
IPSJ Transactions on Computer Vision and Applications Vol. 1 242–259 (Sep. 2009)

Research Paper

Multi-viewpoint Silhouette Extraction

with 3D Context-aware Error Detection,

Correction, and Shadow Suppression

Shohei Nobuhara,†1 Yoshiyuki Tsuda,†1,∗1

Iku Ohama†1,∗2 and Takashi Matsuyama†1

This paper presents a novel approach for simultaneous silhouette extrac-
tion from multi-viewpoint images. The main contribution of this paper is a
new algorithm for 1) 3D context aware error detection and correction of 2D
multi-viewpoint silhouette extraction and 2) 3D context aware classification of
cast shadow regions. Our method takes both monocular image segmentation
and background subtraction of each viewpoint as its inputs, but does not as-
sume they are correct. Inaccurate segmentation and background subtraction
are corrected through our iterative method based on inter-viewpoint checking.
Some experiments quantitatively demonstrate advantages against previous ap-
proaches.

1. Introduction

This paper is aimed at the problem of a simultaneous silhouette extraction of
multi-viewpoint images for 3D shape reconstruction. In recent years, the impor-
tance of silhouette extraction has increased since many 3D shape reconstruction
algorithms 1)–8) utilize the visual hull of the object given by the “shape from sil-
houette” (or SFS in short) method 9). These algorithms use visual hulls as their
initial estimate, and then refine them based on multi-viewpoint textures and/or
other reconstruction cues.

However, the multi-viewpoint environment involves new difficulties which are
not present in single viewpoint situation. The first difficulty lies with the “AND”
operation of the SFS process. In the SFS process, each 3D point in the scene is
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Fig. 1 Examples of object regions with the same colors of the background. (a) and (b) show
images of an object captured from different viewpoints. The circular areas in (a) have
no differences in pixel values between the object and the background region while these
areas are not observed as a part of the object boundary in (b).

labeled as a part of the object if its projection lies in the silhouette on all the
camera views. This indicates that only one view having errors in its silhouette
can easily spoil the quality of the visual hull even if all the other silhouettes are
perfect.

The second difficulty comes from the increased chance of having similar colors
in the object and the background. In silhouette extraction for 3D shape recon-
struction, it is reasonable and widely assumed that we can use the background
images of every viewpoint and can apply “background subtraction” individually.
Here the most fundamental difficulty in the monocular silhouette extraction is
ambiguity due to the comparison between the similar foreground and background
colors. In the multi-viewpoint environment this problem can be more difficult
than the single viewpoint situation. This is because each 3D point on the object
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surface can be captured from different viewpoints and should have reasonable dif-
ferences between each background image. Hence if the object has a color which is
completely different from the background of one viewpoint but is similar to that
of another view, extraction of silhouettes can be difficult and only one error on a
single view corrupts the visual hull as we mentioned before. This problem can be
seen in segmentation based approaches as well. For example, suppose we try to
obtain a segmentation of the image shown in the top row of Fig. 1. The top row
of Figs. 1 (a) and (b) show the same object captured from different viewpoints.
The goal is to find a parameter which gives reasonably large segments without
overlapping the boundary between the object and the background. The bottom
row of Fig. 1 shows the enlarged images of the rectangle areas in the two views
shown in the top row of Fig. 1. Here we can observe that circular areas of (a) have
no differences in pixel values between the object and the background while these
areas are not observed as a part of the object boundary in (b). This suggests
that it is hard to determine the exact object/background boundary based on the
viewpoint of (a) alone. Hence we assume that we cannot obtain the perfect seg-
mentation which separates the object and the background without overlapping
based on monocular image segmentation techniques.

To overcome these difficulties, we propose a new algorithm which (1) does not
rely on the exact segmentation given by single viewpoints individually and (2)
does not rely on clear differences between the object and background colors at
every viewpoint. The key idea of our method is a scheme to detect and correct
errors on silhouette boundaries based on an inter-viewpoint checking of consis-
tencies on silhouettes. We call this 3D geometry based consistency 3D context.
Our algorithm uses results of single viewpoint segmentation and background
subtraction which contain errors as its initial inputs, and refines them to achieve
better silhouettes. In addition to this contribution, we also introduce a shadow
suppression scheme which utilizes a calibrated multi-viewpoint environment as
well.

The rest of this paper is organized as follows. We first review related studies
in Section 2, then we describe our algorithm in Section 3, and evaluate it against
other approaches in Section 4. We conclude our paper and discuss possible future
work in Section 5.

2. Related Work

For multi-viewpoint silhouette extraction, various approaches which utilize
multi-viewpoint environment have been proposed so far10)–13). For example, Zeng
and Quan proposed a method which uses an inter-viewpoint constraint and 2D
segmentation of captured images 12). Their method realized silhouette extraction
without using background images. Goldlücke and Magnor proposed a method
which realized simultaneous 2D segmentation and 3D reconstruction based on
graph-cuts 13). However they does not have any explicit error detection and cor-
rection schemes based on 3D geometry while our method does.

