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In statistical pattern recognition, it is important to avoid density estimation
since density estimation is often more difficult than pattern recognition itself.
Following this idea—known as Vapnik’s principle, a statistical data processing
framework that employs the ratio of two probability density functions has been
developed recently and is gathering a lot of attention in the machine learning
and data mining communities. The purpose of this paper is to introduce to
the computer vision community recent advances in density ratio estimation
methods and their usage in various statistical data processing tasks such as non-
stationarity adaptation, outlier detection, feature selection, and independent
component analysis.

1. Introduction

Avoiding density estimation is a key to success in statistical pattern recognition
since density estimation is often more difficult than pattern recognition itself.
This is sometimes referred to as Vapnik’s principle 1) and the support vector
machine would be a successful example of this principle—instead of estimating
the data generation model, it directly models the decision boundary which is
sufficient for pattern recognition. Following this spirit, a new general framework
of statistical data processing has been developed recently in the machine learning
and data mining communities 2)–17). The purpose of this article is to introduce
the new framework to the computer vision community.
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The key idea of the new framework is not to estimate probability densities,
but to estimate the ratio of two probability densities. We first give a com-
prehensive review of methods for estimating the density ratio, including the
kernel density estimator 18), kernel mean matching 4), logistic regression 6),19),20),
the Kullback-Leibler importance estimation procedure 9),10), least-squares impor-
tance fitting 11), and unconstrained least-squares importance fitting 11). Note that
“importance” refers to the density ratio, derived from importance sampling 21).
The use of the kernel density estimator results in a two-step procedure of first
estimating the two densities and then plugging them into the density ratio, while
recently developed methods are one-shot and directly estimate the density ra-
tio without going through density estimation. Such direct density-ratio estima-
tion methods were shown to be more accurate than the naive two-step approach
through extensive experiments 9),11).

Following the review of the density-ratio estimation methods, we explain how
these methods could be used for solving various statistical data processing tasks
such as non-stationarity adaptation 2),3),5),14),22), outlier detection 7),23)–25), and
conditional density estimation 16),26)–28). Furthermore, mutual information—
which plays a central role in information theory 29)—can also be estimated via
density ratio estimation. Since mutual information is a measure of statistical in-
dependence between random variables 30),31), density ratio estimation can be used
also for variable selection 8),12),32), dimensionality reduction 33), and independent
component analysis 13),34).

These machine learning and data mining tasks would be crucial in computer
vision applications. For example, in object recognition, non-stationarity is con-
ceivable since training images are often collected in a controlled environment such
as a studio while test images will be gathered in various scenes; outlier images
tend to be included due to measurement noise or occlusions. Furthermore, reduc-
ing dimensionality of the images would be indispensable for enhancing recognition
accuracy.

This paper is an extended version of an earlier conference paper presented at
Meeting on Image Recognition and Understanding 2008 (MIRU2008) 35).
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2. Density Ratio Estimation

In this section, we formulate the problem of density ratio estimation and give
a comprehensive review of density-ratio estimation methods.

2.1 Formulation
Let D (⊂ R

d) be the data domain and suppose we are given independent and
identically distributed (i.i.d.) samples {xi}ni=1 from a distribution with density
q(x) and i.i.d. samples {x′

j}n
′

j=1 from another distribution with density q′(x). We
assume that the first density q(x) is strictly positive over the domain D, i.e.,

q(x) > 0 for all x ∈ D.
The problem we address in this article is to estimate the density ratio

r(x) :=
q′(x)
q(x)

from samples {xi}ni=1 and {x′
j}n

′
j=1.

2.2 Kernel Density Estimator
The kernel density estimator (KDE) is a non-parametric technique to esti-

mate a probability density function p(x) from its i.i.d. samples {xi}ni=1. For the
Gaussian kernel

Kσ(x,x′) := exp
(
−||x− x′||2

2σ2

)
, (1)

KDE is expressed as

p̂(x) =
1

n(2πσ2)d/2

n∑
i=1

Kσ(x,xi).

The performance of KDE depends on the choice of the kernel width σ. The ker-
nel width σ can be optimized by likelihood cross-validation (LCV) as follows 18):
First, divide the samples {xi}ni=1 into k disjoint subsets {Xj}kj=1. Then obtain a
density estimate p̂X�

(x) from {Xj}j �=� and compute its log-likelihood for X�:

1
|X�|

∑
x∈X�

log p̂X�
(x).

Repeat this procedure for � = 1, 2, . . . , k and choose the value of σ such that the
average of the above hold-out log-likelihood over all � is maximized. Note that

the average hold-out log-likelihood is an almost unbiased estimate of the negative
Kullback-Leibler divergence 36) from p(x) to p̂(x), up to an irrelevant constant.

KDE can be used for density ratio estimation by first obtaining density estima-
tors q̂(x) and q̂′(x) separately from {xi}ni=1 and {x′

j}n
′

j=1, and then estimating
the density ratio by plugging into the ratio as r̂(x) = q̂′(x)/q̂(x). However, a
potential limitation of this naive approach is that KDE is not accurate in high-
dimensional problems 1),18).

2.3 Kernel Mean Matching
Kernel mean matching (KMM) allows us to directly obtain an estimate of the

density-ratio values without going through density estimation 4). The basic idea
of KMM is to find r̂(x) such that the mean discrepancy between nonlinearly
transformed samples drawn from q(x) and q′(x) is minimized in a universal
reproducing kernel Hilbert space 37). The Gaussian kernel (1) is an example of
kernels that induce a universal reproducing kernel Hilbert space and it has been
shown 4) that the solution of the following optimization problem agrees with the
true density ratio:

min
r(x)

∣∣∣∣∣∣∣∣∫ Kσ(x, ·)q′(x)dx−
∫
Kσ(x, ·)r(x)q(x)dx

∣∣∣∣∣∣∣∣2
H

subject to
∫
r(x)q(x)dx = 1 and r(x) ≥ 0,

where || · ||H denotes the norm in the Gaussian reproducing kernel Hilbert space
and Kσ(x,x′) is the Gaussian kernel (1).

An empirical version of the above problem is reduced to the following convex
quadratic program:

min
{ri}n

i=1

⎡⎣1
2

n∑
i,i′=1

riri′Kσ(xi,xi′)−
n∑

i=1

riκi

⎤⎦
subject to

∣∣∣∣∣ 1n
n∑

i=1

ri − 1

∣∣∣∣∣ ≤ ε and 0 ≤ r1, r2, . . . , rn ≤ B,

where
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κi =
n

n′

n′∑
j=1

Kσ(xi,x
′
j).

B (≥ 0) and ε (≥ 0) are tuning parameters that control the regularization effects.
The solution {r̂i}ni=1 is an estimate of the density ratio at {xi}ni=1.

Since KMM does not involve density estimation, it is expected to work well
even in high-dimensional cases. However, the performance depends on the choice
of the tuning parameters B, ε, and σ, and they cannot be simply optimized, e.g.,
by cross-validation (CV) since estimates of the density ratio are available only at
{xi}ni=1. A popular heuristic is to use the median distance between samples as
the Gaussian width σ 33),38), although there seems no strong justification for this
heuristic. For the choice of ε, a theoretical result given in the reference 4) could
be used as guidance. However, it is still hard to determine the best value of ε in
practice.

2.4 Logistic Regression
Another approach to directly estimating the density ratio is to use a proba-

bilistic classifier. Let us assign a selector variable η = −1 to samples drawn from
q(x) and η = 1 to samples drawn from q′(x), i.e., the two densities are written
as

q(x) = p(x|η = −1),
q′(x) = p(x|η = 1).

Note that η is regarded as a random variable.
An application of the Bayes theorem yields that the density ratio can be ex-

pressed in terms of η as follows 6),19),20):

r(x) =
p(η = −1)
p(η = 1)

p(η = 1|x)
p(η = −1|x)

.

The ratio p(η = −1)/p(η = 1) may be simply approximated by the ratio of the
numbers of samples:

p(η = −1)
p(η = 1)

≈ n

n′
.

The conditional probability p(η|x) could be approximated by discriminating
{xi}ni=1 from {x′

j}n
′

j=1 using a logistic regression (LogReg) classifier, where η

plays the role of a class variable. Below we briefly explain the LogReg method.

The LogReg classifier employs a parametric model of the following form for
expressing the conditional probability p(η|x):

p̂(η|x) =
1

1 + exp (−η∑m
�=1 ζ�φ�(x))

,

wherem is the number of basis functions and {φ�(x)}m�=1 are fixed basis functions.
The parameter ζ is learned so that the negative regularized log-likelihood is
minimized:

ζ̂ = argmin
ζ

[
n∑

i=1

log

(
1 + exp

(
m∑

�=1

ζ�φ�(xi)

))

+
n′∑

j=1

log

(
1 + exp

(
−

m∑
�=1

ζ�φ�(x′
j)

))
+ λζ�ζ

]
.

Since the above objective function is convex, the global optimal solution can be
obtained by a standard nonlinear optimization technique such as the gradient
method or Newton’s method 39). Then a density-ratio estimator is given by

r̂(x) =
n

n′
exp

(
m∑

�=1

ζ̂�φ�(x)

)
. (2)

An advantage of the LogReg method is that model selection (i.e., the choice
of the basis functions {φ�(x)}m�=1 as well as the regularization parameter λ) is
possible by standard cross-validation since the learning problem involved above
is a standard supervised classification problem.

When multi-class logistic-regression classifiers are used, density ratios among
multiple densities can be estimated simultaneously 40).

