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Abstract: We model a transportation network where agents of different types operate with conflicting objectives:
drivers want to drive at high speeds to reach their destinations faster, while police units want to prevent unlawful
speeding. Police units have to efficiently allocate their limited resources to monitor roads and catch speeders, who try
to avoid being caught. Assuming that police and drivers make strategic choices, the problem can be modeled using
game theory. We describe the models and algorithms we developed and validate them on synthetic and real traffic data
from different maps.
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1. Introduction

Drivers who speed above the speed limit pose a threat to so-
ciety, since they are more likely to cause traffic accidents with
serious consequences [7], [19]. Therefore, catching drivers who
speed is an important task for traffic control units, which deploy
police cars and an increasing variety of sensors to slow down
drivers and catch speeders. Despite the use of sensors, this re-
mains a challenging problem for a variety of reasons: lack of
knowledge of where drivers will speed, limited number of police
units on patrolling tasks, and the ability of drivers to learn the
location of police units and to adapt dynamically.

We model the problem of speed control as a general-sum re-
peated stochastic game [20] played by police units and drivers in a
road network. Police units aim at preventing drivers from driving
above the speed limit. Drivers speed up to reach their destination
faster while trying to avoid getting caught.

Our choice of modeling the problem as a simultaneous game is
motivated by the fact that drivers do not observe possible police
locations prior to making their speeding decision (lack of observ-
ability), the fact that different drivers can simultaneously speed
along different roads (multiple attackers) at any time (no fixed
schedule), and that police units can move to different locations
(mobile defenders). We model the game as a general-sum game
since we do not assume that losses or gains of police agents are
balanced by losses or gains of driver agents. We trade off the
computational convenience of zero-sum games for a more gen-
eral payoff relationship among agents. The probabilistic choice
of actions of drivers and police units (probabilistic transitions)
and the discounted rewards collected at each stage of the game
makes stochastic games [20] a suitable model for our problem.

The game does not have pure strategy equilibrium points, and
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takes a long time to converge to a mixed-equilibrium [15]. Hence,
we are interested in the dynamics during the game. We show em-
pirically that police and driver agents can exploit each other when
any of them makes a suboptimal choice.

This work makes the following contributions:
( 1 ) We offer a general-sum stochastic game model for the speed-

ing control problem.
( 2 ) We propose an algorithm which combines learning princi-

ples from Experience-Weighted Attraction (EWA) [5] with
dynamic programming. The algorithm is used by drivers to
learn on what roads the chance of being caught while speed-
ing is the smallest. The algorithm moves each driver from its
starting to its destination locations and generates the drivers’
speeding decisions. Police agents learn drivers’ behaviors
by observing their speeding decisions in the road network
throughout the game.

( 3 ) We present different algorithms for police units to decide
where to position themselves to increase the probability of
catching speeding drivers.

( 4 ) We experimentally validate the model and algorithms using
synthetic and real traffic data. The real data experiments
were performed on data collected on road segments in Lon-
don and nearby cities over a two months period.

Our study of the dynamics that ensue from interactions among
drivers and police units can be used to produce guidelines for
police deployment on transportation networks. The game we
present is complex with many heterogeneous agents, and can also
be used to test other multiagent learning algorithms.

In Section 2 we review briefly the literature on patrolling, se-
curity, game theory, and machine learning. In Section 3 we define
the game and review the learning principles of EWA and Oppo-
nent Q-learning. We present our agent design in Section 4. Exper-
iments with synthetic traffic data and their results are presented in
Section 5 and Section 6 respectively, while experiments and re-
sults with real traffic data are in Section 7 and Section 8. We
discuss our findings in Section 9, and offer conclusive remarks
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and directions of future research in Section 10.