While many studies have been done for shadow suppression on the silhouette
estimation so far, most of them focus on the monocular environment. For exam-
ple, one of the most simple and effective approaches is intensity and chromaticity
based categorization of shadow regions 14). In this approach, each pixel is catego-
rized as shadow region if it is similar to the background pixel in chromaticity but
different in intensity. This approach provides significant improvement in compar-
ison with a simple background subtraction using a certain threshold. However,
this 2D, pixel-wise silhouette extraction does not consider the 3D context of each
pixel. They can suppress real cast shadows on the floor, but they also suppress
self shadow regions on the object surface and darkly textured regions like black
hair. On the other hand, our algorithm utilizes knowledge about the 3D environ-
ment and can eliminate the mis-suppression of shadow-like regions on the object
surface.

3. Algorithm

Before describing the algorithm we first clarify the inputs and assumptions of
our algorithm. The inputs of our algorithm are:
• multi-viewpoint images of the object,
• multi-viewpoint background images (images of the scene without the object),

and
• camera calibration parameters.
Together with these inputs we also assume the following:
• The monocular segmentation of each image can include mis-segmented pixels
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even with a simple background due to the color ambiguity, as shown in Fig. 1.
• The monocular background subtraction of each image can include error pix-

els, as described in Section 1.
• We know the 3D geometry of the floor plane and the cast shadows of the

object appear only on it.
The last floor assumption is reasonable for 3D shape reconstruction based on the
“shape from silhouette” (SFS) algorithm 9). This is because conventional voxel-
based SFS implementations require a certain bounding box which encages the
object, and it is adequate to use the studio floor as the bottom of the bounding
box.

Using these inputs and assumptions, the goal is to obtain the object silhouettes
for every viewpoint which are “consistent” with each other. Through this paper,
we call the silhouettes consistent if they satisfy the following three constraints
based on the 3D geometry, 2D color, and background subtraction:
• Intersection constraint (IC) : Projection of the visual hull which is com-

puted from silhouettes on every viewpoint should be equal to the silhouette
on each viewpoint.

• Projection constraint (PC) : Projection of the visual hull should have
an outline which matches with apparent edges of captured image from each
viewpoint.

• Background subtraction constraint (BC) : The sum of differences of
pixel values between the background and captured image in the projection
of the visual hull should be greater than a certain threshold.

Note the first two constraints were originally proposed by Zeng and Quan 12). To
obtain silhouettes which satisfy them, we model the observed images by decom-
posing them into (1) object regions, (2) cast shadow regions, and (3) background
regions. We denote this by Img → Obj + Cs + Bg. Based on this modelling, we
introduce a two-step approach as illustrated in Fig. 2. The first step extracts
Obj + Cs from Img and the second step extracts Obj from Obj + Cs.

In what follows, we denote the number of cameras by N , the i-th camera by
Ci, the silhouette on Ci at t-th iteration step by Sili(t), the segmented image on
Ci at t-th iteration step by Segi(t), the visual hull computed with silhouettes at
t-th step by VH(t), the projection of VH(t) on Ci by Svhi(t).

Fig. 2 Overview of the algorithm. The proposed algorithm consists of two parts. The first
part extracts multi-viewpoint silhouettes including cast shadows from multi-viewpoint
images. The second part removes cast shadows from the result of the first part. The
first part has a nested loop structure and the darker area with arrows in light grey
color indicates the inner loop.
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3.1 Silhouettes and Shadow Extraction with Error Detection and
Correction

First, we introduce an algorithm which extracts both object regions and cast
shadow regions (Obj + Cs) from multi-viewpoint images (Img). To achieve this
extraction, we utilize two constraints IC and PC. As described in Ref. 12), these
two constraints produce a set of silhouettes such that each of them is NOT the
background region Bg. That is, silhouettes given by these constraints cannot
suppress shadows cast by the object itself because cast shadows on the floor also
satisfy IC and PC. In other words, IC and PC enable us to extract Obj + Cs from
Img. We employ an iterative process as shown in Fig. 2 in which we carve a
silhouettes per segments so that they satisfy these constraints. The key point
of this algorithm is an error detection and correction scheme which utilizes the
multi-viewpoint environment. Note here that our iterative method starts with
initial segmentations with errors, but errors are corrected through the iterations
at the “error detection” part (described later).

3.1.1 Segmentation
In this algorithm we utilize a monocular image segmentation which can re-

segment its segments into smaller ones without changing the original outlines
of the segments as illustrated in Fig. 3. Preserving the original outline of each
segment on its re-segmentation is a key point to assure the convergence of the
algorithm as discussed later. As a method which satisfies this requirement we
introduce the following algorithm.
Step 1. Do pixel labeling to group neighboring pixels with the same value.
Step 2. Apply hierarchical clustering to merge neighboring pixel groups accord-

ing to the similarity of their colors. Here we introduce a threshold to
suppress image noise and merge two neighboring pixel groups if the dif-
ference of the average color is smaller than this threshold.