2.5 Kullback-Leibler Importance Estimation Procedure
The Kullback-Leibler importance estimation procedure (KLIEP) 9) also directly

gives an estimator of the density-ratio function without going through density
estimation by matching the two distributions in terms of the Kullback-Leibler
divergence 36).

Let us model the density ratio r(x) by the following linear model:

IPSJ Transactions on Computer Vision and Applications Vol. 1 183–208 (Sep. 2009) c© 2009 Information Processing Society of Japan



186 A Density-ratio Framework for Statistical Data Processing

r̂(x) =
b∑

�=1

α�ϕ�(x), (3)

where {α�}b�=1 are parameters to be learned from data samples and {ϕ�(x)}b�=1

are basis functions such that
ϕ�(x) ≥ 0 for all x ∈ D and for � = 1, 2, . . . , b.

Note that b and {ϕ�(x)}b�=1 could be dependent on the samples {xi}ni=1 and
{x′

j}n
′

j=1, so kernel models are also allowed. We explain how the basis functions
{ϕ�(x)}b�=1 are designed later.

An estimator of the density q′(x) is given by using the density-ratio model r̂(x)
as

q̂′(x) = r̂(x)q(x).
In KLIEP, the parameters {α�}b�=1 are determined so that the Kullback-Leibler
divergence from q′(x) to q̂′(x) is minimized:

KL[q′(x)||q̂′(x)] =
∫
D
q′(x) log

q′(x)
r̂(x)q(x)

dx

=
∫
D
q′(x) log

q′(x)
q(x)

dx−
∫
D
q′(x) log r̂(x)dx. (4)

The first term is a constant, so it can be safely ignored. Since q̂′(x) is a probability
density function, it should satisfy

1 =
∫
D
q̂′(x)dx =

∫
D
r̂(x)q(x)dx. (5)

The KLIEP optimization problem is given by replacing the expectations in
Eqs. (4) and (5) with empirical averages:

max
{α�}b

�=1

⎡⎣ n′∑
j=1

log

(
b∑

�=1

α�ϕ�(x′
j)

)⎤⎦
subject to

1
n

b∑
�=1

α�

n∑
i=1

ϕ�(xi) = 1 and α1, α2, . . . , αb ≥ 0.

This is a convex optimization problem and the global solution—which tends to
be sparse 41)—can be obtained, e.g., by simply performing gradient ascent and
feasibility satisfaction iteratively. A pseudo code is summarized in Fig. 1.

Input: m = {ϕ�(x)}b�=1, {xi}ni=1, and {x′
j}n

′
j=1

Output: r̂(x)

Aj,� ←− ϕ�(x′
j) for j = 1, 2, . . . , n′ and � = 1, 2, . . . , b;

ξ� ←− 1
n

∑n
i=1 ϕ�(xi) for � = 1, 2, . . . , b;

Initialize α = (α1, α2, . . . , αb)� (> 0b) and ε (0 < ε� 1);
Repeat until convergence

α←− α + εA�(1n′ ./Aα); % Gradient ascent
α←− α + (1− ξ�α)ξ/(ξ�ξ); % Constraint satisfaction
α←− max(0b,α); % Constraint satisfaction
α←− α/(ξ�α); % Constraint satisfaction

end
r̂(x)←−∑b

�=1 α�ϕ�(x);

Fig. 1 Pseudo code of KLIEP. 0b denotes the b-dimensional vector with all zeros, and 1n′
denotes the n′-dimensional vector with all ones. ‘./’ indicates the element-wise division
and � denotes the transpose. Inequalities and the ‘max’ operation for vectors are
applied in the element-wise manner.

The performance of KLIEP depends on the choice of the basis functions
{ϕ�(x)}b�=1. As explained below, the use of Gaussian basis functions would be
reasonable:

r̂(x) =
n′∑

�=1

α�Kσ(x,x′
�),

where Kσ(x,x′) is the Gaussian kernel with kernel width σ (see Eq. (1)). By
definition, the density ratio r(x) tends to take large values if q(x) is small and
q′(x) is large; conversely, r(x) tends to be small (i.e., close to zero) if q(x) is
large and q′(x) is small. When a function is approximated by a Gaussian kernel
model, many kernels may be needed in the region where the output of the target
function is large; on the other hand, only a small number of kernels would be
enough in the region where the output of the target function is close to zero.
Following this heuristic, many kernels are allocated in the region where q′(x) has
large values, which can be achieved by setting the Gaussian centers at {x′

j}n
′

j=1.
Model selection of KLIEP is possible based on a variant of likelihood
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Input: M = {m | m = {ϕ�(x)}b�=1}, {xi}ni=1, and {x′
j}n

′
j=1

Output: r̂(x)

Split {x′
j}n

′
j=1 into k disjoint subsets {X ′

j}kj=1;
for each model m ∈M

for each split t = 1, 2, . . . , k
r̂t(x)←− KLIEP(m, {xi}ni=1, {X ′

j}j �=t);
L̂t(m)←− 1

|X ′
t |
∑

x∈X ′
t
log r̂t(x);

end
L̂(m)←− 1

k

∑k
t=1 L̂t(m);

end
m̂←− argmaxm∈M L̂(m);
r̂(x)←− KLIEP(m̂, {xi}ni=1, {x′

j}n
′

j=1);

Fig. 2 Pseudo code of likelihood cross-validation for KLIEP.

cross-validation. A pseudo code is summarized in Fig. 2. A MATLAB R©

implementation of the entire KLIEP algorithm is available from http://
sugiyama-www.cs.titech.ac.jp/˜sugi/software/KLIEP/.

Properties of KLIEP-type algorithms have been theoretically investigated in
the references 10),19),20),42). Note that the density-ratio model of KLIEP is the
linear model (3), while that of LogReg is the log-linear model (2). A variant of
KLIEP for log-linear models has been studied in the reference 15).

2.6 Least-squares Importance Fitting
KLIEP employed the Kullback-Leibler divergence for measuring the discrep-

ancy between two densities. Least-squares importance fitting (LSIF) 11) uses the
squared loss for density-ratio function fitting. The density ratio r(x) is again
modeled by the linear model (3).

The parameters α = (α1, α2, . . . , αb)� in the model r̂(x) are determined so
that the following squared error J0 is minimized:

J0(α) =
1
2

∫
(r̂(x)− r(x))2 q(x)dx

=
1
2

∫
r̂(x)2q(x)dx−

∫
r̂(x)q′(x)dx +

1
2

∫
r(x)q′(x)dx,

where the last term is a constant and therefore can be safely ignored. Let us
denote the first two terms by J :

J(α) =
1
2

∫
r̂(x)2q(x)dx−

∫
r̂(x)q′(x)dx.

Approximating the expectations in J by empirical averages, we obtain

Ĵ(α) =
1
2n

n∑
i=1

r̂(xi)2 − 1
n′

n′∑
j=1

r̂(x′
j)

=
1
2

b∑
�,�′=1

α�α�′Ĥ�,�′ −
b∑

�=1

α�ĥ�, (6)

where

Ĥ�,�′ :=
1
n

n∑
i=1

ϕ�(xi)ϕ�′(xi), (7)

ĥ� :=
1
n′

n′∑
j=1

ϕ�(x′
j). (8)

Taking into account the non-negativity of the density-ratio function r(x), the
optimization problem is formulated as follows.

min
{α�}b

�=1

⎡⎣1
2

b∑
�,�′=1

α�α�′Ĥ�,�′ −
b∑

�=1

α�ĥ� + λ

b∑
�=1

α�

⎤⎦
subject to α� ≥ 0 for � = 1, 2, . . . , b, (9)

where a penalty term λ
∑b

�=1 α� is included for regularization purposes with λ

(≥ 0) being a regularization parameter. Eq. (9) is a convex quadratic program-
ming problem and therefore the unique global optimal solution can be computed
efficiently by a standard optimization package. Basis functions may be designed
in the same way as KLIEP (i.e., Gaussian basis functions; see Section 2.5).

Model selection of the Gaussian width σ and the regularization parameter
λ is possible by a variant of cross-validation: First, {xi}ni=1 and {x′

j}n
′

j=1 are
divided into k disjoint subsets {Xi}ki=1 and {X ′

j}kj=1, respectively. Then a density-
ratio estimate r̂�(x) is obtained using {Xi}i�=� and {X ′

j}j �=�, and the cost J is
approximated using the hold-out samples X� and X ′

� as
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Ĵ� :=
1

2|X�|
∑

x∈X�

r̂�(x)2 − 1
|X ′

� |
∑

x′∈X ′
�

r̂�(x′).

This procedure is repeated for � = 1, 2, . . . , k and its average Ĵ is used as an
estimate of J :

Ĵ :=
1
k

k∑
�=1

Ĵ�.

The LSIF solution α̂ is shown to be piecewise linear with respect to the regu-
larization parameter λ 11). Therefore, the regularization path (i.e., solutions for
all λ) can be computed efficiently based on the parametric optimization tech-
nique 43)–45). A pseudo code of the regularization path tracking algorithm for
LSIF is described in Fig. 3. This implies that a quadratic programming solver is
no longer needed for obtaining the LSIF solution—just computing matrix inverses
is enough. This highly contributes to saving the computation time. Furthermore,
the regularization path algorithm is computationally very efficient when the so-
lution is sparse, i.e., most of the elements are zero since the number of change
points tends to be small for sparse solutions.

An R implementation of the entire LSIF algorithm is available from
http://www.math.cm.is.nagoya-u.ac.jp/˜kanamori/software/LSIF/.