2. Related Work

Opportunities and challenges for the use of agents in traf-
fic control are outlined in Ref. [4]. Most work in this area fo-
cuses on adaptive control of traffic lights (e.g., Ref. [1]) and in-
tersections [6], or on modeling individual drivers’ behaviors [11].
Kim et al. [15] investigate if increased penalties decrease illegal
speeding. They model opponent strategies as population mixed
strategies, where police behavior is influenced by the proportion
of drivers receiving a ticket, while driver behavior is influenced
by police presence. Hence, while individual agents follow pure
strategies, population aggregate statistics are used to introduce
stochastic choices. Our work takes a step further and investigates
how individual agents learn to play the game, while also learning
the topology of the underlying transportation network. To the best
of our knowledge, multiagent opponent learning in transportation
networks to catch speeders remains a sparsely studied topic.

There is a large body of work on security deployment and pa-
trolling. Patrolling or monitoring units are typically placed in
strategic locations to either respond to adversarial activity or pre-
vent it. Game-theoretic algorithms are used in Refs. [3], [9], [10]
to patrol a fence or an area. There is a rich literature on modeling
security problems as a Stackelberg game (e.g., Refs. [10], [21]).
In this literature, the problem is modeled as a single leader (the
police) and multiple followers (the attackers), where the leader
deploys agents in different locations. This is the model we use
for the real data experiments.

Jain et al. [13], [14] use a Stackelberg game formulation to
schedule security patrols in road checkpoints in the Los Angeles
International Airport to prevent terrorist attacks. A recent work
by Fang et al. [8] extended the application of Stackelberg games
to moving targets, allocating Coast Guard patrols to escort ferries.
All these studies assume that the attacker can observe the strategy
of the defender before acting. Instead, we model the problem as
a simultaneous game because we do not assume drivers can ob-
serve police strategies prior to making decisions on speeding, and
there are multiple attackers and multiple mobile defenders. These
features make the use of Stackelberg leadership models not ap-
propriate [16].

The actions of police units and drivers can be framed as a K-
armed bandit problem, where the objective is to choose which
gambling machine to play to maximize the payoff [2]. In our
case, the arms correspond to the roads upon which agents make
choices. The driver agents could plan their paths as in Ref. [18],
in which loop-free stochastic shortest-paths are computed using
multiarmed bandit solutions. Instead, in our case, the driver
agents compute the shortest paths using Dijkstra’s algorithm.

Our work benefits in particular from the literature on opponent
learning [22] and EWA learning [5], [12].

3. Background

3.1 Game Definition and Assumptions
The game takes place on a network of roads represented by a

weighted graph G = {V, E,W}. Each node vi ∈ V represents an
intersection between two roads and each edge ei ∈ E represents

a road. Each weight wi ∈ W represents the travel time through
road segment ei at the speed limit. We consider both directed and
undirected graphs, to account for one- and two-way roads.

There are two types of players: driver and police agents. A
driver agent has a starting location and a destination, both of them
nodes in the graph. Driver agents keep on moving until they reach
their destination. A police agent occupies one node in the graph at
a time and is allowed to stay at the node or to move to an adjacent
node. A game starts with all driver agents at their start locations,
and ends when all drivers reach their destinations.

Nodes of the graph are abstracted into states. For the rest of the
paper the terms nodes and states will be used interchangeably. In
each state, agents have a discrete set of action choices. A driver
agent has three choices: not to speed, to speed up to 10 miles per

hour (mph) over the speed limit, or to speed more than 10 mph

over the speed limit. A police agent can either enforce a ticket or
not enforce a ticket.

We indicate the strategy space of player i as S i =

{s1
i , s

2
i , . . . , s

mi
i }, where mi is the number of strategies for agent

i. A strategy profile is a combination on n strategies, one per
player, s = (s1, s2, . . . sn), where si is the strategy of player i. s−i

indicates a strategy profile for all player i’s opponents.
A pure strategy in this game corresponds to the movement of

the agent between two nodes and the deterministic choice of an
action, which depends on the agent type. For a driver agent, the
movement has to be to an adjacent node and the action is chosen
from the set {speed ≤ L, L < speed ≤ L + 10, speed > L + 10},
where L is the speed limit. For instance, s1 = (v3, speed ≤ L) is an
example of a strategy for a driver agent who decides to go to node
v3 and not to speed, while s2 = (v2, speed > L + 10) is a strategy
for the same agent who decides to go to v2 and to speed up.