Step 3. Use a clustering result at a certain level of the hierarchy as the initial
segmentation, and use the result in the lower level of the hierarchy to
obtain the re-segmentation of each segment.

While this is not the only one nor the best method which satisfies the requirement,
the experiments show that our method can estimate the object silhouettes even
with this simple algorithm. In the experiments we used a threshold value of 5 at

Fig. 3 Coarse-to-fine segmentation. The outline of the segment is preserved through the re-
segmentation process.

Step 2.
3.1.2 Silhouette Carving
In each iteration step, we carve a silhouette so that it satisfies PC. Here we

define that a silhouette satisfies PC if it is composed by a set of segments. So we
define our carving algorithm as follows:
• For each segment of the captured image,

– If any portion of the segment is located outside the silhouette, carve the
whole segment region from the silhouette.

This operation returns the maximum set of segments each of which is included
in the silhouette completely. We denote this operation by Carve(Silj(t),Segj(t)),
where Silj(t) and Segj(t) denote the silhouette and segmented image of Camera
j at t-th iteration respectively. Figure 4 illustrates this operation. Note here
that this operation is done for all segments, and the order of selection does not
affect the result.

3.1.3 3D Context Aware Error Detection and Correction
Suppose we have a set of silhouettes which satisfies IC. If we carve a silhouette

Silj of camera Cj so that it satisfies PC, the visual hull will also be carved and
its projection on each viewpoint will be equal to or smaller than the original
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Fig. 4 Silhouette carving. The current intersection-consistent silhouette is carved so as to
be the maximum set of segments each of which is included in the current silhouette
completely.

Fig. 5 Intersection consistency. Carving of the black region in the CAM1 image introduces
the removal of the dotted volume from the visual hull which can be seen as the removal
of the grey region at CAM2. Hence if we carve the black region in the CAM1 image, we
have to carve the grey region in the CAM2 image to keep the intersection consistency.

silhouette which satisfies IC. For example, if we carve the black area of CAM1

in Fig. 5, the corresponding volume of the visual hull is also carved, and it is
observed as the removal of the gray area on CAM2. That is, carving one of
the intersection consistent silhouettes makes it projection consistent, but breaks
intersection consistency between other silhouettes. Here, if the changes between
the projection of the visual hull Svhi(t) and the original silhouette Sili(t) are
acceptable on the other viewpoints, we take the projections of visual hull as new
silhouettes. We use BC to determine if it is acceptable or not (described below).

This process makes the silhouettes satisfy IC again, and PC on Silj as well.
If the changes are not acceptable in terms of BC, it is clearly correct to regard

that the last carving of the silhouette is wrong, i.e., segments carved in the
last Carve(Silj(t),Segj(t)) operation are too large and they contain not only the
background but also object regions. This indicates that we need re-segmentation
of segments in question into smaller segments as described in Section 3.1.1, and
we can retry to check if re-carving is acceptable or not.

For error detection we define the function

IsAcceptable(Sili(t),Svhi(t))

=

{
true

∑
p |Img(p) − Bg(p)| < threshold,

false otherwise,
(1)

where p is a pixel such that p ∈
(
Sili(t) ∩ Svhi(t)

)
. That is, p denotes a pixel

which belongs to Sili(t) but not to Svhi(t). Img(p) and Bg(p) denote the inten-
sities of the captured and background images at p respectively. This function
verifies the changes between the projection of visual hull Svhi(t) and the original
silhouette Sili(t) if it satisfies BC or not.

3.1.4 Iterative Algorithm
Using the constraints and functions defined above, we introduce the following

algorithm which extracts Obj + Cs from Img on every viewpoint as illustrated in
Fig. 2.
Step 0 Let all the silhouettes on every viewpoint be equal to the entire region

of the image. Then we compute the visual hull with these silhouettes and
project it onto each viewpoint. We call these projections Sili(0), i = 1, . . . , N

(Fig. 6). Here, we have a set of multi-viewpoint silhouettes which satisfies
IC, and start iterating with t = 1.

Step 1 Choose the next camera Ci, which is not chosen in the previous N − 1
selections.
Step t.1 Let Sili(t) := Carve(Sili(t − 1),Segi(t − 1)). Carve(·) produces

silhouette which satisfies PC. Figures 7 and 4 illustrate this operation
in t = 1 and t > 1. Then, in other viewpoints Cj(j �= i), use previous
silhouettes as: Silj(t) := Silj(t − 1), j �= i.
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Fig. 6 Initial silhouettes. The initial silhouettes are given as the projection of the visual hull
which is computed by assuming that all the silhouettes are equal to the entire region
of the image.

Fig. 7 First carving process at t = 1.

Step t.2 Compute the visual hull VH(t) using silhouettes Silk(t) and its
projections Svhk(t) where k = 1, . . . , N .