2.7 Unconstrained Least-squares Importance Fitting
LSIF combined with regularization path tracking is computationally very effi-

cient. However, it sometimes suffers from a numerical problem and therefore is
not practically reliable. To cope with this problem, an approximation method
called unconstrained LSIF (uLSIF) has been introduced 11).

The approximation idea is very simple: the non-negativity constraint in the
optimization problem (9) is dropped. This results in the following unconstrained
optimization problem.

min
{α�}b

�=1

⎡⎣1
2

b∑
�,�′=1

α�α�′Ĥ�,�′ −
b∑

�=1

α�ĥ� +
λ

2

b∑
�=1

α2
�

⎤⎦ . (10)

In the above, a quadratic regularization term is included λ
∑b

�=1 α
2
�/2 instead of

the linear one since the linear penalty term does not work as a regularizer without

Input: Ĥ and ĥ % see Eqs. (7) and (8) for the definition
Output: entire regularization path α̂(λ) for λ ≥ 0

τ ←− 0; k ←− argmaxi{ĥi | i = 1, 2, . . . , b};
λτ ←− ĥk; Â ←− {1, 2, . . . , b}\{k};
α̂(λτ )←− 0b; % the vector with all zeros
While λτ > 0

Ê ←− O| ̂A|×b; % the matrix with all zeros

For i = 1, 2, . . . , |Â|
Êi,ji ←− 1; % Â = {j1, j2, . . . , j| ̂A| | j1 < j2 < · · · < j| ̂A|}

end

Ĝ←−
(

Ĥ −Ê
�

−Ê O| ̂A|×| ̂A|

)
;

u ←− Ĝ
−1
(

ĥ
0| ̂A|

)
; v ←− Ĝ

−1
(

1b

0| ̂A|

)
;

If v ≤ 0b+| ̂A| % the final interval

λτ+1 ←− 0; α̂(λτ+1)←− (u1, u2, . . . , ub)
�;

else % an intermediate interval

k ←− argmaxi{ui/vi | vi > 0, i = 1, 2, . . . , b + |Â|};
λτ+1 ←− max{0, uk/vk};
α̂(λτ+1)←− (u1, u2, . . . , ub)

� − λτ+1(v1, v2, . . . , vb)
�;

If 1 ≤ k ≤ b

Â ←− Â ∪ {k};
else

Â ←− Â\{jk−b};
end

end
τ ←− τ + 1;

end

α̂(λ)←−
{

0b if λ ≥ λ0
λτ+1−λ

λτ+1−λτ
α̂(λτ ) + λ−λτ

λτ+1−λτ
α̂(λτ+1) if λτ+1 ≤ λ ≤ λτ

Fig. 3 Pseudo code for computing the entire regularization path of LSIF. The computation of

Ĝ
−1

is sometimes unstable. For stabilization purposes, small positive diagonals may
be added to Ĥ.
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the non-negativity constraint. Eq. (10) is an unconstrained convex quadratic
program, so the solution can be analytically computed as

α̃ = (α̃1, α̃2, . . . , α̃b)� = (Ĥ + λIb)−1ĥ,

where Ib is the b-dimensional identity matrix. Since the non-negativity con-
straint α� ≥ 0 is dropped, some of the learned parameters could be negative.
To compensate for this approximation error (see the reference 46) for theoretical
error analysis), the solution is modified as

α̂� = max(0, α̃�) for � = 1, 2, . . . , b. (11)
An advantage of the above unconstrained formulation is that the solution can be
computed just by solving a system of linear equations. Therefore, the computa-
tion is fast and stable. See the reference 47) for theoretical analysis of algorithmic
stability.

Another, and more significant advantage of uLSIF is that the score of leave-
one-out cross-validation (LOOCV) can be computed analytically—thanks to
this property, the computational complexity for performing leave-one-out cross-
validation is the same order as just computing a single solution, which is explained
below. In the current setting, two sets of samples {xi}ni=1 and {x′

j}n
′

j=1 are given,
which generally have different sample size. For explaining the idea in a simple
manner, we assume that n < n′ and xi and x′

i (i = 1, 2, . . . , n) are held out at
the same time; {x′

j}n
′

j=n+1 are always used for density-ratio estimation.
Let r̂(i)(x) be an estimate of the density ratio obtained without xi and x′

i.
Then the leave-one-out cross-validation score is expressed as

LOOCV =
1
n

n∑
i=1

[
1
2
(r̂(i)(xi))2 − r̂(i)(x′

i)
]
. (12)

Our approach to efficiently computing the leave-one-out cross-validation score
is to use the Sherman-Woodbury-Morrison formula 48) for computing matrix in-
verses. A pseudo code of uLSIF with LOOCV-based model selection is summa-
rized in Fig. 4. MATLAB R© and R implementations of the entire uLSIF algorithm
are available from http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/uLSIF/,
http://www.math.cm.is.nagoya-u.ac.jp/˜kanamori/software/LSIF/.

2.8 Discussions
Table 1 summarizes properties of the density-ratio estimation methods.

Input: {xi}ni=1 and {x′
j}n

′
j=1

Output: r̂(x)

b←− min(100, n′); n←− min(n, n′);
Randomly choose b centers {c�}b�=1 from {x′

j}n
′

j=1 without replacement;
For each candidate of Gaussian width σ

Ĥ�,�′ ←− 1

n

n∑
i=1

exp

(
−||xi − c�||2 + ||xi − c�′ ||2

2σ2

)
for �, �′ = 1, 2, . . . , b;

ĥ� ←− 1

n′

n′∑
j=1

exp
(−frac||x′

j − c�||22σ2) for � = 1, 2, . . . , b;

X�,i ←− exp
(−||xi − c�||2/(2σ2)

)
for i = 1, 2, . . . , n and � = 1, 2, . . . , b;

X ′
�,i ←− exp

(−||x′
i − c�||2/(2σ2)

)
for i = 1, 2, . . . , n and � = 1, 2, . . . , b;

For each candidate of regularization parameter λ

B̂ ←− Ĥ +
λ(n− 1)

n
Ib;

B0 ←− B̂
−1

ĥ1�
n + B̂

−1
X diag

(
ĥ

�
B̂

−1
X

n1�
n − 1�

b (X ∗ B̂
−1

X)

)
;

B1 ←− B̂
−1

X ′ + B̂
−1

X diag

(
1�

b (X ′ ∗ B̂
−1

X)

n1�
n − 1�

b (X ∗ B̂
−1

X)

)
;

B2 ←− max

(
Ob×n,

n− 1

n(n′ − 1)
(n′B0 −B1)

)
;

r ←− (1�
b (X ∗B2))

�; r′ ←− (1�
b (X ′ ∗B2))

�;

LOOCV(σ, λ)←− r�r/(2n)− 1�
n r′/(n) ;

end
end

(σ̂, λ̂)←− argmin(σ,λ) LOOCV(σ, λ);

H̃�,�′ ←− 1

n

n∑
i=1

exp

(
−||xi − c�||2 + ||xi − c�′ ||2

2σ̂2

)
for �, �′ = 1, 2, . . . , b;

h̃� ←− 1

n′

n′∑
j=1

exp

(
−||x

′
j − c�||2
2σ̂2

)
for � = 1, 2, . . . , b;

α̂ ←− max(0b, (H̃ + λ̂Ib)
−1h̃);

r̂(x)←−
b∑

�=1

α̂� exp

(
−||x − c�||2

2σ̂2

)
;

Fig. 4 Pseudo code of uLSIF with leave-one-out cross-validation. B∗B′ denotes the element-
wise multiplication of matrices B and B′ of the same size. For n-dimensional vectors b

and b′, diag
(

b
b′
)

denotes the n × n diagonal matrix with i-th diagonal element bi/b′i.
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Table 1 Density-ratio estimation methods.

Methods
Density

estimation
Model

selection
Optimization

Out-of-sample
prediction

KDE Necessary Available Analytic Possible
KMM Not necessary Not available Convex quadratic program Not possible

LogReg Not necessary Available Convex non-linear Possible
KLIEP Not necessary Available Convex non-linear Possible
LSIF Not necessary Available Convex quadratic program Possible
uLSIF Not necessary Available Analytic Possible

KDE is efficient in computation since no optimization is involved, and model
selection is possible by likelihood cross-validation. However, KDE is not accurate
in high-dimensional problems 1),18).

KMM may potentially overcome the weakness of KDE by directly estimating
the density ratio. However, there is no objective model selection method. There-
fore, model parameters such as the Gaussian width need to be determined by
hand, which is highly unreliable unless we have strong prior knowledge. Further-
more, the computation of KMM is rather demanding since a quadratic program-
ming problem has to be solved.

LogReg and KLIEP also do not involve density estimation, but different from
KMM, they give estimators the entire density-ratio function, not only the values
of the density-ratio function at samples. Therefore, the values of the density
ratio at unseen points can be estimated by LogReg and KLIEP. This feature is
highly useful since it enables us to employ cross-validation for model selection,
which is a significant advantage over KMM. However, LogReg and KLIEP are
computationally rather expensive since non-linear optimization problems have to
be solved.

LSIF is qualitatively similar to LogReg and KLIEP, i.e., it can avoid density
estimation, model selection is possible, and non-linear optimization is involved.
LSIF is advantageous over LogReg and KLIEP in that it is equipped with a
regularization path tracking algorithm. Thanks to this, model selection of LSIF
is computationally much more efficient than LogReg and KLIEP. However, the
regularization path tracking algorithm tends to be numerically unstable.

uLSIF inherits good properties of other methods, e.g., no density estimation
is involved and a built-in model selection method is available. In addition to

these preferable properties, the solution of uLSIF can be computed analytically
through matrix inversion and therefore uLSIF is computationally very efficient
and numerically stable. Furthermore, thanks to the availability of the closed-form
solution of uLSIF, the leave-one-out cross-validation score can be analytically
computed without repeating hold-out loops, which highly contributes to reducing
the computation time in the model selection phase.

