotting point corresponding to (i, j) in the input image is given by:

D(̂i, ĵ,m, n) =

min
ξ,η

{
M∑

m=1

N∑
n=1

dxx(ξ(m,n), η(m,n),m, n) + dxy(ξ(m,n), η(m,n),m, n)

+dyx(ξ(m,n), η(m,n),m, n) + dyy(ξ(m,n), η(m,n),m, n)

}

= min
ξ,η

{
M∑

m=1

N∑
n=1

2d(ξ(m,n), η(m,n),m, n)

}

= 2min
ξ,η

{
M∑

m=1

N∑
n=1

d(ξ(m,n), η(m,n),m, n)

}
. (16)

This equation follows Eq. (5).
2.5 Correction of Mesh Structure Using Backtracking
After the spotting point has been determined, we need to extract the spotting

area from the four-dimensional (4D) accumulated local minimum space. In the
CDP algorithm, the backtracking part traces only the connected local paths from
the spotting point. However, the connected local paths in 2DCDP sometimes
conflict with the constructed mesh structure in the m and n directions. On the
other hand, each matching point D(i, j,m, n) has an optimal accumulated value
from the start to that point. Therefore, the algorithm for finding the optimal

Fig. 8 A spotting point and its spotting area. The maximum size of spotting is 12 times the
size of the reference image.

path from two points is expressed via the following equation:
(i∗, j∗) ∈ K(ξ∗(m + 1, n), η∗(m + 1, n))⊗

L(ξ∗(m,n + 1), η∗(m,n + 1)) (17)
(ξ∗(m,n), η∗(m,n)) = argmin

{i∗,j∗}
{D(i∗, j∗,m, n)}. (18)

The candidate spotting area in the input image is about 12 times larger than
for the reference image (Fig. 8) because the implementation allows 45-degree
rotation and doubled size for each of the connected paths. The problem with
backtracking is that it is able to select a shrinking path without any limitation,
which can cause overshrinking of the spotting area. Therefore, we implement a
controlling variable to limit the number of consecutive occurrences of shrinking.

Finally, a set P , containing the segments, is defined as:
P ⊂ {(ξ∗(m,n), η∗(m,n))|1 ≤ m ≤ M, 1 ≤ n ≤ N}. (19)

2.6 Extraction of Object from Reference Image
When the value of the local distance of pixels in a discarded area is set to a

maximum value, the local distance value of pixels in the background will be the
same, and the arbitrary shape can be cut off from the reference image as shown
in Fig. 9. In our experiment, the value of the local distance was set to 1.
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Fig. 9 Arbitrary shape matching overview. A reference image is composed of object areas
and a background area. During the local minimum calculation, the out-of-mask area
(background) in the reference image sets the maximum value for the distance dividing
background and foreground. After the accumulating calculation, the accumulated value
of the out-of-mask area is subtracted and these nodes are deleted from the matching
result.

2.7 Calculation Time and Memory Amount
Assume that 2DCDP takes unit time to calculate the local distance and ac-

cumulation at each element in a 4D tensor field. Then the time needed for the
2DCDP calculation is O(n4) because the number of elements in the tensor field
is I × J ×M ×N . In this algorithm, backtracking needs the value for each accu-
mulated local minimum D(i, j,m, n). Therefore, the amount of memory required
is also O(n4).

3. Experiments

3.1 Spotting Recognition Experiment
3.1.1 Methods and Materials
To evaluate our optimal pixel matching method experimentally, we used a

single OS-implemented thread (Mac OS X running on an Xserve containing dual
2.8 GHz quad-core Xeon processors and 32 GB SDRAM). In the first experiment,
spotting recognition used an arbitrary-shaped query extracted from the original
image (the image on the top in Fig. 10). In the second experiment, multi-answer
spotting recognition used real-world data. The third experiment applied 2DCDP
to images from nature.
Exp. 1: Spotting recognition used four input images (Fig. 10) as follows:

Input 1: Spotting recognition uses affine transformed images from the top
and bottom halves of an image extracted from the original image.
Input 2: Spotting recognition uses affine transformed images from the left
and right halves of an image extracted from the original image.

Fig. 10 Experimental results for 2DCDP. Image 1: Vertically divided affine image. Image 2:
Horizontally divided affine image. Image 3: Thick lens distortion; applied transform
a1r − a2r3, a1 = 0.3, a2 = 0.0001. Image 4: Thick lens distortion; applied transform
a1r − a2r3, a1 = 0.6, a2 = 0.0005.

Input 3: Spotting recognition uses a distorted image, such as one captured
through a thick lens, expressed by a1r−a2r

3, a1 = 0.3, a2 = 0.0001, extracted
from the original image.
Input 4: Spotting recognition uses a distorted image, such as one captured
through a thick lens, expressed by a1r−a2r

3, a1 = 0.6, a2 = 0.0005, extracted
from the original image.