Step t.3 If there are no differences between Svhk(t) and Silk(t), k =
1, . . . , N , quit the iteration and go to Step 2. Here, each Silk(t) sat-

isfies PC, IC, and BC.
Step t.4 Evaluate the differences between Svhk(t) and Silk(t) by

IsAcceptable(·), where k = 1, . . . , N . If the number of views on which the
function returns true is greater than a certain threshold, let Silk(t) :=
Svhk(t), k = 1, . . . , N and go to Step 1 with incrementing the iteration
counter t := t + 1. Otherwise, re-segment Segi(t) and go to Step t.1
with t := t + 1.

Step 2 Output Silk(t), k = 1, . . . , N as the silhouettes including cast shadow
regions. These silhouettes satisfy PC, IC, and BC.

This algorithm has a nested, double loop structure. The outer loop selects a
camera Ci from C1, . . . , CN , and the inner loop carves the silhouette of Ci, i.e.
Sili(t) by PC and the other silhouettes Silj , j �= i by IC while updating the
segmentation of Ci, i.e. Segi(t). Note here that t serves as a global counter
and is not initialized on quitting the inner loop in order to describe the update
history of the silhouettes and segmentations uniquely. This iterative algorithm
can remove Bg regions in theory. We use the resultant Obj + Cs as the input of
the next algorithm.

3.2 3D context Aware Cast Shadow Removal
Let Scsj denote the silhouette on Cj given by the algorithm described in the

previous section. As described above, Scsj includes both Obj and Cs regions.
The goal of the algorithm we introduce in this section is the removal of Cs from
Scsj , j = 1, . . . , N which appear on the floor as assumed in the beginning of
Section 3. The key point here is a 3D geometry based constraint on the removal
described by GeometricCheck(f, C) in Section 3.2.2.

Suppose we have the visual hull Vcs computed from Scsj , j = 1, . . . , N . In this
computation, we assume that we use a bounding box whose bottom is equal to
the floor of the capturing studio as described above. Let the floor plane be z = 0.
Our algorithm categorizes the surface of Vcs into Obj region, Cs region, or part
of the floor. In this categorization process, our algorithm needs to explore the
surface of Vcs. So we use a triangular surface mesh model as the data structure
of Vcs for simplicity. Let f denote a triangle of Vcs, FObj the set of triangles
categorized as Obj, FCs the set of triangles categorized as Cs, and Ffloor the set of
triangles categorized as part of the floor.
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3.2.1 Silhouette Generation
Once we can categorize triangles into these types, we can obtain a silhouette

of viewpoint Cj which contains Obj only as follows:
( 1 ) Initialize the silhouette and depth buffer of Cj . Let all pixels in the sil-

houette buffer be background pixels, and all pixels in the depth buffer be
∞.

( 2 ) For each triangle f in VCs,
2.1 Project f into Cj , and denote the corresponding area in Cj by P .
2.2 If the depth of f is smaller than those of the corresponding depth buffer

area, update the depth buffer by the depth of f . Otherwise, go to the
next triangle.

2.3 If f is in FObj, label the pixels in P as silhouette pixels. Otherwise, label
them as background pixels.

3.2.2 Cast Shadow Model
We use the following criteria to identify a triangle f as Cs.

Geometric criterion: Cast shadow regions should neighbor the floor plane.
That is, one of the neighboring triangles should be categorized as part of the
floor. In addition to this, removal of cast shadow regions on the VCs surface
should not affect object regions of silhouettes.

Photometric criterion: Cast shadow regions should have similar chromaticity
and darker intensity in comparison to that of the background image on visible
cameras.

Here, visible cameras are cameras that can observe the triangle in question. For
example, visible cameras of f in Fig. 8 are CAM1 and CAM2 since CAM3 cannot
observe f because of self-occlusion. Note that the above photometric criterion
assumes a white (non-colored) lighting environment as used in Ref. 14).

In this algorithm, we assume that we have knowledge of where the object casts
its shadows by the camera calibration processed beforehand. We use the floor of
the studio, z = 0 plane, for simplicity as described above. The geometric crite-
rion states that (1) each triangle in FCs should neighbor another triangle in FCs

or Ffloor, and (2) silhouettes produced by the algorithm described above should
satisfy intersection consistency. Figure 9 (a) and (b) illustrate intersection con-
sistent and non-consistent cases. In Fig. 9 (a), if we remove the region of FCs on

Fig. 8 Visibility checking. While CAM1 and CAM2 can observe the triangle f on the object
3D surface, CAM3 cannot observe f because it is self-occluded.

