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Testing of several function approximations for a partially
observable card game
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Abstract: Game playing is considered as an important research topic in the field of Artificial Intelligence, because
its features resemble those of real world problems. Research aims contain creating strong computer players for the
entertainment of humans and creating human-like learning algorithms. Wizard is a partially observable multi-player
card game that is structured in rounds with different grades of information imperfectness. A computer player using
reinforcement learning algorithm is considered for the game. Function approximation plays an important role in rein-
forcement learning. In our research, we tested different function approximation approaches for the game Wizard under
the aspect of having different grades of information imperfectness in the game rounds. Experimental results show
that the success of the function approximations is differing a lot for the game rounds as the game winning rate of the
learning agent is differing between 0% and 26.74%.

1. Introduction

Games have been platforms of interest since the first days of
computer research. One of the aims of game research is creating
strong computer players for the entertainment of human players.
Another aim is to create human-like learning algorithms that can
be generalized and applied to a broad number of applications.
This makes games an important research topic in the field of ar-
tificial intelligence. Earlier objects of interest were fully observ-
able games like chess or checkers. It was expected that creating
strong computer players for these games would make it possible
to create computers that can act like humans. But it was possi-
ble to create strong computer players without imitating human-
like thinking, so more complicated games like Shogi, Go or card
games became the new objects of interest.

Card games are considered complicated, because they are only
partially observable and most of them are played with multiple
players, which provide new challenges to the researchers. The
partial observability of the game state makes it necessary to han-
dle unknown environment states and multiple players make it im-
possible to use effectual search algorithms, which are often used
in applications for two-player games. So other methods have to
be investigated.

One possible approach is the introduction of reinforcement
learning (RL) to the card game problem. Reinforcement learning
is a machine learning framework that can make an agent learn
a policy for a known or unknown environment via trial-and-error
interactions. Many of the traditional reinforcement learning algo-
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rithms have been designed for problems with small and finite state
and action spaces that are computationally tractable. However,
reinforcement learning is often used in applications with realis-
tic decision-making situations, which have a large or continuous
state and/or action spaces. Since for this kind of problems, learn-
ing of an exact policy is infeasible, approximation methods have
to be used. One problem is the choice of the function approxima-
tion method, because it is not known yet which type of function
approximator works best for which kind of problem [9].

There is a broad number of applications of reinforcement learn-
ing algorithms to games and for some of them the strongest com-
puter players are using reinforcement learning approaches. Be-
cause calculating optimal decisions in games is intractable in
most cases, all algorithms must make some assumptions and ap-
proximations. For most of the card games, information is incom-
plete and a way has to be found to deal with it. An approach
to deal with partially observability of card games directly is for-
mulating the problem as a partially observable Markov decision
process [5].

In this paper, the focus is laid on state evaluation via function
approximation for a partially observable multi-player card game.
As a sample application, the partially observable card game Wiz-
ard is considered. Wizard will be described as a partially observ-
able Markov decision process. The main focus is laid on state
evaluation for the bidding phase of the game. In the here intro-
duced approach for Wizard, a learning agent (LA) is able to learn
a strategy for the card game and in one of the tested approaches
the LA is able to outperform its rule-based opponent players after
5000 training games by winning 26.74% of the games.

This paper proceeds as follows: In section 2 information about
partially observable multi-player card games are given. In section
3 the implemented method is introduced and in section 4 experi-
ments are presented. Finally, a conclusion follows in section 5.
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2. Partially Observable Multi-Player Card
Games

2.1 Characteristics of Card Games
Most of the card games have properties, like a multi-agent set-

ting and unobservable information, which make them an inter-
esting and challenging application domain for RL. A multi-agent
setting consists of three or more players that interact with each
other during the game. Normally there is unobservable informa-
tion about the current environment state, because hand cards of
the opponent players and cards in the card deck can not be seen.
These properties are similar to the properties of real world do-
mains, which makes them a well-defined test-bed for realistic de-
cision making problems.

2.2 Card Game Terms
Below two card game terms that are used in the rest of the pa-

per are explained.
2 Hand The termhand is referring to the hand cards dis-

tributed to every player at the beginning of the game. When
it is said that several hands are played, it means that several
rounds are played, where the player receives a new hand ev-
ery time.