Exp. 2: Spotting recognition uses an input image constructed from several im-
ages selected from a movie and another picture (I = 320, J = 240) and a
reference image from another frame of the movie (M = 63, N = 61).
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Fig. 11 (Left): Extraction of multiple objects from an image using a face query. Each face
object is extracted from a different frame in a time-varying sequence and placed in
an image. The reference image is also extracted from a frame image. The method
extracts only eight similar face objects. (Upper Right): Eight 2D mesh images. Each
mesh indicates the nonlinear and optimal correspondence for all pixels between a
reference image and a spotted area of the input image. (Lower Right): Eight sets of
3D paths obtained by the application of 2DCDP.

Exp. 3: Image spotting from nature using 2DCDP, as shown in Figs. 12
and 13.

In Experiment 1, we used a 100 × 100-pixel image for the input and a 55 × 55-
pixel image for the reference. In Experiment 2, we used several frames from a
video database 2) and cut-and-pasted other face-image frames that had several
margins. In these experiments, the shrinking limit was set to 2.

3.1.2 Experimental Results
For Experiment 1, Fig. 10 shows the ground truth (labeled as “Vector field

of pixel displacement (ground truth)”), the pixel movement (labeled as “Vector
field of pixel displacement obtained by 2DCDP”), and the difference between the
ground truth and the pixel movement (labeled as “Vector field of difference be-
tween ground truth and matching result”). The accuracy rate results are shown
in Table 1. Input 4 showed that, although some pixel movements exceeded the

Fig. 12 Multi-object extraction using two different queries about flowers. Reference A can
detect seven out of eleven objects. Reference B can detect eight out of eleven objects.
Two different queries can spot seven or eight objects because of color differences
between the references. A red circle identifies an area with pixel matching errors.

limited path constraint in the ground truth, this method was still effective be-
cause it is a method for finding global optimality. Experiment 2 showed that,
for several extracted facial areas, it was able to find multiple candidates for each
area and that each area had a pixel-to-pixel relationship between the subject and
reference images. Figure 11 shows that every result successfully indicated the
borderlines between hair, face, eyes, nose, and mouth. The calculation time and
memory usage is shown in Table 2. In Experiment 3, Fig. 12 also shows that
2DCDP is able to extract multiple spotting areas and capture different results
using two different reference images because these two reference images have dif-
ferences in color and shape. In Fig. 12, we obtain nine objects in each trial, with
some spotting errors indicated by the red circle in the figure. Figure 13 indicates
that 2DCDP is able to extract an object that has undergone a perspective trans-
formation. This is a significant feature for image-based modeling, because this
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Fig. 13 Extracting a building from different frames in a stream of moving image.

full-pixel matching will easily enable the reconstruction of a 3D shape from two
or more images.

3.2 Extraction Pixel Flow Experiment
To compare optimal pixel matching methods, this experiment compares pixel

flow using 2DCDP with several optical flow methods, namely block matching
(BM), the Horn & Schunck method (HS), the Lukas & Kanade method (LK),
and SIFT matching flow. The 2DCDP pixel flow uses 240× 180, 120 × 190, and
40 × 30 pixels of images. The other methods use 740 × 480 and 240 × 180 pixels
of images in the comparison experiments.

For the experimental environment, we used a DELL Precision system (CPU:

Table 1 Performance in Experiment 1: Accuracy rate of pixel movement was calculated to
be less than

√
2 of pixel movement error.

Input 1 Input 2 Input 3 Input 4

No. of corresponding pixels 2741 2741 2724 1820

No. of corresponding errors 1 0 3 20

Accuracy rate of pixel movement 99.963% 100.00% 99.890% 98.901 %

Calculation time (s) 4.931 4.954 4.954 4.855

Table 2 Performance in Experiments 2 and 3: Calculation time and memory size increase
O(N4).

Fig. 11 Fig. 12 Ref. 1 Fig. 12 Ref. 2 Fig. 13 Average

Input image size 320 × 240 416 × 339 416 × 339 300 × 199

Reference image size 63 × 61 96 × 98 90 × 96 219 × 63

Calculation time (sec) 59.823 235.000 261.478 159.500

Memory usage (GByte) 5.3 23.9 21.9 14.8

Xeon 3.16 GHz dual CPU, Memory: 64 GB, OS: Cent OS). For the comparisons,
we used Autopano-SIFT 19) as the SIFT application and the OpenCV 6) Library
for the development of each optical flow algorithm. For the comparison material,
we used a movie that included a TV program 3).

Figures 14–17 are examples of extracting pixel flow using 2DCDP. Figure 14
indicates that 2DCDP was able to track a series of corresponding pixels derived
by transformation of the foreground image. Occlusion pixels in the input image,
and those assigned to the border of background and foreground images, did not
violate constraints on continuity and monotonicity. A masked image example is
shown in Fig. 15. 2DCDP was able to extract an optimal matching path locally,
because the 2DCDP method extracts via global optimality but the paths are
decided by local optimality.