(a) Intersection consistent (b) Not intersection consistent

Fig. 9 Intersection consistent removal of cast shadow region. Carving of the projection of
FCs from the silhouettes of the cameras each of which can observe FCs (in this figure,
CAM1 and CAM2) is equivalent to the removal of the darker volume from VCs. (a) If
this removal is not observable from the other cameras (CAM3 and CAM4), it does not
affect the intersection consistency. (b) On the other hand, if the removal of the darker
volume is observable, it makes the silhouettes of CAM3 and CAM4 be intersection
inconsistent.

each camera, the silhouettes on visible cameras CAM1 and CAM2 will be carved.
This carving on the silhouettes will carve the visual hull Vcs as well, but all the
silhouettes satisfy the intersection constraint since the carving of VCs cannot be
observed from cameras CAM3 and CAM4 which cannot observe FCs. On the
other hand, if we remove the region of FCs in Fig. 9 (b), the change in VCs caused
by the carving of silhouettes in CAM1 and CAM2 will be observed from cameras
CAM3 and CAM4 which cannot observe FCs. That is, the projection of carved
VCs is not consistent with the silhouettes in CAM3 and CAM4, and silhouettes
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cannot satisfy the intersection constraint. We can detect this situation by using
the following simple algorithm.
( 1 ) Let f be a triangle of interest.
( 2 ) For each camera Ci which can observe f , project all triangles in VCs onto

it. Let p denote the pixel on which f is projected. In general, at least two
triangles should be projected on p.

( 3 ) If only f and triangles in Ffloor are projected on p, that is, the visual cone
from the projection center of Ci to f crosses only the floor plane, the re-
moval of f does not affect the intersection constraint as shown in Fig. 9 (a).
Otherwise, the removal will affect as shown in Fig. 9 (b).

We denote this 3D geometry based checking by GeometricCheck(f, C) where C

denotes the set of all cameras C1, . . . , CN . It returns true if the removal of f

does not affect the intersection constraint, and otherwise it returns false.
The photometric criterion utilizes a pixel-wise shadow classifier which is the

same as those of Refs. 14), 15). For each camera that can observe a triangle f in
it, we check if the pixel corresponding to f is classified as cast shadow or not. We
refer to this photometric criterion by PhotometricCheck(v, C) defined as follows:
( 1 ) Let f be the triangle of interest, and the number of cameras n be 0 on which

f satisfies the photometric criterion defined above.
( 2 ) For each camera Ci that can observe f , project f onto it. Let us denote the

projected area by P and a pixel in P by p. We refer to the R, G, B values at
p of the captured and background images on c by Imgi(p) and Bgi(p) where
i = R,G,B.
• If all p ∈ P satisfies the following (2) or (3), let n := n + 1.

0 ≤ ∑
i(Bgi(p) − Imgi(p)) ≤ T1 (2)⎧⎪⎨

⎪⎩
T1 ≤ ∑

i(Bgi(p) − Imgi(p)) ≤ T2∑
i Imgi(p)Bgi(p)√∑

i Imgi(p)2
∑

i Bgi(p)2
≥ T3

(3)

where T1, T2, T3 are certain thresholds. Equation (3) represents the
photometric criterion defined above. We also use Eq. (2) to let p be
shadow region if it is darker up to T1. This is because chromaticity will
be more sensitive than intensity for low values.

Fig. 10 Initial state of shadow suppression algorithm. VCs denotes the visual hull computed
from the multi-viewpoint silhouettes including cast shadows. Ffloor denotes the set of
triangles on the VCs surface and on the floor. F is the set of triangles on the VCs each
of which neighbors Ffloor.

( 3 ) If f satisfies the photometric criterion on more than one camera, that
is, n > 1, we categorize f as a part of cast shadow region and let
PhotometricCheck(f, C) return true. Otherwise, let PhotometricCheck(v, C)
return false.

3.2.3 Algorithm
Using the criteria described above, we define an algorithm which removes

shadow regions from silhouettes given by the algorithm in Section 3.1. The key
point of this algorithm is the order of checking triangles.We traverse the mesh
surface from the triangle which is a part of the floor, i.e., f ∈ Ffloor. Since we
assumed that all cast shadows should be neighboring the floor regions Ffloor, we
can avoid checking the triangles which are a part of the self shadow or darkly
textured regions not located around the floor.
Step 1 Compute VCs as polygonal surface model. We used the discrete march-

ing cubes method 16).
Step 2 Let Ffloor be the set of triangles such that each of them is on the plane

z = 0. Using Ffloor, we define F as the set of triangles such that each of them
is not in Ffloor and at least one neighboring triangle is in Ffloor (Fig. 10). We
also initialize FObj and FCs as empty set.

Step 3 For a triangle f ∈ F ,
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Step 3.1 If f is classified as cast shadow, i.e. both GeometricCheck(f, C)
and PhotometricCheck(f, C) return true, let F := F + U − f and
FCs := FCs + f where U denotes set of triangles such that each of them
is neighboring f and does not belong to FObj, FCs nor Ffloor.

Step 3.2 Otherwise, let FObj := FObj + f and F := F − f .
Step 4 If F �= ∅, go back to Step 3. Otherwise, project VCs to each viewpoint

and obtain final silhouettes by the algorithm described in Section 3.2.1.

4. Experiments

To demonstrate the capability of our error detection and correction algorithm,
we first apply the proposed algorithm to a synthesized dataset. Then, we quanti-
tatively evaluate our method using real images against conventional approaches.
Note here that the synthesized dataset does not include any artificial cast shad-
ows to focus on the error detection and correction process.