A police agent either moves to an adjacent node or stays
put and chooses to enforce or not a ticket. For instance, at
node v1 a police agent can choose s1 = (v1, enforce) or s2 =

(v2, not enforce). When choosing s1 the police agent does not
move and enforces a ticket if a driver speeds. In s2 the police
moves to node v2 and decides not to issue a ticket when it sees
a speedy driver according to some probability. Placing probabil-
ities over the actions allows us to model the choices real police
have in giving tickets. In this work we set these probabilities, but
they could be learned from domain experts or by mining data.

A joint play is the union of the simultaneous moves of drivers
and police agents. After a joint play, all agents receive a payoff
according to the payoff matrix (Fig. 1). We indicate the payoff
function of player i as U(si, s−i), since the payoff depends on the
strategies chosen by the player and all of its opponents. We intro-
duce the specific payoff functions we use in Section 4.

We assume the following preferences: (1) Driver agents prefer
to speed more that 10 mph over the speed limit (h2 > g2 > f2)
if no police agent is predicted to be at the next node. (2) If

Driver
Police speed≤L L<speed≤L+10 speed>L+10

E a1, a2 b1, b2 b1, c2

N a1, f2 g1, g2 g1, h2

Fig. 1 PayoffMatrix. E = Enforce, N = Not enforce.
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police is predicted at the next node, drivers prefer not to speed
(a2 > b2). (3) If drivers speed, police agents prefer to enforce
a ticket (b1 > g1). Police agents enforce a ticket with higher
probability if drivers speed more than 10 mph than if they speed
less than 10 mph. Police agents get 0 payoff when drivers do not
speed (a1 = 0). The probabilities of enforcing tickets are defined
in Section 5.2.

We assume that agents do not communicate among themselves.
This means that police agents operate independently, without co-
ordinating with each other. This assumption reduces the com-
putational complexity of the learning process because it allows
police agents to reduce their decision space to their local neigh-
borhoods. However, this makes it impossible for police agents
to coordinate their deployment and makes the problem harder to
solve. To increase coverage in our experimental work we con-
strained police agents not to be at same node at the same time.

We assume that driver agents speed solely to shorten their
travel time. Other factors that affect speeding decisions, for ex-
ample emergency situations, can be modeled by changing the
payoff values according to the importance agents place on each
outcome. However, this is not a subject we explore in this work.

For learning purposes, we assume that both types of agents can
access historical data of joint plays only for opponents in their
neighborhood. This reduces the amount of information needed to
make a decision. The choice does not affect the dynamics of the
game, because we assume that police agents cannot give tickets
to drivers they cannot see, and speeding driver agents do not stop
speeding if there is no police on their current road.

3.2 Learning Algorithms
The learning principles of our algorithm for driver agents are

inspired by the updating rules and soft-max action selection of
EWA [5], combined with a Dijkstra-like algorithm to select the
best road and speeding decision. An Opponent Q-learning [22]
agent is used as a benchmark.

Experience-Weighted Attraction: Experience-Weighted At-
traction [5] combines two learning models, belief and choice re-
inforcement. An agent maintains at each time period t its expe-
rience, N(t), and its attraction to strategies, A(t). Experience is
measured as the discounted number of past experiences, where φ
is the forgetting parameter, and κ the exploration parameter:

N(t) = φ(1 − κ) · N(t − 1) + 1, t ≥ 1 (1)

The attraction A(t) to a strategy is computed using two param-
eters: φ, which is used to decay past attractions, and the atten-
tion parameter, δ, which represents the attention an agent pays
to foregone payoffs. Both take values in [0,1]. If φ=1 the agent
remembers all past plays, if φ=0 it forgets them.