2 Trick-Taking A trick is a finite unit in play, where each
player has to play one card into this unit. When the card
game’s play of a hand centers on a series of tricks, then this
is calledtrick-taking.

2.3 Related Research
After expanding the game research interest to card games,

many card games have become the objects of research. One of the
first successful application of machine learning algorithms to card
games was Ginsberg’s Intelligent Bridgeplayer (GIB) [1]. Gins-
berg’s major innovation is the introduction of partition search for
a perfect information version of the game. Monte Carlo simula-
tion is used to make the partition search applicable in a realistic
game situation, where unseen cards are sampled. This kind of
search algorithm is also called Perfect Information Monte Carlo
(PIMC) search. For the bidding, the program is referring to an
enormous database of hand-crafted rules.

Other card games that became the objects of interest are Skat
([3]), Hearts ([8], [2]) and Spades ([7]). In Skat, the focus of
research centers more on approaches for the bidding phase of
the game since it is said to be the real weakness of computer
card players. Hearts is an object of interest since it is a com-
pletely competitive game without any cooperations between play-
ers. Spades is also completely competitive in the 3 player version
and also has a bidding phase while Hearts has none. In the re-
lated research on Spades, the importance of opponent modeling
in multi-player games is emphasized.

2.4 Wizard
Wizard is a competitive card game that can be played with three

to six players. The card deck consists of 60 cards, 52 basic cards
and eight special cards (4 wizard, 4 jester).

The game is divided into rounds. Every game round has the

same game flow, but a different number of cards is dealt to the
players in every game round. The number of dealt cards per
player is increased from round to round, starting with one card
in the first round and finishing with all cards being dealt to the
players in the last round. The number of rounds is therefore de-
termined by the number of players. Except for the last round, a
trump color is determined from the cards that were not dealt to
the players by opening the top card of the remaining card deck.
In the last round, there is no trump color.

The game flow of a game round can be divided into two phases
and after those two phases an evaluation of the game round result
will take place. The game flow is also presented in Figure 1.

Fig. 1 Wizard game flow

2.4.1 The Bidding Phase
The task is to predict the number of tricks that will be winnable

based on the own hand cards. The players bid one after another
in the playing order for the round.
2.4.2 The Trick-Taking Phase

Trick-taking takes place as explained in Chapter 2.2 and the
winner of every trick is decided.
2.4.3 Result Evaluation

Every player has to count the number of tricks, he is able to
win and then compares it with his bid. If the number of won tricks
equals his bid, reward is received, otherwise penalty is received.

3. Implemented Method

The sample application Wizard is divided into two modules for
the two phases of the game: bidding and trick-taking.

3.1 Bidding Phase
In the bidding phase of the game, the player needs to evaluate

information from the environment to decide on a bid that he is
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going to announce as his goal for the trick-taking phase of this
game round. Therefore a game state evaluator is introduced for
the problem. The bid is then made based on the game state eval-
uation. To take the ignorance of the player about his environment
in account, evaluation is conducted based only on the available
information. No further assumptions about non-visible parts of
the game state are made.

For the game state evaluation a function approximator is
trained in an on-line matter with reinforcement learning. The in-
put data for the function approximator are information about the
hand cards of the player. The output is a 1-dimensional vector
that is used as the bid. As training labels for the output, the actual
number of won tricks for a game round is used.

Several function approximators are considered as possible state
evaluators for the bidding phase. From the actual input data a set
of features is extracted and then used as input for the function
approximator. Four function approximation methods are tested:
Logistic Regression, Multi-Layer-Perceptron, Radial Basis Func-
tion Network and Normalized Gaussian network.
3.1.1 Logistic Regression

Logistic regression (LR) is a parametric model with a linear
classificator which passes its linear function through a threshold
function. The hard nature of the threshold can be an issue in lin-
ear classifiers. Therefore the LR uses a logistic function to soften
the threshold. The logistic function is a common sigmoid func-
tion. The linear function contains weights as model parameters,
which are adjusted during the training process. The weights are
fitted to minimize the loss on the training data set [5].
3.1.2 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a kind of neural network,
that uses the supervised backpropagation technique for training
the network [4]. The network is trained to map input data onto an
appropriate set of output data.