4.1 Synthesized Images
Figure 12 shows projections of a synthesized object “cube” on 4 of 25 cameras

arranged as shown in Fig. 11. Figures 13 and 14 show the initial silhouette
Sili(0) generated as illustrated by Fig. 6, and the initial segmentation Segi(0)
respectively. Note that mis-segmentations which cover both the object and back-
ground can be observed in Fig. 14.

Figures 15 and 16 show the first carving process with Ci = CAM1 from t = 0

Fig. 11 Camera arrangement.

to t = 7. The white regions in Fig. 15 indicate Sil1(t). The blue regions in
Fig. 15 indicate carved areas at each iteration. For example, the blue region of
Fig. 15 (a) indicates the area carved from the previous, i.e. the initial silhouette

(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM4

Fig. 12 Input synthesized foreground images.

(a) CAM1 (b) CAM2 (c) CAM3 (d) CAM4

Fig. 13 Initial silhouettes Silk(0), k = 1, . . . , 4, t = 0.
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(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM4

Fig. 14 Initial segmentations Segk(0), k = 1, . . . , 4, t = 0.

(a) Sil1(1) (b) Sil1(3) (c) Sil1(5) (d) Sil1(7)

Fig. 15 Silhouette carving with error detection and correction of CAMi, i = 1, t = 1, . . . , 7.

Sil1(0) shown in Fig. 13 (a). We can observe that (1) the silhouette is carved too
much according to the rough segmentation as shown in Figs. 15 (a) and 16 (a),
(2) then it is recovered as shown in Figs. 15 (b), (c) and (d). Through this error

(a) Seg1(1) (b) Seg1(3) (c) Seg1(5) (d) Seg1(7)

Fig. 16 Re-segmentation process of CAMi, i = 1, t = 1, . . . , 7.

(a) Sil2(8) (b) Sil2(11) (c) Sil2(13) (d) Sil2(15)

Fig. 17 Silhouette carving with error detection and correction of CAMi, i = 2, t = 8, . . . , 15.

(a) Seg2(8) (b) Seg2(11) (c) Seg2(13) (d) Seg2(15)

Fig. 18 Re-segmentation process of CAMi, i = 2, t = 8, . . . , 15.

recovery, the segmentation is refined as shown in Figs. 16 (b), (c) and (d) so as to
satisfy the condition IsAcceptable(·) on the other viewpoints. In this experiment
the algorithm iterated the inner loop of Fig. 2 from t = 1 to t = 7 and then
quitted the inner loop to choose the next camera. Figures 17, 18, 19, 20,
21, 22 show silhouettes and segmentations through carving and error recovery
processes from t = 8 to t = 15 with i = 2, from t = 16 to t = 27 with i = 3, and
from t = 28 to t = 39 with i = 4.

Figure 23 shows the final silhouettes estimated by the proposed algorithm.
The algorithm iterated the inner loop of Fig. 2 578 times in total while iterating
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(a) Sil3(16) (b) Sil3(20) (c) Sil3(22) (d) Sil3(27)

Fig. 19 Silhouette carving with error detection and correction of CAMi, i = 3, t = 16, . . . , 27.

(a) Seg3(16) (b) Seg3(20) (c) Seg3(22) (d) Seg3(27)

Fig. 20 Re-segmentation process of CAMi, i = 3, t = 16, . . . , 27.

(a) Sil4(28) (b) Sil4(31) (c) Sil4(35) (d) Sil4(39)

Fig. 21 Silhouette carving with error detection and correction of CAMi, i = 4, t = 28 . . . , 39.

(a) Seg4(28) (b) Seg4(31) (c) Seg4(35) (d) Seg4(39)

Fig. 22 Re-segmentation process of CAMi, i = 4, t = 28 . . . , 39.

(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM4

Fig. 23 Estimated silhouettes.

(a) CAM1 (b) CAM2 (c) CAM3 (d) CAM4

Fig. 24 Silhouettes by simple background subtraction with T = 0.

the outer loop 92 times. The processing cost is approximately three days by an
Intel Pentium4 running at 3 GHz. As a comparison, Fig. 24 shows silhouettes
given by a pixel-wise simple background subtraction in which each pixel p is
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(a) Input image (b) Estimated silhouette

Fig. 25 Undetectable error (CAM5).

categorized as silhouette if it satisfies
|Img(p) − Bg(p)| > T, (4)

where Img(p) denotes the intensity of captured image at pixel p, Bg(p) that of the
background image, T a certain threshold. For Fig. 24 we used T = 0. Therefore
the false-negative areas (pixels which are misclassified as background) in Fig. 24
indicate that the apparent color of the object is exactly equal to that of the
background (the bottom of the cube in Fig. 24 (b) for example). Compared with
24, our inter-viewpoint error correction algorithm can estimate the silhouette in
such regions correctly even though they have no difference in pixel intensities.