The attraction to a strategy after time period t is the weighted
sum of past attractions and payoffs (Eq. (2)). Agent i computes
its attraction to strategy s j

i ∈ S i as a combination of its prior ex-
perience, prior attraction, and the payoff collected from a joint
play [12], where s−i(t) indicates the set of strategies used by all
opponent players at time period t. I is an indicator function which
returns 1 if s j

i is the strategy chosen by agent i at time period t

and 0 otherwise. The value of δ affects how much the not chosen
strategies are reinforced. If δ= 1 the attraction to all the strate-
gies is reinforced by their full payoff, if δ < 1 the attraction for
the chosen strategy is reinforced by its full payoff but the attrac-
tion for the not chosen strategies is discounted by δ. The learning
parameters φ and δ are replaced by functions that learn from his-
torical data [12]. The definitions of these functions are presented
in Section 5.2 and Section 7.2.

As j

i (t) =
φ · N(t − 1) · As j

i (t − 1)

N(t)

+
[δ + (1 − δ) · I(s j

i , si(t))] · U(s j
i , s−i(t))

N(t)
(2)

The probability that agent i chooses strategy s j is computed
using a logit function as

Ps j

i (t + 1) = exp(λ · As j

i (t))/
mj∑

k=1

exp(λ · Ask

i (t)) (3)

where the parameter λ measures the sensitivity of agent i to at-
tractions. The agent plays a random response if λ = 0 or best
responds if λ = ∞ [5].

Opponent Q-learning: Q-learning enables an agent to learn, as it
acts and explores the environment, the optimal state-action value
function Q∗(v, a) = maxaQ(v, a), where Q(v, a) is the expected
discounted reward for executing action a in state v. The Q func-
tion is learned by repeatedly updating Q(v, a) as follows:

Q(v, a) = Q(v, a)+α[(R(v, a)+γmaxa Q(v′, a)−Q(v, a)] (4)

where v′ is the state reached by doing action a. α and γ are re-
spectively the learning rate and the discount factor on future ac-
tions, and R(v, a) is the immediate reward the agent receives for
performing action a at state v.

Opponent Q-learning extends Q-learning by accounting for
the presence of opponents [22] and improving over Minimax Q-
learning [17]. As in Minimax Q-learning, Opponent Q-learning
uses Q(v, a, ao) to indicate the Q-value of state v for action a from
the agent and the joint action ao of the opponents. It also assumes
the opponent’s behavior follows a stationary probability distribu-
tion (i.e., it is Markov) and hence it keeps track of how many
times the opponent has chosen each action in each state. This
is used to estimate the probability distribution of each opponent
action in the state, P(ao|v). The probability is factored into the
calculation of the expected value of Q(v, a) by summing over the
expected values of the joint plays:

E[Q(v, a)] =
∑

ao

P(ao|v)Q(v, a, ao) (5)

In order to select the next state, the agent selects the action
with the highest expected value, argmaxa E[Q(v, a)]. Accounting
for the opponent’s actions enables Opponent Q-learning to update
the Q-values faster than Minimax Q-Learning does.

4. Design of Learning Agents

4.1 Environment Representation
On each edge of the road graph a driver has three speeding
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choices. To represent the choices we augment the graph by re-
placing each edge in the original graph with three edges: a non-

speeding, a speeding up to 10 mph, and a speeding above 10 mph

edge. The weight of each edge equals the time to traverse it.
The payoff for traversing an edge depends on its weight and

the outcome of the play. Let weight(si, v, v
′) be the weight of the

edge connecting the agent’s current node v to node v′ using strat-
egy si (i.e., the speeding decision). Let H(v) be the weight of the
heaviest non-speeding edge from v. The payoff driver agent i gets
when going from v to v′ using strategy si is defined as:

U(si, s−i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − weight(si, v, v
′)

H(v) if no ticket is received

0 if not speeding
−1 if ticket received

(6)

The payoff for police agent i stationed at node v is as follows:

U(si, s−i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if driver speeds, is caught, and gets ticket
0 if driver speeds, is caught, but gets no ticket
0 if driver does not speed
−1 if driver speeds, but there is no police