As experimentally demonstrated in Section 4, KLIEP, LSIF, and uLSIF are
shown to be accurate and uLSIF is computationally advantageous. Thus the use
of uLSIF may be recommended for practical use.

3. Statistical Data Processing via Density-ratio Estimation

In this section, we show how the density ratio estimation methods could be
employed for solving various statistical data processing tasks.

3.1 Covariate Shift Adaptation
Covariate shift 22) is a situation in supervised learning where the input distri-

butions change between the training and test phases but the conditional distribu-
tion of outputs given inputs remains unchanged. Under covariate shift, standard
learning techniques such as maximum likelihood estimation are biased; the bias
caused by covariate shift can be asymptotically canceled by weighting the loss
function according to the importance 2),3),5),22). The basic idea of covariate shift
adaptation is summarized in the following importance sampling identity:

E
q′(x)

[g(x)] =
∫
g(x)q′(x)dx

=
∫
g(x)r(x)q(x)dx = E

q(x)
[g(x)r(x)].

That is, the expectation of a function g(x) over q′(x) can be computed by the
importance-weighted expectation over q(x). Similarly, standard model selection
criteria such as cross-validation or Akaike’s information criterion lose their un-
biasedness due to covariate shift; proper unbiasedness can be recovered by mod-
ifying the methods based on importance weighting 2)–5),14),22). Furthermore, the
performance of active learning or the experiment design, i.e., the training input
distribution is designed by the user to enhance the generalization performance,
could also be improved by the use of the importance 49)–52).
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Thus the importance plays a central role in covariate shift adaptation and
density-ratio estimation methods could be used for reducing the estimation bias
under covariate shift. Examples of successful real-world applications includes
brain-computer interface 5), robot control 53), speaker identification 54), and nat-
ural language processing 15). A similar importance-weighting idea also plays a
central role in domain adaptation 55) and multi-task learning 40).

A more practical explanation of covariate shift adaptation techniques are sum-
marized in Section 4.2 with experimental results.

3.2 Inlier-based Outlier Detection
Let us consider an outlier detection problem 23),24) of finding irregular samples

in a dataset (“evaluation dataset”) based on another dataset (“model dataset”)
that only contains regular samples. Defining the density ratio over two sets of
samples, we can see that the density-ratio values for regular samples are close to
one, while those for outliers tend to be significantly deviated from one. Thus the
density-ratio values could be used as an index of the degree of outlyingness 7).
Since the evaluation dataset has a wider support than the model dataset, we
regard the evaluation dataset as samples corresponding to the denominator in the
density ratio and the model dataset as samples corresponding to the numerator
in the density ratio. Then outliers tend to have smaller density-ratio values (i.e.,
close to zero). As such, density-ratio estimation methods could be employed
for outlier detection. A similar idea could be used for change-point detection in
time-series 56),57) and two-sample problems in hypothesis testing 58).

Practical advantages of the density-ratio approach in outlier detection scenarios
are experimentally investigated in Section 4.3.

3.3 Conditional Density Estimation
Suppose we are given n i.i.d. paired samples {(xk,yk)}nk=1 drawn from a joint

distribution with density p(x,y). The goal is to estimate the conditional density
p(y|x). When the domain of x is continuous, conditional density estimation is
not straightforward since a naive empirical approximation cannot be used 26),59).

In the context of density-ratio estimation, let us regard {(xk,yk)}nk=1 as sam-
ples corresponding to the numerator of the density ratio and {xk}nk=1 as samples
corresponding to the denominator of the density ratio, i.e., we consider the den-
sity ratio defined by

r(x,y) :=
p(x,y)
p(x)

,

which is equivalent to the conditional density p(y|x). Thus a density-ratio es-
timation method directly gives an estimate of the conditional density. Using a
density-ratio estimation method, we can estimate the conditional density as

p̂(y|x) = r̂(x,y).
Below, we explain a more technical detail by taking the uLSIF idea as an

example. Similar formulations are also possible for LSIF and KLIEP. However,
KMM and LogReg may not be used for conditional density estimation since
these methods explicitly require that the domains of the denominator and the
numerator of the density ratio are common, which is not satisfied here.

For the density-ratio model

r̂(x,y) =
b∑

�=1

α�ϕ�(x,y),

let us consider the following squared fitting error.

1
2

∫∫
(r̂(x,y)− r(x,y))2 p(x)dxdy

=
1
2

∫∫ ( b∑
�=1

α�ϕ�(x,y)

)2

p(x)dxdy −
∫∫ b∑

�=1

α�ϕ�(x,y)p(x,y)dxdy

+
1
2

∫∫
r(x,y)p(x,y)dxdy,

where the last term is a constant. Ignoring the constant, approximating the
integral by sample averages, and adding the �2-regularizer, we have the following
optimization problem:

min
{α�}b

�=1

⎡⎣1
2

b∑
�,�′=1

α�α�′Ĥ�,�′ −
b∑

�=1

α�ĥ� +
λ

2

b∑
�=1

α2
�

⎤⎦ ,
where
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Ĥ�,�′ :=
1
n

n∑
k=1

∫
ϕ�(xk,y)ϕ�′(xk,y)dy,

ĥ� :=
1
n

n∑
k=1

ϕ�(xk,yk).

This is basically the same formulation as uLSIF. For the Gaussian basis functions

φ�(x,y) = exp
(
−||x− u�||2

2σ2

)
exp

(
−||y − v�||2

2σ2

)
,

the integral in the definition of Ĥ�,�′ above can be computed analytically as∫
φ�(x,y)φ�′(x,y)dy

= (
√
πσ)dY exp

(
−2||x− u�||2 + 2||x− u�′ ||2 + ||v� − v�′ ||2

4σ2

)
,

where dY denotes the dimension of y.
For the KLIEP-type loss function, we may formulate the optimization criterion

as

max
{α�}b

�=1

[
n∑

k=1

log

(
b∑

�=1

α�ϕ�(xk,yk)

)]

subject to
1
n

b∑
�=1

α�

n∑
k=1

∫
ϕ�(xk,y)dy = 1 and α1, α2, . . . , αb ≥ 0.

Practical advantages of the density-ratio approach in conditional density esti-
mation scenarios are experimentally investigated in Section 4.4. See the paper 16)

for more detail.
3.4 Mutual Information Estimation
Suppose that we are given n i.i.d. paired samples {(xk,yk)}nk=1 drawn from a

joint distribution with density p(x,y). Let us denote the marginal densities of
xk and yk by p(x) and p(y), respectively. Mutual information I(X,Y ) between
random variables X and Y is defined by

I(X,Y ) :=
∫∫

p(x,y) log
p(x,y)
p(x)p(y)

dxdy, (13)

which plays a central role in information theory 29). A squared-loss variant of
mutual information is defined by

Is(X,Y ) :=
1
2

∫ (
p(x,y)
p(x)p(y)

− 1
)2

p(x)p(y)dxdy. (14)

This corresponds to the f-divergence 60),61) from p(x,y) to p(x)p(y) with the
squared loss, while ordinary mutual information (13) corresponds to the f -
divergence with the log loss (i.e., the Kullback-Leibler divergence 36)).

3.4.1 Estimating Mutual Information using Density-ratio Methods
Let us regard {(xk,yk)}nk=1 as samples corresponding to the numerator of the

density ratio and {(xk,yk′)}nk,k′=1 as samples corresponding to the denominator
of the density ratio, i.e., we consider the density ratio defined by

r(x,y) :=
p(x,y)
p(x)p(y)

.

Then mutual information can be estimated using a density-ratio estimator r̂(x,y)
as follows 8):

Î(X,Y ) =
1
n

n∑
k=1

log r̂(xk,yk).

Below, we explain a more concrete formulation by taking the uLSIF idea as an
example; see the papers 8),13),17) for more detail on mutual information estimation
based on density-ratio methods. For the density-ratio model

r̂(x,y) =
b∑

�=1

α�ϕ�(x,y),

let us consider the following squared fitting error.

1
2

∫∫
(r̂(x,y)− r(x,y))2 p(x)p(y)dxdy

=
1
2

∫∫ ( b∑
�=1

α�ϕ�(x,y)

)2

p(x)p(y)dxdy−
∫∫ b∑

�=1

α�ϕ�(x,y)p(x,y)dxdy

+
1
2

∫∫
r(x,y)p(x,y)dxdy,

where the last term is a constant. Ignoring the constant, approximating the
integral by sample averages, and adding the �2-regularizer, we have the following
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optimization problem:

min
{α�}b

�=1

⎡⎣1
2

b∑
�,�′=1

α�α�′Ĥ�,�′ −
b∑

�=1

α�ĥ� +
λ

2

b∑
�=1

α2
�

⎤⎦ , (15)

where

Ĥ�,�′ :=
1
n2

n∑
k,k′=1

ϕ�(xk,yk′)ϕ�′(xk,yk′),

ĥ� :=
1
n

n∑
k=1

ϕ�(xk,yk).

This is basically the same formulation as uLSIF.
For the KLIEP-type loss function, we may formulate the optimization criterion

as

max
{α�}b

�=1

[
n∑

k=1

log

(
b∑

�=1

α�ϕ�(xk,yk)

)]

subject to
1
n2

b∑
�=1

α�

n∑
k,k′=1

ϕ�(xk,yk′) = 1 and α1, α2, . . . , αb ≥ 0.