Figure 16 shows global optimality. Optical flow methods could not track global
variations of the image 4). In addition, the LK method needed some texture in-
formation to track pixels. The BM method was able to track objects at first but
it became difficult to make correct correspondences eventually, because the BM
method cannot check the constraints of continuity and monotonicity. 2DCDP
was able to track pixel-by-pixel. Figure 17 shows extraction in adverse condi-
tions. The adverse aspects are the different background, the illumination, and
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Fig. 14 Pixel tracking using 2DCDP(1): The second and fourth columns show the result of
tracking multiple objects from the first and third columns. Our proposed method
extracts precise pixel flows caused by the motion of multiple objects. Occlusion and
emerging new objects in a stream of time-varying images make up a small part of the
pixel flow image.

Fig. 15 Pixel tracking using 2DCDP(2): The result of pixel tracking using arbitrary shapes.
2DCDP was able to track object deformation.

the shape of foreground, but the foreground object is the same. In this example,
the results for a background that included the reference show that pixel flow was
not extracted by any method. However, 2DCDP was able to extract the object
using a masked reference image.

Figures 18 and 19 are comparisons of optical flow. For SIFT matching, we
barely obtain the motion of the human body in Fig. 19. In Fig. 18, we cannot ob-
tain corresponding points of the objects and have many wrong correspondences.
Furthermore, for optical flow in the LK, BM, and HS methods, we obtain the
direction of movement of the object (roller coaster) in Fig. 18, but we have many
wrong correspondences in Fig. 19 because there is much variation in the images.
In particular, the HS method has many wrong correspondences in Fig. 19. On
the other hand, for 2DCDP, we obtain packed flow for every object with both
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Fig. 16 Pixel tracking using 2DCDP (3): The result of macro-level camera motion (panning)
and comparison results for the LK and BM methods. The LK method was not able
to extract flow on a textureless plain but 2DCDP and the BM method could. In
addition, 2DCDP was able to fix correspondences via the constraints of continuity
and monotonicity. Third columns indicates our method can track object motion into
20 pixels panning of x-axis.

240 × 180 and 120 × 90 image sizes, as shown in Figs. 18 and 19. The texture of
the object is continuous (except if self-occlusion occurs), and if occlusion occurs,
the occluded points form on the edge, so, in 2DCDP, the flow is organized by
the constraint conditions on pixel connections. However, for cases where the tex-
ture information is low in the visible part lost in the reference, the result will be
matching errors. In addition, if we use small images such as 40×30 with 2DCDP,
we obtain a very harsh flow for the resolution of the object because, although we
can obtain global flow, the variation of motion will become bigger. We should
consider these problems in terms of tracking area and fineness of texture.

Comparing execution speed, 2DCDP takes about 44 seconds for a 240 × 180
image, about 6 seconds for 120 × 90, and about 0.1 seconds for 40 × 30. SIFT
takes about 30 seconds for 720 × 480, and 8 seconds for 240 × 180. The BM
method takes 63 seconds for 720 × 480 with a 10 × 10 window size. The LK
method takes less than 0.1 seconds for a 720 × 480 image.

4. Conclusion

We have developed and tested a 2DCDP method for spotting recognition of
images. It achieves simultaneous segmentation and image recognition caused by

Fig. 17 Pixel tracking using 2DCDP (4): The result of pixel tracking for images of the human
body. The first column is the original image sequence. The second is the sequence
of images composed of the optical flows obtained from two successive images of the
original image. The third is the sequence of the segmented part from the input frame,
using 2DCDP with increments in the reference image. The fourth is the sequence of
images showing the difference values for pixels obtained from pixel correspondence.
A black part indicates a small value for the difference.

its continuous and monotonic pixel-to-pixel matching. Our testing has demon-
strated that it is robust against nonlinear deformation of images. Our future
work will enable this method to use other indicators besides RGB in the above
experiments. Our plan for the future also includes investigating applications of
2DCDP, such as finding errors in medical images from nonlinear image registra-
tion, 3D reconstruction, and recognition of facial expressions.

IPSJ Transactions on Computer Vision and Applications Vol. 2 1–14 (Feb. 2010) c© 2010 Information Processing Society of Japan



12 Full Pixel Matching between Images for Non-linear Registration of Objects

Fig. 18 Comparison (1) of optical flow among different methods. The time-varying image
indicates the scene obtained from a roller coaster and spray. The SIFT method
cannot track most of the pixels of the moving object. The other methods, including
2DCDP, can track many pixels of the moving object.

Fig. 19 Comparison (2) of optical flow among different methods. The LK, HS, and BM
methods make incorrect pixel correspondences because they lack guarantees for the
two characteristics of continuity and monotonicity between the two images to be
matched. The proposed method does not completely succeed in making a perfect
optimal flow, but it adapts its tracking to the variation caused by deformation of
shape of the foreground object. The SIFT method can track every object, but the
number of tracking points is quite small compared with other methods.
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