We observed undetectable false-negative areas on another viewpoint as shown
in Fig. 25. As discussed in Section 5, this is because (1) these areas have no or
small difference in pixel intensities between the background and (2) the carving
of them does not affect the silhouettes on the other viewpoints due to the camera
arrangement.

4.2 Real Images
Figure 26 illustrates our camera arrangement. We use 13 XGA cameras on the

wall and 2 XGA cameras on the ceiling. All cameras are calibrated beforehand.
The top and second rows of Fig. 28 show 4 of 15 input and background images
captured by the cameras. We can observe that the object region contains some
darkly textured regions, e.g ., long black hair.

Figure 27 shows the results of the naive background subtraction given by
Eq. (4) with F-measures defined below. It is clear that there is no magic thresh-

Fig. 26 Camera arrangement.

(a) T = 5, F−measure = 0.619 (b) T = 10, F−measure = 0.804

(c) T = 20, F−measure = 0.869 (d) T = 30, F−measure = 0.869

Fig. 27 Naive background subtraction (CAM1).
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Fig. 28 Silhouettes estimation with a real multi-viewpoint image set.

old which produces accurate silhouettes without cast shadows. On the other
hand, the third row of Fig. 28 shows the results given by the pixel-wise shadow
suppression algorithm by Horprasert et al. 14). White and gray regions in this
figure denote the object and shadow regions respectively. The results are much
better than those of the naive approach, but some darkly textured regions, e.g.
long black hair regions in CAM2, are misclassified as shadow. It is hard to avoid

(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM4

Fig. 29 Initial segmentations Segk(0), k = 1, . . . , 4.

this kind of misclassification. This is because each pixel in both cast shadow and
darkly textured regions has no difference in pixel level.

The fourth row of Fig. 28 shows the result of the algorithm described in Sec-
tion 3.1. Compared with ground truth silhouettes given by hand (the bottom
row of Fig. 28), it is clear that the silhouettes include cast shadow regions around
the object.

The fifth row of Fig. 28 shows the final result of our method. The algorithm
iterated the inner loop of Fig. 2 398 times in total while iterating the outer loop
54 times to obtain this result. The processing cost is approximately three days
by an Intel Pentium4 running at 3 GHz with T1 = 3, T2 = 200, T3 = 0.99.
Compared with the third row of Fig. 28, we can observe that our algorithm does
not misclassify the regions which are misclassified as shadow regions by the pixel-
wise method.

To obtain these silhouettes, we first extract silhouettes including cast shadow
regions by the algorithm described in Section 3.1. Figure 29 shows the initial
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(a) Sil4(57) (b) Sil4(58)

(c) Sil4(61) (d) Sil4(68)

Fig. 30 Error correction at CAM4, t = 57, . . . , 68.

segmentation of captured images. We can observe that they include some seg-
mentation errors, i.e. some segments include both object and background regions.
For example, in CAM4, the segment around the left shoulder of the woman in-
cludes the background regions as well. This mis-segmentation carves the object
region as shown in Fig. 30 (a). Gray areas in this figure denote regions which
are carved in the previous iteration, but recovered since the carving of them vi-
olates the intersection consistency in other viewpoints. Figures 30 (b), (c), and
(d) show how the recovery of mis-carved regions is performed. Figure 31 shows
the re-segmentation process in this error correction. We can observe that the
region which corresponds to the left shoulder of the woman is split into smaller
segments. This error detection and correction example indicates that the multi-
viewpoint silhouette extraction algorithm by Zeng and Quan 12) will fail because
it is straightforward and cannot correct mis-segmentations as shown in Fig. 30 (a).

Figure 32 shows how our algorithm detects cast shadow regions. Here, gray
areas denote regions classified as cast shadow. We can observe that our algorithm

(a) Seg4(57) (b) Seg4(58)

(c) Seg4(61) (d) Seg4(68)

Fig. 31 Re-segmentation at CAM4.

Fig. 32 Cast shadow detection.

starts cast shadow detection from the triangles on the floor, and proceeds to their
neighbors. Finally, we generate silhouettes by projecting the surface of the visual
hull which is categorized as object region as described in Section 3.2. Figure 33
shows the final result composed with the input images. We can observe that our
algorithm can suppress cast shadows as well as the pixel-wise method shown in
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(a) CAM1 (b) CAM2

(c) CAM3 (d) CAM4

Fig. 33 Results of the proposed algorithm composed with the input images.

the third row of Fig. 28, and can preserve darkly textured areas, e.g. long black
hair, as object region.

Quantitative evaluation
To evaluate our method quantitatively, we categorize the pixels in a silhouette

into the following four types:
True-positive: S(p) = 1 and Ŝ(p) = 1,
True-negative: S(p) = 0 and Ŝ(p) = 0,
False-positive: S(p) = 1 and Ŝ(p) = 0,
False-negative: S(p) = 0 and Ŝ(p) = 1,
where S(p) = 1 and S(p) = 0 denote that a pixel p is estimated as object and
background respectively, and Ŝ(p) = 1 and Ŝ(p) = 0 denote that p is a part
of object and background respectively in the ground truth image. Here, we use
silhouettes given by hand as the ground truth (the bottom row of Fig. 28). Using
this classification, we evaluate our method by the F-measure defined as follows:

Table 1 Quantitative comparison.