The uLSIF-type algorithm would be suitable for estimating squared-loss mutual
information (14), while the KLIEP-type algorithm would be suited for estimating
log-loss mutual information (13).

3.4.2 Variable Selection
Mutual information can be used for measuring independence between random

variables 30),31) since it vanishes if and only if x and y are independent. Thus we
can use density-ratio estimation methods for variable selection.

Let
x = (x(1), x(2), . . . , x(d))�.

If mutual information between a variable x(m) and an output y is small, the
variable x(m) is irrelevant to the prediction of y; on the other hand, a variable
with large mutual information is relevant for prediction. Thus, variable selection
can be carried out, e.g., by ranking all the variables according to estimated mutual
information values and choosing the leading variables for subsequent learning

procedures.
Note that the range of application of this method is not limited to selecting a

single variable, but this method can also be used for selecting a subset of variables
based on mutual information between variable subsets and the output value. See
the paper 12) for applications in bioinformatics.

3.4.3 Feature Extraction
Variable selection is restricted to choosing a subset of variables. In contrast,

feature extraction tries to construct new features from original variables, typically
in the form of a linear combination of original variables 32),33).

From the viewpoint of independence between random variables, the most in-
formative feature ξ(1) (∈ R

d) for predicting the output value y is given by

ξ(1) := argmax
ξ

I(Xξ, Y ) subject to ||ξ|| = 1,

where Xξ is the orthogonal projection of the input vector X onto ξ. The next
informative feature may be sought iteratively in the orthogonal complement of
the features found so far. More specifically, the (m+ 1)-th feature is obtained as

ξ(m+1) := argmax
ξ

I(Xξ, Y )

subject to ||ξ|| = 1, (ξ(1), ξ(2), . . . , ξ(m))�ξ = 0m.

Then the final M -dimensional feature vector of a sample x is constructed as
(ξ(1), ξ(2), . . . , ξ(M))�x.

Thus, density-ratio estimation methods can be used for feature extraction.
See the paper 17) for technical details of density-ratio based feature extraction,

where M components are searched in a batch manner in the context of sufficient
dimension reduction 62).

3.4.4 Independent Component Analysis
Suppose there is a d-dimensional random signal

x = (x(1), x(2), . . . , x(d))�

drawn from p(x), where x(1), x(2), . . . , x(d) are statistically independent of each
other, i.e., p(x) is factorized as

p(x) = p1(x(1))p2(x(2)) · · · pd(x(d)).
We cannot directly observe the signal x, but we are only given a linearly mixed
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signal y:
y = Ax,

where A is a d × d invertible matrix called the mixing matrix. The goal of
independent component analysis 34) is, given mixed signal samples {yi}ni=1, to
obtain a de-mixing matrix W that recovers the original signal x:

x̂ = Wy.

The ideal solution is given by
W = A−1,

but we do not care about the permutation and scaling of each component of x̂.
A direct approach to independent component analysis is to determine W so

that each component of x̂ is as independent as possible. Here we can use mutual
information as an independence measure.

I(X̂(1), X̂(2), . . . , X̂(d)) :=
∫
p(x̂) log

p(x̂)∏d
m=1 p(x̂(m))

dx̂.

Thus density-ratio estimation methods could be used for independent component
analysis.

See the paper 13) for technical details.

4. Experiments

In this section, we illustrate the usefulness of the density ratio methods through
various experiments.

4.1 Comparison of Density-ratio Estimation Methods
First, we compare the experimental performance of the density-ratio estimation

methods reviewed in Section 2.
Let the dimension of the input space be d and
q(x) = N (x; (0, 0, . . . , 0)�, Id), (16)
q′(x) = N (x; (1, 0, . . . , 0)�, Id), (17)

where N (·;μ,Σ) denotes the Gaussian density with mean μ and covariance ma-
trix Σ and Id is the d-dimensional identity matrix. The task is to estimate the
density ratio at {xi}ni=1:

ri := r(xi) =
q′(xi)
q(xi)

for i = 1, 2, . . . , n. (18)

We compare the following methods:
KDE (CV): The Gaussian kernel (1) is used, where the kernel widths for es-

timating q(x) and q′(x) are separately optimized based on 5-fold likelihood
cross-validation.

KMM (med): The performance of KMM is dependent on B, ε, and σ. We
set B = 1000 and ε = (

√
n − 1)/

√
n following the original paper 4), and the

Gaussian width σ is set at the median distance among all pairs of samples in
{xi}ni=1 ∪ {x′

j}n
′

j=1, following the heuristic used in the references 33),38).
LogReg (CV): Gaussian kernels are used as basis functions, where the kernel

width σ and the regularization parameter λ are chosen based on 5-fold cross-
validation.

KLIEP (CV): A Gaussian kernel model is used, where the kernel width σ is
selected based on 5-fold likelihood cross-validation.

uLSIF (CV): A Gaussian kernel model is used, where the kernel width σ and
the regularization parameter λ are determined based on leave-one-out cross-
validation.

We did not include LSIF due to its numerical instability. All the methods
are implemented using the MATLAB R© environment, where the CPLEX R© op-
timizer is used for solving quadratic programs in KMM and the LIBLINEAR
implementation is used for LogReg 63).

We fix n′ = 1000 and consider the following two settings for n and d:
(a) n = 100 and d = 1, 2, . . . , 20,
(b) d = 10 and n = 50, 60, . . . , 150.
We run the experiments 100 times for each d, each n, and each method, and
evaluate the quality of the importance estimates {r̂i}ni=1 by the normalized mean
squared error (NMSE):

NMSE :=
1
n

n∑
i=1

(
r̂i∑n

i′=1 r̂i′
− ri∑n

i′=1 ri′

)2

. (19)

NMSEs averaged over 100 trials (a) as a function of the input dimensionality d
and (b) as a function of the sample size n are plotted in log scale in Fig. 5. Error
bars are omitted for clear visibility—instead, the best method in terms of the
mean error and comparable ones based on the t-test 58) at the significance level
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(a) When the input dimensionality d is changed.

(b ) When the sample size n is changed.

Fig. 5 NMSEs averaged over 100 trials in log scale. Error bars are omitted for clear visibility.
Instead, the best method in terms of the mean error and comparable ones based on
the t-test at the significance level 1% are indicated by ‘◦’; the methods with significant
difference are indicated by ‘×’.

1% are indicated by ‘◦’; the methods with significant difference are indicated by
‘×’.

Figure 5 (a) shows that the error of KDE (CV) sharply increases as the input
dimension grows, while LogReg, KLIEP, and uLSIF tend to give much smaller
errors than KDE. This would be the fruit of directly estimating the density ratio
without going through density estimation. KMM tends to perform poorly, which
is caused by an inappropriate choice of the Gaussian kernel width. On the other
hand, model selection in LogReg, KLIEP, and uLSIF seems to work quite well.
Figure 5 (b) shows that the errors of all methods tend to decrease as the number
of samples grows. Again, LogReg, KLIEP, and uLSIF tend to give much smaller
errors than KDE and KMM.

Next we investigate the computation time. Each method has a different model
selection strategy, i.e., KMM does not involve model selection, KDE and KLIEP
involve cross-validation over the kernel width, and LogReg and uLSIF involve
cross-validation over both the kernel width and the regularization parameter.
Thus the naive comparison of the total computation time is not so meaningful.
For this reason, we first investigate the computation time of each density-ratio
estimation method after the model parameters are fixed.

The average CPU computation time over 100 trials are summarized in Fig. 6.
Figure 6 (a) shows that the computation time of KDE, KLIEP, and uLSIF is
almost independent of the input dimensionality, while that of KMM and LogReg
is highly dependent on the input dimensionality. Among them, uLSIF is one of
the fastest methods. Figure 6 (b) shows that the computation time of LogReg,
KLIEP, and uLSIF is nearly independent of the number of samples, while that
of KDE and KMM sharply increase as the number of samples increases.

Both LogReg and uLSIF have very good accuracy and their computation time
after model selection is comparable. Finally, we compare the entire computation
time of LogReg and uLSIF including cross-validation, which is summarized in
Fig. 7. We note that the Gaussian width σ and the regularization parameter λ
are chosen over the 9 × 9 equidistant grid in this experiment for both LogReg
and uLSIF. Therefore, the comparison of the entire computation time is fair.
Figure 7 (a) and Fig. 7 (b) show that uLSIF is approximately 5 times faster than
LogReg under the current setup. More practical comparison of computation time
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(a) When the input dimensionality d is changed.

(b) When the sample size n is changed.

Fig. 6 Average computation time (after model selection) over 100 trials.

will be shown in the next subsections.
Overall, uLSIF is shown to be the most computationally-efficient method

among the group of the most accurate methods.

(a) When the input dimensionality d is changed.

(b) When the sample size n is changed.

Fig. 7 Average computation time over 100 trials (including model selection of the Gaussian
width σ and the regularization parameter λ over the 9 × 9 grid).

4.2 Covariate Shift Adaptation in Regression and Classification
Next, we illustrate the performance of the importance estimation methods in

covariate shift adaptation.
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In addition to training input samples {xi}ni=1 drawn from a training input
density q(x) and test input samples {x′

j}n
′

j=1 drawn from a test input density
q′(x), suppose that we are given training output samples {yi}ni=1 at the training
input points {xi}ni=1. The task is to predict the outputs {y′j}n

′
j=1 for the test

inputs {x′
j}n

′
j=1 based on the input-output training samples {(xi, yi)}ni=1.