The network consists of an input layer, an output layer and
one or more hidden layers in-between. Every layer has neurons,
where the input layer and output layer have as much as needed to
map the input and output vector dimensions. The hidden layers
can have any appropriate number of neurons that fits the learning
problem. Each layer is fully connected to the neighbor layers. In
other words, every neuron of a layer is connected to all neurons
in the neighbor layers. Except for the input layer, every neuron
has a nonlinear activation function (e.g. sigmoid function), that
maps the input to weighted outputs in each neuron. The nonlin-
ear activation function ensures that a nonlinear function can be
represented. The calculation of an output for an input is straight-
forward, while the training of the network is carried out through
backpropagation starting in the output layer.
3.1.3 Radial Basis Function Networks

Radial Basis Function (RBF) network is a kind of neural net-
work with a single hidden layer. The hidden layer has a nonlinear
radial basis activation function, which is commonly presented by
a Gaussian function. The mapping between the input and hidden
layer is nonlinear, while the mapping from hidden to output layer
is linear. Generally, the RBF network is trained in two phases.
In the first phase, the parameters of the Gaussian kernels, mean
and variance, are trained by an unsupervised clustering approach.

Then in a second phase the relative weights of each Gaussian are
trained to determine the influence of every Gaussian kernel. The
second phase consists of a system of linear equations trained by
supervised data [5].
3.1.4 Normalized Gaussian Network

The normalized Gaussian network (NGnet) is a function ap-
proximator that softly partitions the input space by normalized
Gaussian functions and each local unit linearly approximates the
output within the partition. Therefore the NGnet is a local model.
Several implementations can be found for the NGnet, introducing
off-line as well as on-line training approaches. In [6] an on-line
trained approach is introduced that will be applied in this applica-
tion. It is stated that the NGnet makes the learning process easier
compared to global models like the MLP. Because of its local na-
ture, it is possible to change parameters of several units in order
to learn a single datum.

3.2 Trick-Taking Phase
Fujita et al. [2] introduced an RL algorithm for large-scale

multi-agent environments with partial observability that describes
the problem as a partially observable Markov decision process.
The algorithm calculates an utility for every possible action in a
current state and chooses the action with the best utility as the
next action to take. Approximation methods are necessary, since
due to the partial observability of the problems the state space is
too large to be computed in the whole. The introduced algorithm
uses particle filtering for sampling possible current and next time
step’s states. The state samples are then used to calculate the util-
ity of an action at a time step. Figure 2 presents a pseudo code
for the calculation of this utility.

Fig. 2 Pseudo codefor utility calculation of an agent action

The probabilities of the current sample state and the next sam-
ple state are calculated to consider the likelihoods of these sam-
pled states under the available information. Further approxima-
tion is introduced by a state evaluator for the next time step sam-
ple state that is presented by a trained function approximator. The
immediate reward is referring to the reward one would receive in
case of transition from the current sample state to the next sample
state.

The described method is adapted for the trick-taking phase of
Wizard.

4. Experiments

4.1 Experimental Environment
Before the experiments can be carried out, some general de-

cisions have to be made. Wizard can be played with three to
six players, but for the experiments here, only the four player’s
variant is evaluated. The game environment consists out of one
learning agent and three opponent players (see Chapter 4.1.1).
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For every type of experiment several test runs were conducted.
So the results displayed in section 4.2 are all averaged results of
several test runs.

Every test run is divided into evaluation episodes and train-
ing episodes. For and after every training episode an evaluation
episode was conducted. So here for example the number of train-
ing episodes is 10 and the number of evaluation episodes is 11.
Every training episode consists of 500 training games, where the
cards are randomly distributed for each game. The seating or-
der is also randomly appointed for every game. In the evaluation
games, 100 deals are played in four different seating orders. So
there is a total of 400 games, where every player has once the
first, second, third and last seat. For better comparison the card
distributions stay the same for all evaluation episodes in the same
test run.