F-measure Recall Precision

Pixel-wise method by Ref. 14) 0.950 0.953 0.946
Our method without cast shadow removal 0.969 0.989 0.949

Our method 0.975 0.988 0.962

Recall = NTP
NTP+NFN

, (5)

Precision = NTP
NTP+NFP

, (6)

F-measure = 2×Recall×Precision
Recall+Precision , (7)

where NTP, NFP, and NFN denote the number of true-positive, false-positive,
and false-negative pixels in the estimated silhouette image respectively.

Table 1 shows F-measure, recall and precision of Horprasert’s pixel-wise
method 14) (the third row of Fig. 28), our method without cast shadow removal
(the fourth row of Fig. 28) and our method (the fifth row of Fig. 28) respectively.
These values indicate that our algorithm outperforms not only the naive back-
ground subtraction algorithm but also the pixel-wise method.

5. Discussions

5.1 Termination of the Algorithm
Using the proposed algorithm in Section 3.1, carved regions can be recovered

due to the error correction scheme as shown in Fig. 30. However, it cannot go
into an infinite loop since we re-segment the recovered regions so that the region
is split into smaller segments up to pixel level (Fig. 31) while preserving the
outline of the original segment as described in Section 3.1.1. This one-way re-
segmentation process makes the iteration converge if we omit errors at the single
pixel level. The algorithm in Section 3.2 obviously terminates before it carves
all the triangles since GeometricCheck(·) stops the carving which violates the
intersection consistency IC.

5.2 Limitation on Error Detection
It is clear that at least one camera should observe the carved region to detect

errors in the algorithm in Section 3.1. If carving of the silhouette on j-th camera
at Step t.2 does not affect other silhouettes at Step t.4, any carving is accepted.
In this situation, our algorithm just carves the silhouette based on the current
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Fig. 34 Apparent hole on 2D silhouette.

segmentation since we cannot use any information from other viewpoints.
5.3 Partial View Case
In case that we cannot capture the whole of the object as shown in the top row

of Fig. 28, we cannot use a naive implementation of SFS method as follows – “If
we have N cameras, all the portions of the visual hull should be projected onto
silhouette region at all of N cameras.” We can use the following definition instead
– “All the portions of the visual hull should be projected onto silhouette region
for all of the observable cameras.” Here, we define a camera to be observable if
a portion of the visual hull is projected inside its imaging window.

5.4 Topology of Silhouette Region
Our algorithm carves silhouettes from outside, and it is clear that Carve(·)

operation cannot carve holes inside the silhouette. That is, if the object has a
real 3D hole, our algorithm cannot estimate it since the hole does not appear
as a part of the outside contour of the 2D silhouette and the outside contours
satisfy IC. However, we have a chance to carve if it is an apparent 2D hole and
not observed as a hole by other cameras. In Fig. 34, the 2D hole under the arm
on CAM1 is not a real 3D hole. So if the corresponding region is carved on CAM2

by Carve(·) at iteration Step t.2, the hole can be carved at iteration Step t.5.
5.5 Mesh resolution in the Cast Shadow Detection
The size of the triangles of the mesh surface in Section 3.2 plays an important

role to control the accuracy of the cast shadow removal because larger triangles

are more likely to violate GeometricCheck(·) while smaller triangles make the
convergence slower. In the experiments, we used 1 cm size triangles which are
fine enough in practice due to the accuracy of the calibration while a coarse-to-
fine strategy may speed up the algorithm.

6. Conclusion

In this paper, we proposed a novel error detection, correction and shadow
suppression algorithm for multi-viewpoint silhouette extraction. The experiments
demonstrated that (1) our algorithm outperforms both the naive background
subtraction and monocular pixel-wise shadow suppression algorithms, and (2)
our algorithm can correct errors which a conventional multi-viewpoint algorithm
cannot recover.

However the monocular segmentation algorithm we used is just a possible im-
plementation which satisfies the one-way characteristic described in Section 3.1.1
and Section 5.1, and is not proven to be the only one nor the best. Further
studies are required to evaluate how the choice of the monocular segmentation
can affect the proposed algorithm, especially in terms of the speed of conver-
gence and the quality of the result. In addition to this point, our algorithm does
not employ temporal-consistency of silhouettes. So our future work will also
concentrate on (1) extending for videos, and (2) integrating the both 2D multi-
viewpoint silhouette estimation and accurate 3D shape reconstruction based on
proposed constraints and texture matching between viewpoints. Development
of an efficient computation scheme including coarse-to-fine and parallel process-
ing on GPU is also left for future work since our algorithm is much slower than
pixel-wise algorithms due to its iterative nature.
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