We use the following kernel model for function learning:

f̂(x;θ) =
t∑

�=1

θ�Kh(x,m�),

where Kh(x,x′) is the Gaussian kernel (1) and m� is a template point randomly
chosen from {x′

j}n
′

j=1 without replacement. We set the number of kernels at
t = 50. We learn the parameter θ by importance-weighted regularized least-
squares (IWRLS) 3),64):

θ̂IWRLS := argmin
θ∈Rt

[
n∑

i=1

r̂(xi)
(
f̂(xi;θ)− yi

)2

+ γ||θ||2
]
. (20)

It is known that IWRLS is consistent when the true importance r(xi) is used as
weights—unweighted RLS is not consistent due to covariate shift, given that the
true learning target function f(x) is not realizable by the model f̂(x) 22).

The solution θ̂IWRLS is analytically given by
θ̂IWRLS = (K�ŴK + γIb)−1K�Ŵy,

where

Ki,� := Kh(xi,m�),

Ŵ := diag (r̂(x1), r̂(x2), . . . , r̂(xn)) ,
y := (y1, y2, . . . , yn)�.

diag (a, b, . . . , c) denotes the diagonal matrix with the diagonal elements
a, b, . . . , c.

The kernel width h and the regularization parameter γ in IWRLS (20) are
chosen by importance-weighted cross-validation (IWCV) 5). More specifically, we
first divide the training samples {zi | zi = (xi, yi)}ni=1 into R disjoint subsets
{Zr}Rr=1. Then a function f̂r(x) is learned using {Zj}j �=r by IWRLS and its
mean test error for the remaining samples Zr is computed:

1
|Zr|

∑
(x,y)∈Zr

r̂(x)loss
(
f̂r(x), y

)
,

where

loss (ŷ, y) :=

{
(ŷ − y)2 (Regression),
1
2 (1− sign{ŷy}) (Classification).

We repeat this procedure for r = 1, 2, . . . , R and choose the kernel width h and
the regularization parameter γ so that the average of the above mean test error
over all r is minimized. We set the number of folds in importance-weighted
cross-validation to R = 5. Importance-weighted cross-validation is shown to
be an (almost) unbiased estimator of the generalization error, while unweighted
cross-validation with misspecified models is biased due to covariate shift 2),5).

The datasets provided by DELVE 65) and IDA 66) are used for performance
evaluation. Each dataset consists of input/output samples {(xk, yk)}nk=1. We
normalize all the input samples {xk}nk=1 into [0, 1]d and choose the test samples
{(x′

j , y
′
j)}n

′
j=1 from the pool {(xk, yk)}nk=1 as follows. We randomly choose one

sample (xk, yk) from the pool and accept this with probability min(1, 4(x(c)
k )2),

where x(c)
k is the c-th element of xk and c is randomly determined and fixed in

each trial of the experiments. Then we remove xk from the pool regardless of its
rejection or acceptance, and repeat this procedure until n′ samples are accepted.
We choose the training samples {(xi, yi)}ni=1 uniformly from the rest. Thus,
in this experiment, the test input density tends to be lower than the training
input density when x

(c)
k is small. We set the number of samples at n = 100 and

n′ = 500 for all datasets. Note that we only use {(xi, yi)}ni=1 and {x′
j}n

′
j=1 for

training regressors or classifiers; the test output values {y′j}n
′

j=1 are used only for
evaluating the generalization performance.

We run the experiments 100 times for each dataset and evaluate the mean test
error :

1
n′

n′∑
j=1

loss
(
f̂(x′

j), y
′
j

)
.
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Table 2 Mean test error averaged over 100 trials for covariate shift adaptation in regression
and classification. The numbers in the brackets are the standard deviation. All the
error values are normalized by that of ‘Uniform’ (uniform weighting, or equivalently
no importance weighting). For each dataset, the best method in terms of the mean
error and comparable ones based on the Wilcoxon signed rank test at the signifi-
cance level 1% are described in bold face. The upper half corresponds to regression
datasets taken from DELVE 65), while the lower half correspond to classification
datasets taken from IDA 66). All the methods are implemented using the MAT-
LAB R© environment, where the CPLEX R© optimizer is used for solving quadratic
programs in KMM and the LIBLINEAR implementation is used for LogReg 63).

Data Uniform
KDE
(CV)

KMM
(med)

LogReg
(CV)

KLIEP
(CV)

uLSIF
(CV)

kin-8fh 1.00(0.34) 1.22(0.52) 1.55(0.39) 1.31(0.39) 0.95(0.31) 1.02(0.33)
kin-8fm 1.00(0.39) 1.12(0.57) 1.84(0.58) 1.38(0.57) 0.86(0.35) 0.88(0.39)
kin-8nh 1.00(0.26) 1.09(0.20) 1.19(0.29) 1.09(0.19) 0.99(0.22) 1.02(0.18)
kin-8nm 1.00(0.30) 1.14(0.26) 1.20(0.20) 1.12(0.21) 0.97(0.25) 1.04(0.25)

abalone 1.00(0.50) 1.02(0.41) 0.91(0.38) 0.97(0.49) 0.94(0.67) 0.96(0.61)
image 1.00(0.51) 0.98(0.45) 1.08(0.54) 0.98(0.46) 0.94(0.44) 0.98(0.47)

ringnorm 1.00(0.04) 0.87(0.04) 0.87(0.04) 0.95(0.08) 0.99(0.06) 0.91(0.08)
twonorm 1.00(0.58) 1.16(0.71) 0.94(0.57) 0.91(0.61) 0.91(0.52) 0.88(0.57)
waveform 1.00(0.45) 1.05(0.47) 0.98(0.31) 0.93(0.32) 0.93(0.34) 0.92(0.32)

Average 1.00(0.38) 1.07(0.40) 1.17(0.37) 1.07(0.37) 0.94(0.35) 0.96(0.36)

Comp.
time

— 0.82 3.50 3.27 2.23 1.00

The results are summarized in Table 2, where ‘Uniform’ denotes uniform weights
(or equivalently, no importance weight). The numbers in the brackets are the
standard deviation. All the error values are normalized so that the mean error
of Uniform is one. For each dataset, the best method in terms of the mean error
and comparable ones based on the Wilcoxon signed rank test at the significance
level 1% are described in bold face. The upper half of the table corresponds
to regression datasets taken from DELVE 65), while the lower half correspond
to classification datasets taken from IDA 66). All the methods are implemented
using the MATLAB R© environment, where the CPLEX R© optimizer is used for
solving quadratic programs in KMM and the LIBLINEAR implementation is
used for LogReg 63).

The table shows that the generalization performance of KLIEP and uLSIF
tends to be better than that of Uniform, KDE, KMM, and LogReg. The mean
computation time over 100 trials is described in the bottom row of the table,

where the value is normalized so that the computation time of uLSIF is one.
This shows that the computation time of uLSIF is much shorter than KLIEP.
Thus, uLSIF is overall shown to be useful in covariate shift adaptation.

4.3 Inlier-based Outlier Detection
Next, we apply importance estimation methods to outlier detection.
We again test KMM (med), LogReg (CV), KLIEP (CV), and uLSIF (CV) for

importance estimation; in addition, we include native outlier detection methods
for comparison purposes. The outlier detection problem that the native methods
used below solve is to find outliers in a single dataset {xk}nk=1—the native meth-
ods can be employed in the current scenario (i.e., inlier-based outlier detection)
just by finding outliers from all samples:
{xk}nk=1 = {xi}ni=1 ∪ {x′

j}n
′

j=1.

One-class support vector machine (OSVM): The support vector machine
(SVM) 1),38) is one of the most successful classification algorithms in machine
learning. The core idea of SVM is to separate samples in different classes by
the maximum margin hyperplane in a kernel-induced feature space.
OSVM is an extension of SVM to outlier detection 24). The basic idea of
OSVM is to separate data samples {xk}nk=1 into outliers and inliers by a
hyperplane in a Gaussian reproducing kernel Hilbert space. More specifi-
cally, the solution of OSVM is given as the solution of the following convex
quadratic programming problem:

min
{rk}n

k=1

1
2

n∑
k,k′=1

rkrk′Kσ(xk,xk′)

subject to
n∑

k=1

rk = 1 and 0 ≤ r1, r2, . . . , rn ≤ 1
νn
,

where ν (0 ≤ ν ≤ 1) is the maximum fraction of outliers.
We use the inverse distance of a sample from the separating hyperplane as
an outlier score. The OSVM solution is dependent on the outlier ratio ν and
the Gaussian kernel width σ, and there seems to be no systematic method
to determine the values of these tuning parameters. Here we use the me-
dian distance between samples as the Gaussian width, which is a popular
heuristic 33),38). The value of ν is fixed to the true output ratio, i.e., the ideal
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optimal value. Thus the simulation results below should be slightly in favor
of OSVM.

Local outlier factor (LOF): LOF is the score to detect a local outlier which
lies relatively far from the nearest dense region 23). For a prefixed natural
number k, the LOF value of a sample x is defined by

LOFR(x) =
1
k

k∑
i=1

imdk(nearesti(x))
imdk(x)

,

where nearesti(x) denotes the i-th nearest neighbor of x and imdk(x) denotes
the inverse mean distance from x to its k nearest neighbors:

imdk(x) =
1

1
k

∑k
i=1 ||x− nearesti(x)||

.

If x alone is apart from a cloud of points, imdk(x) tends to become smaller
than imdk(nearesti(x)) for all i. Then the LOF value gets large and therefore
such a point is regarded as an outlier. The performance of LOF depends on
the choice of the parameter k and there seems no systematic way to find an
appropriate value of k. Here we test several different values of k.