The learning agent is trained on-line. Training was conducted
in two ways. Since Wizard is separable into rounds which all
have different grades of information incompleteness, training can
be conducted separately for every round as well as for all rounds
together. In the first case, each round has its own function ap-
proximator (hereafter also called SEP). In the second case, one
function approximator is trained for all rounds together (hereafter
also called TOG). All our function approximators are tested in
both ways. For the RBF approach, variances and means of the
radial basis function are set randomly at the beginning to enable
on-line training. Additionally for comparison, a rule-based bid-
ding approach is also tested.
4.1.1 Opponent Players

A rule-based player is constructed by creating rules for a bid-
ding and a trick-taking module. The player is choosing its actions
in the bidding and trick-taking phases according to these definite
rules. Every opponent player is represented by one clone of the
rule-based player in the following experiments.

4.2 Experiments
In the first two experiments, the different function approxima-

tor types are tested for the round seperated (Figure 3) and all to-
gether (Figure 4) training methods. As the results show, the learn-
ing agent is not able to beat the three opponent rule-based players
since his game winning rate is much lower than that of his op-
ponents. Since this is a four player game, a winning rate of 0.25
for all players would mean that all players win equally often. All
function approximator approaches as well as the rule-based bid-
ding show rather bad results, but some performance differences
are visible between the approaches.

Figure 3 shows the results where function approximators were
trained separately for each round. In the SEP approach LR has the
best performance results with a winning rate around 20%, which
is a good result compared to the performance of the other function
approximators that all have winning rates under 10%.

Figure 4 shows the results where one function approximator
was trained for all rounds together. In the TOG approach MLP
performs best out of the function approximator types with a win-
ning rate near to 20%. Surprising is the result for the LR ap-
proach. While it was performing best in the SEP trained ap-
proach, it is performing worst in the TOG approach with a win-

Fig. 3 Comparingdifferent function approximators (SEP)

Fig. 4 Comparingdifferent function approximators (TOG)

ning rate that is almost 0%. The winning rate for RBF is sim-
ilar in both approaches. NGNet shows big performance differ-
ences since it has 0% winning rate in the SEP approach while
it is able to reach more than 15% winning rate in the TOG ap-
proach. Therefore it is showing a performance gap between the
two approaches that is similar to the one of the LR function ap-
proximator.

Since Wizard is a round-based game, where the rounds have
different sized hands and therefore different grades of informa-
tion imperfection, it is very likely that strategies have to change
for each round. A look into the winning rate of each round for
the two experiments above shows that the success is differing a
lot for each round. Figure 5 shows the results for the round seper-
ated training method while figure 6 shows the results for the all
together training method. The figures’ result presentation is re-
duced to the results of the learning agent, where the winning rate
of the learning agent is displayed for the four function approxima-
tors as well as the rule-based approach for each of the 15 rounds
in a four player game.

Figure 5 shows the results for the SEP approach. The perfor-
mance results for the NGNet is 0% for the game as a whole, but
splitting the winning rates for every round shows that the NGNet
is not necessarily performing that bad in all rounds, but is equally
successful as LR in the last third of the game. But since for the
whole game, all round results are counted together, it is not able
to make up for the bad performance in the former two thirds of the
game. Therefore a solution is needed to improve the performance
for the rounds in the first two thirds.

Figure 6 represents the results for the TOG approach. In the
TOG approach. the LR approach performs very bad in total. A

c⃝ 2014 Information Processing Society of Japan 4

Vol.2014-EC-32 No.14
2014/6/7



IPSJ SIG Technical Report

Fig. 5 Comparing differentfunction approximators round-based (SEP)

Fig. 6 Comparing different function approximators round-based (TOG)

look into the winning rate of the rounds separately shows that the
LR approach has a winning rate of around 15% for almost all of
the game rounds. But in total, this seems to be not enough to
win the game, therefore the total game performance is low. Im-
provement possibilities need to be considered. Also it should be
remarked that the reason for the bad performance differs from that
of the SEP trained NGNet.

Comparing the results of the function approximator with the
rule-based bidding approach shows that the rule-based bidding
approach is more successful in the earlier stage of the game while
the function approximators are more successful in the later stage
of the game. This applies for both learning approaches. There-
fore a mixed approach of rule-based bidding and function approx-
imation may be likely to improve the performance of the learn-
ing agent and is tested in the following. The round-based results
are used to decide, which of the rounds should use a rule-based
bidding approach instead of a function approximator. Table 1
presents the round numbers until which the function approxima-
tor approaches will use rule-based bidding instead of the approx-
imator. In the TOG trained approach, the function approximator
is still trained over all of the rounds, even when the rounds use
rule-based bidding.