(7)

4.2 Dynamic-EWA Driver Agent Design
At the start of the game each driver agent begins with initial

beliefs on its own strategies. In each iteration of the algorithm
(Algorithm 1) a driver agent follows two steps: (1) it computes a
path using Dijkstra’s shortest path algorithm assuming it will al-
ways speed and it chooses its strategy using EWA; (2) it updates
its beliefs using EWA learning principles. The Dijkstra shortest
path algorithm produces a lower bound on the travel time because
it assumes drivers will always speed. However, the speeding de-
cision is made using EWA (Eq. (3)), so the agent might not speed
on all edges. Using Dijkstra’s shortest path algorithm frees agents

Algorithm 1 Dynamic-EWA Driver Agent
1: Initialize attraction, experience, and beliefs

2: for each stage game do

3: visited = ∅
4: for v ∈ V do

5: dist(v) = ∞
6: current = start; dist(current) = 0; q = q ∪ (current, dist(current))

7: while q not empty do

8: current = argminvq /* node with smallest dist */

9: q = q − current

10: visited = visited ∪ current

11: for n ∈ neighbors(current) do

12: if n � visited then

13: dst = dist(current) + weight(current, n)

14: if dst < dist(n) then

15: prev(n) = current; dist(n) = dst

16: q = q ∪ (n, dst)

17: Choose strategy using Eq. (3)

18: Compute the path using prev

19: Play according to the path and chosen actions

20: Update attraction, experience and probabilities using Eqs. (1)–(3)

from having to learn which paths to follow, so agents can focus
on speeding decisions. Another advantage is that drivers get loop-
free paths at a relatively low computational cost.

The algorithm keeps a priority queue (q) to reduce computa-
tion time. We define dist(v) to be the distance of node v from
the initial node (start), and weight(v, v′) the weight of the edge
from v to v′, where v′ is a neighbor of v. The algorithm com-
putes the shortest path by updating the value of dist(v′) when-
ever dist(v) + weight(v, v′) is smaller than the current dist(v′).
Nodes already visited are not visited again to avoid loops and
re-computations. The computed path can be retrieved from a
data structure that saves the predecessor of each node in the path,
prev(v). Recovering the path entails starting from the goal node
and following the parent node of each node found in prev(v) until
the start node is reached. The EWA model is updated accord-
ing to strategies on nodes in the path. The payoff for each edge
is computed according to Eq. (6). Payoffs and historical data are
used to compute the new values for Eqs. (1)–(3).

Analysis of the Algorithm:
The dynamic-EWA algorithm incurs computational costs dur-

ing path selection, update of the learning model, and selection of
the best-response strategy. During path selection, the dynamic-
EWA algorithm requires a O(N2) worst-case running time, where
N is the number of nodes. When running on completely con-
nected graphs, the algorithm inspects N nodes and the N − 1
neighbors of each node. Driver agents choose their strategies by
evaluating the space of joint plays of the drivers and the entire
police population. Since this space can be large, our algorithm
makes two simplifying assumptions in order to reduce complex-
ity: (1) a driver agent only needs to consider strategies of police
agents in its neighborhood; (2) a driver agent is independent from
other driver agents, hence it plans paths independently. The first
assumption allows agents to prune the strategy space to consider.
The size of the reduced strategy space is defined by the Cartesian
product of the agent’s strategies by the opponent’s strategies, both
constrained to the neighborhood of the current agent location.

The algorithm does not converge to pure strategy equilibrium
points because such points do not exist in the game [15]. Driver
agents drive above the speed limit if police agents do not enforce
tickets. The increased number of speeding drivers will lead po-
lice agents to give tickets, which in turn will cause drivers not
to speed. Hence, either agent type can increase its payoff by
changing its strategy unilaterally. Intuitively, mixed equilibrium
strategies are those for which the probabilities of police enforc-
ing tickets make driver agents choose to speed or not with equal
likelihood.