Kernel density estimator (KDE’): A naive density estimation of all data
samples {xk}nk=1 can also be used for outlier detection since the density value
itself could be regarded as an outlier score. We use KDE with the Gaussian
kernel (1) for density estimation, where the kernel width is determined based
on 5-fold likelihood cross-validation.

All the methods are implemented using the R environment—we use the ksvm
routine in the kernlab package for OSVM 67) and the lofactor routine in the dprep
package for LOF 68).

The datasets provided by IDA 66) are used for performance evaluation. These
datasets are binary classification datasets consisting of positive/negative and
training/test samples. We allocate all positive training samples for the “model”
set, while all positive test samples and a fraction ρ (= 0.01, 0.02, 0.05) of negative
test samples are assigned in the “evaluation” set. Thus, we regard the positive
samples as regular and the negative samples as irregular.

When evaluating the performance of outlier detection methods, it is important
to take into account both the detection rate (the amount of true outliers an

outlier detection algorithm can find) and the detection accuracy (the amount of
true inliers that an outlier detection algorithm misjudges as outliers). Since there
is a trade-off between the detection rate and the detection accuracy, we adopt
the area under the ROC curve (AUC) as our error metric 69).

The mean AUC values over 20 trials as well as the computation time in Table 3,
where the value is normalized so that the computation time of uLSIF is one.
The table shows that uLSIF works fairly well. KLIEP works slightly better
than uLSIF, but uLSIF is computationally much more efficient. LogReg overall
works reasonably well, but it performs poorly for some datasets and the average
AUC performance is not as good as uLSIF or KLIEP. KMM and OSVM are not
comparable to uLSIF in AUC and they are computationally inefficient. Note
that we also tested KMM and OSVM with several different Gaussian widths and
experimentally found that the heuristic of using the median sample distance as
the Gaussian kernel width works reasonably well in this experiment. Thus the
AUC values of KMM and OSVM are close to optimal. LOF with large k is shown
to work well, although it is not clear whether the heuristic of simply using large
k is always appropriate or not. The computational cost of LOF is high since
nearest neighbor search is computationally expensive. KDE’ works reasonably
well, but its performance is not as good as uLSIF and KLIEP.

Overall, uLSIF is shown to work well with low computational costs.
4.4 Conditional Density Estimation
We apply the uLSIF idea to conditional density estimation and investigate its

practical performance using benchmark datasets.
We compare the uLSIF-based method with the following methods.

ε-neighbor Kernel Density Estimation (ε-KDE): For estimating the con-
ditional density p(y|x), ε-neighbor kernel density estimation (ε-KDE) em-
ploys the standard kernel density estimator using a subset of samples,
{yi}i∈Ix,ε

for some threshold ε (≥ 0), where Ix,ε is the set of sample in-
dices such that
||xi − x|| ≤ ε.

In the case of Gaussian kernels, ε-KDE is expressed as
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Table 3 Mean AUC values for outlier detection over 20 trials for the benchmark datasets. All
the methods are implemented using the R environment, where quadratic programs
in KMM are solved by the ipop optimizer 67), the ksvm routine is used for OSVM 67),
and the lofactor routine is used for LOF 68).

Data uLSIF KLIEP LogReg KMM OSVM LOF KDE’
Name ρ (CV) (CV) (CV) (med) (med) k = 5 k = 30 k = 50 (CV)

banana
.01 .851 .815 .447 .578 .360 .838 .915 .919 .934
.02 .858 .824 .428 .644 .412 .813 .918 .920 .927
.05 .869 .851 .435 .761 .467 .786 .907 .909 .923

b-cancer
.01 .463 .480 .627 .576 .508 .546 .488 .463 .400
.02 .463 .480 .627 .576 .506 .521 .445 .428 .400
.05 .463 .480 .627 .576 .498 .549 .480 .452 .400

diabetes
.01 .558 .615 .599 .574 .563 .513 .403 .390 .425
.02 .558 .615 .599 .574 .563 .526 .453 .434 .425
.05 .532 .590 .636 .547 .545 .536 .461 .447 .435

f-solar
.01 .416 .485 .438 .494 .522 .480 .441 .385 .378
.02 .426 .456 .432 .480 .550 .442 .406 .343 .374
.05 .442 .479 .432 .532 .576 .455 .417 .370 .346

german
.01 .574 .572 .556 .529 .535 .526 .559 .552 .561
.02 .574 .572 .556 .529 .535 .553 .549 .544 .561
.05 .564 .555 .540 .532 .530 .548 .571 .555 .547

heart
.01 .659 .647 .833 .623 .681 .407 .659 .739 .638
.02 .659 .647 .833 .623 .678 .428 .668 .746 .638
.05 .659 .647 .833 .623 .681 .440 .666 .749 .638

s-image
.01 .812 .828 .600 .813 .540 .909 .930 .896 .916
.02 .829 .847 .632 .861 .548 .785 .919 .880 .898
.05 .841 .858 .715 .893 .536 .712 .895 .868 .892

splice
.01 .713 .748 .368 .541 .737 .765 .778 .768 .845
.02 .754 .765 .343 .588 .744 .761 .793 .783 .848
.05 .734 .764 .377 .643 .723 .764 .785 .777 .849

thyroid
.01 .534 .720 .745 .681 .504 .259 .111 .071 .256
.02 .534 .720 .745 .681 .505 .259 .111 .071 .256
.05 .534 .720 .745 .681 .485 .259 .111 .071 .256

titanic
.01 .525 .534 .602 .502 .456 .520 .525 .525 .461
.02 .496 .498 .659 .513 .526 .492 .503 .503 .472
.05 .526 .521 .644 .538 .505 .499 .512 .512 .433

t-norm
.01 .905 .902 .161 .439 .846 .812 .889 .897 .875
.02 .896 .889 .197 .572 .821 .803 .892 .901 .858
.05 .905 .903 .396 .754 .781 .765 .858 .874 .807

w-form
.01 .890 .881 .243 .477 .861 .724 .887 .889 .861
.02 .901 .890 .181 .602 .817 .690 .887 .890 .861
.05 .885 .873 .236 .757 .798 .705 .847 .874 .831

Average .661 .685 .530 .608 .596 .594 .629 .622 .623

Comp. time 1.00 11.7 5.35 751 12.4 85.5 8.70

p̂(y|x) =
1
|Ix,ε|

∑
i∈Ix,ε

N (y;yi, σ
2IdY),

where N (y;μ,Σ) denotes the Gaussian density with mean μ and covariance

matrix Σ and dY denotes the dimension of y. The threshold ε and the
bandwidth σ may be chosen based on likelihood cross-validation. ε-KDE
is simple and easy-to-use, but is not reliable in high-dimensional problems.
Slightly more sophisticated variants have been proposed based on weighted
kernel density estimation 70),71), but they still share the same weakness.

Mixture Density Network (MDN): The mixture density network (MDN)
models the conditional density by a mixture of parametric densities 26). In
the case of Gaussian densities, MDN is expressed as

p̂(y|x) =
b∑

�=1

π�(x)N (y;μ�(x), σ2
� (x)IdY),

where π�(x) denotes the mixing coefficient such that
b∑

�=1

π�(x) = 1 and 0 ≤ π�(x) ≤ 1 for all x ∈ DX.

All the parameters {π�(x),μ�(x), σ2
� (x)}b�=1 are learned as a function of x

by a neural network with regularized maximum likelihood estimation. The
number b of Gaussian components, the number of hidden units in the neural
network, and the regularization parameter may be chosen based on likelihood
cross-validation. MDN has been shown to work well, although its training
is time-consuming and only a local solution may be obtained due to non-
convexity of neural network learning.

Kernel Quantile Regression (KQR): Kernel quantile regression (KQR)
predicts the 100τ -percentile of the conditional distribution for a given τ

(∈ (0, 1)) when y is one-dimensional 27),72). For the Gaussian kernel model

f̂τ (x) =
n∑

i=1

αi,τφi(x) + bτ ,

the parameters {αi,τ}ni=1 and bτ are learned by

min
{αi,τ}n

i=1,bτ

⎡⎣ n∑
i=1

ψτ (yi − f̂τ (xi)) + λ

n∑
i,j=1

φi(xj)αi,ταj,τ

⎤⎦ ,
where
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ψτ (r) =

{
(1− τ)|r| (r ≤ 0),
τ |r| (r > 0).

Thus, solving KQR for all τ ∈ (0, 1) gives an estimator of the entire con-
ditional distribution. The bandwidth σ and the regularization parameter λ
may be chosen based on cross-validation.
A key fact is that the solution of KQR is piecewise linear with respect to τ , so
the entire solution path can be computed efficiently 28). This implies that the
conditional cumulative distribution can be computed efficiently. However,
solution path tracking tends to be numerically rather unstable and the range
of applications of KQR is limited to one-dimensional output y. Furthermore,
some heuristic procedure is needed to convert conditional cumulative dis-
tributions into conditional densities, which can cause additional estimation
errors.

We use the benchmark datasets described in Table 4, which are accompanied
with the R package 73). In each dataset, 50% of samples are randomly chosen for
conditional density estimation and the rest are used for computing the estimation
accuracy based on the out-of-sample log-likelihood. In MDN, the number of
Gaussian components is set to b = 3. The results are summarized in Table 4,
showing that uLSIF compares favorably with the other methods in accuracy.
Note that the solution of KQR was not available for the ‘engel’ and ‘cpus’ datasets
due to numerical instability.

4.5 Mutual Information Estimation
Finally, we apply the KLIEP idea to estimating mutual information (13) and

investigate its practical performance using artificial datasets.
We compare the KLIEP-based method with the following methods.