Table 1 Division of rounds for mixed approach

Function Approximator SEP TOG
MLP 10 8
LR 6 (14)
RBF 10 10
NGNet 9 6

Figure 7 showsthe results for the mixed approach in the case

Fig. 7 Comparing different function approximators with partly rule bidding
(SEP)

of SEP training. In three of four cases the function approxima-
tor were able to improve their performances. Only in case of
the LR function approximator, the performance stayed almost the
same. Since this function approximator only mixed in rule-based
bidding until round 6, the performance may not have improved
enough to have an influence on the total game result. For the MLP
and RBF approach, performance improvements around 7% were
possible. The biggest improvement was achieved for the NGNet
approach. This may be related to the bad round performance that
was eliminated by the introduction of rule-based bidding for those
rounds. In the mixed approach NGNet is even performing slightly
better than the LR approach and therefore becomes the best per-
forming mixed approach for the SEP trained approaches. But in
none of the function approximator approaches, the learning agent
is able to outperform the opponent players.

Fig. 8 Comparing different function approximators with partly rule bidding
(TOG)

Figure 8 shows the mixed approach results for the TOG ap-
proach. Here the number of tested function approximators was
reduced to three, because the LR approach is performing worse
than the rule-based approach in 14 out of 15 rounds. Therefore
a mixed approach would be almost equal to using the rule-based
approach. The three tested function approximators were all able
to improve their performance around least 5%. The performance
ranking stays the same for the function approximators and the
MLP performs best. The MLP approach is even able to outper-
form his opponents by achieving the highest winning rate.

An additional experiment was done for the all in one trained
MLP bid approach mixed with rule bidding. As figure 6 shows,
the difference between performance of rule based bidding and
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MLP bidding is very small for round 9 and 10. In fact the MLP
approach performs slightly better, therefore a combination of rule
bidding until round 8 and MLP for all of the other rounds was
chosen in the former mixed approach experiment (Figure 8). In
Figure 9, three different combinations of the rule and MLP ap-
proach were tested, where rule bidding is used until round 8
(MLP R08), round 9(MLP 09) and round10 (MLP 10).

Fig. 9 Comparingdifferent MLP/Rule Bid Combinations

The results show that the performance of the learning agent
is increasing with reduced number of rule based bidding rounds.
There are big performance differences although the performance
of the rule based bidding was likely to perform equally well. It is
expected that the increasing success of the play due to rule bid-
ding in the earlier stage of the game has an influence on the all
over all performance since even in the mixed approach the MLP
is trained for all rounds. This is likely to be related to the trade
off between bidding and play, because the play phase is depend-
ing directly on the bidding phase. In the play phase the play is
adjusted to the actual bid to try the best to fulfill the made bid. In
the TOG approach, learning success seems not to be related only
to the success in the rounds separately, but successful playing in
one round can have an impact on the learned function approxima-
tor and therefore on the success in other rounds.

5. Conclusion

In this paper, a reinforcement learning approach was intro-
duced to a partially observable multi-player card game. Since
the calculation of an exact solution for realistic problems in re-
inforcement learning is infeasible, approximation methods have
to be used. Function approximation methods can be used to
evaluate game situations and are introduced here for a bidding
evaluation module for the partially observable card game Wiz-
ard. Many function approximation methods are existing, but there
is not enough knowledge about which function approximation
method works best for a certain problem. Therefore several func-
tion approximators are tested for the card game Wizard. The card
game Wizard is a round-based game, where the grade of informa-
tion imperfectness is changing due to a changing number of hand
cards per round. The function approximators are therefore tested
under these aspect for two different learning approaches.

Great performance differences can be seen in the function ap-
proximators on the game level as well as the game round level.
None of the function approximator approaches was able to beat

the rule-based opponents in the game independently. But it was
possible to improve the performance of the bidding module by
the partly introduction of rule-based bidding. Almost all function
approximators were then able to improve their performance and
in one case the learning agent was even able to beat his oppo-
nents by having a slightly higher game winning rate than all his
opponents with 26.74%.

This time, rule-based bidding was introduced to improve the
performance of the learning agent. But for future work, it would
be more interesting to consider a function approximator that is
able to perform well on its own and that can adjust to the differ-
ent game round situation by itself.
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