4.3 Opponent Q-learning Driver Agent Design
We designed Opponent Q-learning driver agents as a bench-

mark for Dynamic-EWA driver agents. The Q-values associated
with each node in the road graph represent the discounted pay-
off of speeding or not in each outgoing edge. We store only one
Q-value for speeding and one for not speeding to reduce the num-
ber of Q-values stored. Drivers use thresholds to decide whether
to speed or not: driver agents choose to speed above 10 mph if
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the Q-value for speeding is larger than the Q-value for not speed-
ing. They choose to speed up to 10 mph if the Q-value for speed-
ing is greater than half of the Q-value for not speeding (for the
same action and next node pair). Else, if the Q-value for speed-
ing is less than half of the value for not speeding, then the agent
decides not to speed. For any two neighboring nodes, the two
related Q-values are updated using Eq. (4) modified as follows:
when drivers choose to speed, the discounted value of the action
is multiplied by one minus the frequency with which tickets were
issued at that node.

In this model, drivers do not plan paths to destination before-
hand. Instead, drivers make local node-level decisions to learn
the path to their goals. Additionally, drivers rely on their history
to infer police presence when making a speeding decision.

5. Experiments with Synthetic Traffic Data

We designed a set of experiments with synthetic data to test the
effectiveness of the agents in different environments and against
different types of opponents.

5.1 Police Agents
We tested the following police agent types:
• EWA-based: to reduce the strategy space over which the

agent has to sample, movements of these police agents are
limited to a neighboring node. Upon catching a driver, de-
pending on whether the driver is 10 mph above the speed
limit or not, police agents choose to enforce a ticket or
not according to a probability distribution (see Section 5.2).
These agents use Eqs. (1)–(3) to update their learning model.

• Adaptive: police agents can only move to a neighboring
node. They analyze the payoffs in their current node and
in neighboring nodes, and based on the number of observed
speeding drivers, decide to move if a neighboring node
seems more profitable in terms of the number of tickets they
may issue.

• Static: police agents do not move to other nodes, they always
stay in place.

• Random: police agents move randomly to any node in the
graph. The only constraint that restricts their movement
is the presence of another police agent at the node chosen,
since no more than one agent can be at any node.

5.2 Algorithm Parameters
We set the probability of police agents to issue tickets to drivers

that speed above 10 mph to be 0.9, and drivers that speed 10 mph

and below to be 0.3. These values reflect the assumption that
driving at higher speeds is more likely to cause accidents, hence
the increased probability of receiving a ticket.

For the EWA-inspired algorithms, we found experimentally
that λ = 0.45 for the driver and λ = 0.65 for police agents lead
to better performance. The attraction decay rate (φ) for a strategy
was automatically set by subtracting from one the ratio between
the number of times the opponent played a strategy divided by the
number of iterations so far. Strategies the opponents play less of-
ten will then have higher experience values according to Eq. (1).
The exploration parameter we use (κ = 0.65) allows agents to ex-

plore moderately. The weight on forgone payoffs (δ) was also set
automatically as follows: if the potential payoff of playing a strat-
egy is greater than the payoff of playing any other strategy, then
δ = 1, else δ = φ/2. Hence, agents reinforce profitable strategies
and depreciate strategies that lead to negative outcomes.

We found experimentally with the Opponent Q-learning
drivers that α = 0.2 gives more weight to newly computed re-
ward values, allowing for faster convergence of the Q-values.
Similarly, we found that γ = 0.6 weights the best neighboring
Q-value so that better actions are preferred in earlier steps of the
game than later. To prevent driver agents from going into a cycle,
after a road is visited, we multiply its Q-values by a parameter
(VisitDiscount=0.5). This makes future visits to that road less
likely. To enable driver agents to share the same road without in-
fluencing each other, the discounted value is computed for each
agent separately.

5.3 Performance Metrics
In these experiments two performance metrics are used: the

payoff driver agents accumulate during the iterations of the game
and the regret driver agents experience. In our results we report
smoothed payoffs and regrets. This helps to better see the trends
in the average values of these quantities. Payoffs and regret do
not have a specific unit. They solely represent agent preferences.