Kernel Density Estimator (KDE): Based on KDE, mutual information can
be approximated using density estimates p̂(x,y), p̂(x), and p̂(y) (obtained
from {(xi,yi)}ni=1, {xi}ni=1, and {yi}ni=1, respectively) as

Î(X,Y ) =
1
n

n∑
i=1

log
p̂(xi,yi)
p̂(xi)p̂(yi)

.

However, density estimation is known to be a hard problem and division by

Table 4 Experimental results on benchmark datasets. The difference between out-of-sample
negative log-likelihoods of uLSIF and the competing methods are described. The
positive (negative) values indicate that the performance of uLSIF is better (worse)
than the competing method. Mean computation time is described as the ratio to
uLSIF (i.e., smaller is faster). dX denotes the dimensionality of the input x. The
dimensionality of the output y is one in all the datasets.

Dataset (n, dX) vs. ε-KDE vs. MDN vs. KQR
caution (50,2) 0.25 0.40 0.47

ftcollinssnow (46,1) −0.02 0.01 0.79
highway (19,11) −0.69 2.15 0.05
heights (687,1) 0.03 0.14 0.35
sniffer (62,4) 0.64 0.69 0.44

snowgeese (22,2) −1.64 3.32 −0.09
ufc (117,4) 0.42 −0.21 0.16

birthwt (94,7) 0.05 0.06 0.53
crabs (100,6) 0.84 −1.28 −0.78

GAGurine (157,1) 0.08 −0.49 0.10
geyser (149,1) 0.22 0.46 0.56
gilgais (182,8) 0.94 −0.41 1.74
topo (26,2) 0.02 0.85 0.66

BostonHousing (253,13) −0.21 −0.39 −0.30
CobarOre (19,2) 0.27 0.15 6.84

engel (117,1) 0.99 −0.21 —
mcycle (66,1) −0.22 0.08 0.12

BigMac2003 (34,9) −0.26 0.13 0.51
UN3 (62,6) 0.93 −0.20 0.02
cpus (104,7) 0.47 0.82 —

Computation time ×0.0036 ×37.0 ×0.64

estimated densities may expand the estimation error. For this reason, the
KDE-based approach may not be reliable in practice.
A more sophisticated density estimation approach uses histogram-based den-
sity estimators with data-dependent partition. In the context of estimat-
ing Kullback-Leibler divergence, consistency properties of histogram-based
methods have been studied thoroughly 74)–76). However, these methods are
not reliable in high-dimensional problems.

K-nearest Neighbor Method (KNN): Mutual information can be ex-
pressed in terms of the entropies as

I(X,Y ) = H(X) +H(Y )−H(X,Y ),
where H(X) denotes the entropy of X:
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H(X) := −
∫
q(x) log q(x)dx.

Thus mutual information can be approximated if the entropies H(X), H(Y ),
and H(X,Y ) are estimated.
Based on this expression, a mutual information estimator that utilizes the
k-nearest neighbor distance (KNN) was developed 30). Let us define the norm
of z = (x,y) by
||z||z := max{||x||, ||y||},

where || · || denotes the Euclidean norm. Let Nk(i) be the set of k-nearest
neighbor samples of (xi,yi) with respect to the norm || · ||z, and let

εx(i) := max{||xi − xi′ || | (xi′ ,yi′) ∈ Nk(i)},
nx(i) := |{zi′ | ||xi − xi′ || ≤ εx(i)}|,
εy(i) := max{||yi − yi′ || | (xi′ ,yi′) ∈ Nk(i)},
ny(i) := |{zi′ | ||yi − yi′ || ≤ εy(i)}|.

Then the KNN-based mutual information estimator is given by

Î(X,Y ) =ψ(k) + ψ(n)− 1
k
− 1
n

n∑
i=1

[
ψ(nx(i)) + ψ(ny(i))

]
,

where ψ is the digamma function.
An advantage of the above KNN-based method is that it does not simply
replace entropies with their estimates, but it is designed to cancel the error
of individual entropy estimation. It is reported to perform better than the
KDE-based method 77), and its consistency properties have been theoretically
studied in the context of general Kullback-Leibler divergence estimation 78).
However, a drawback of the KNN-based approach in practice is that the
estimation accuracy depends on the value of k and there seems no systematic
strategy to choose the value of k appropriately.

Edgeworth Expansion Method (EDGE): An entropy approximator based
on the Edgeworth expansion was proposed in the reference 31), where the
entropy of a distribution is approximated by that of the normal distribution
and some additional higher-order correction terms. More specifically, for a
d-dimensional distribution, an estimator Ĥ of the entropy H is given by

Ĥ = Hnormal − 1
12

d∑
i=1

κ2
i,i,i −

1
4

d∑
i,j=1,i �=j

κ2
i,i,j −

1
72

d∑
i,j,k=1,i<j<k

κ2
i,j,k,

where Hnormal is the entropy of the normal distribution with covariance ma-
trix equal to the target distribution and κi,j,k (1 ≤ i, j, k ≤ d) is the standard-
ized third cumulant of the target distribution. In practice, all the cumulants
are estimated from samples.
Based on EDGE, mutual information can be approximated using entropy
estimators Ĥ(X), Ĥ(Y ), and Ĥ(X,Y ) as

Î(X,Y ) = Ĥ(X) + Ĥ(Y )− Ĥ(X,Y ).
If the underlying distribution is close to the normal distribution, the above
approximation is accurate and the EDGE method works well. However, if the
distributions are far from the normal distribution, the approximation error
becomes large and therefore the EDGE method is unreliable.
In principle, it is possible to include the fourth and even higher cumulants
for further reducing the estimation bias. However, this in turn increases the
estimation variance; the expansion up to the third cumulants seems to be
reasonable.

We use the following four datasets for experiments (see Fig. 8):
(a) Linear dependence: y has a linear dependence on x as

x ∼ N (x; 0, 0.5) and y|x ∼ N (y; 3x, 1),
where N (x;μ, σ2) denotes the normal density with mean μ and variance σ2.

(b) Non-linear dependence with correlation: y has a quadratic depen-
dence on x as

x ∼ N (x; 0, 1) and y|x ∼ N (y;x2, 1).
(c) Non-linear dependence without correlation: y has a lattice-structured

dependence on x as

x ∼ U(x;−0.5, 0.5) and y|x ∼
{
N (x; 0, 1

3 ) if x ≤ |16 |,
1
2 (N (x; 1, 1

3 )+N (x;−1, 1
3 )) otherwise,

where U(x; a, b) denotes the uniform density on (a, b).
(d) Independence: x and y are independent to each other as

x ∼ U(x; 0, 0.5) and y|x ∼ N (y; 0, 1).
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(a) Linear dependence (b) Non-linear dependence with correlation

(c) Non-linear dependence without correlation (d) Independence

Fig. 8 Datasets used in mutual information estimation experiments.

The task is to estimate mutual information (13) between x and y. We compare
the performance of KLIEP (with cross validation), KDE (with cross validation),
KNN (with k = 1, 5, 15), and EDGE; the approximation error of a mutual infor-
mation estimate Î is measured by
|Î − I|.

Figure 9 depicts the average approximation error—KLIEP, KDE, KNN with
k = 5, and EDGE perform well for the dataset (a), KLIEP tends to outperform
the other estimators for the dataset (b), KLIEP and KNN with k = 5 show
the best performance against the other methods for the dataset (c), and KLIEP,

(a) Linear dependence (b) Non-linear dependence with correlation

(c) Non-linear dependence without correlation (d) Independence

Fig. 9 MI approximation error measured by |Î − I| averaged over 100 trials as a function of
the sample size n. The symbol ‘◦’ on a line means that the corresponding method is
the best in terms of the average error or is judged to be comparable to the best method
by the t-test at the significance level 1%.

EDGE, and KNN with k = 15 perform well for the dataset (d).
KDE works moderately well for the datasets (a)–(c), while it performs poorly

for the dataset (d). This instability would be ascribed to devision by estimated
densities, which tends to magnify the estimation error. KNN seems work well
for all four datasets if the value of k is chosen optimally; the best value of k
varies depending on the datasets and thus using a prefixed value of k is not
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appropriate. Therefore, k needs to be chosen adaptively using the data samples.
However, there is no systematic model selection strategy for KNN and therefore
KNN would be unreliable in practice. EDGE works well for the datasets (a),
(b), and (d), which posses high normality�1. However, for the dataset (c) where
normality of the target distributions is low, the EDGE method performs poorly.
In contrast, KLIEP with cross validation performs reasonably well for all four
datasets in a stable manner.

These experimental results show that KLIEP nicely compensates for the weak-
nesses of the existing methods.

5. Conclusions

Avoiding density estimation is crucial in statistical data processing, as advo-
cated by Vladimir Vapnik. Following this idea, a new data analysis framework
based on the ratio of two probability density functions has been developed re-
cently and is gathering a lot of attention in the machine learning and data min-
ing communities. In this paper, we gave a comprehensive review of density-ratio
estimation methods and discussed advantages and disadvantages of the meth-
ods qualitatively and quantitatively. Then we explained that the density-ratio
framework accommodates a wide variety of statistical data processing tasks such
as non-stationarity adaptation, outlier detection, conditional density estimation,
and mutual information estimation We expect that such a new approach could
be useful in various computer vision applications.

So far, parametric and non-parametric convergence rates of density-ratio esti-
mation methods have been investigated thoroughly 4),8),10),11),42) and algorithmic
stability has been studied in the framework of smoothed analysis 47). Further
investigating advantages of direct density-ratio estimation over indirect density
estimation approaches is an important future direction to pursue.
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