Let Uavg(t) be the average payoff for driver agents at time pe-
riod t (computed in Eq. (8)) and d be the number of drivers. To get
smoother average payoff values and better see the overall trend of
these values over time, we use a customized version of cumulative
moving average (Eq. (9)). Let S A be the smoothed average payoff
over β time periods for smoothing (in our experiments β = 10).
We compute S A according to Eq. (9):

Uavg(t) =

∑d
i=1 U(si(t), s−i(t))

d
(8)

S A(t) =
S A(t − 1) ∗min (β, t) − 1 + Uavg(t)

min (β, t)
(9)

The smoothed average payoff is computed recursively, start-
ing with the average payoff for the first β time periods (where
S A(1) = Uavg(1)), and computing the subsequent values using
the value for the previous time period S A(t − 1) and the average
payoff for the current period. When t < β, the smoothed average
is computed over t periods (min (β, t)).

Regret is measured as the difference between the payoff of the
best possible strategy for a driver and the payoff the driver re-
ceives from the joint play. The highest regret on each edge has a
value of 1 and occurs when a driver is caught speeding. Drivers
who do not speed do not experience regret. The regret for a driver
agent that speeds below 10 mph and is not caught is computed as
the difference between the payoff for speeding above 10 mph, the
best strategy in this case (sbest

i ), and the payoff for speeding below
10 mph, the strategy actually chosen (si).

ri(t) = U(sbest
i (t), s−i(t)) − U(si(t), s−i(t)) (10)

ravg(t) =

∑d
i=1 ri(t)

d
(11)
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S R(t) =
S R(t − 1) ∗min (β, t) − 1 + ravg(t)

min (β, t)
(12)

Let r(t) be the regret an agent experiences at time period t. In
Eq. (10), sbest

i is the strategy that if chosen would yield the high-
est payoff, while si is the strategy the agent chose. Let S R be the
smoothed average regret. The smoothed average regret (Eq. (12))
is computed in a similar manner as the smoothed average payoff.

We use the maximum attainable average payoff to compute the
maximum amount of revenue driver agents can get in the absence
of police. This value is used as an upper bound on the average
payoffs drivers can earn. It is computed as the average travel
time along paths where drivers speed more than 10 mph above
the speed limit.

6. Results with Synthetic Traffic Data

We show results on road graphs with similar structures but dif-
ferent sizes and number of agents: a 4 × 4 graph, which we call
the Grid graph, and a portion of Minneapolis, which we call the
Downtown graph.

6.1 Grid Graph
The Grid graph (Fig. 2) has 16 nodes and 72 edges, and con-

Fig. 2 Grid graph, with symmetrical weights on the edges. Edges between
two nodes correspond to the three speeding choices for the drivers.

(a) Dynamic-EWA on the Grid graph (b) Opponent Q-learning on the Grid graph

Fig. 3 Payoffs for dynamic-EWA and Opponent Q-learning drivers in the Grid graph.

tains loops. Twelve drivers start on the top two rows of the graph,
and have different destinations in the bottom row. Six police
agents are placed in the two bottom rows. We use synthetic traffic
data and travel times. We ran 30,000 iterations per experiment.

We use this graph to analyze driver and police agents behaviors
when there are multiple paths to any destination.

The rich set of alternative paths drivers can take in the Grid
graph and their cost-symmetric nature (drivers attain the same
cost regardless of which of these paths they choose) makes it a
compelling case-study.

Results in Fig. 3 (a) and Fig. 3 (b) illustrate an example in
which adaptive driver agents perform poorly when playing
against police agents that play randomly. The average payoff that
both dynamic-EWA and Opponent Q-learning driver agents col-
lect is lower when playing against police that play random strate-
gies than when playing against the EWA-based and the adaptive
police agents, respectively. Randomization produces a near uni-
form distribution of the frequency with which police visit nodes
on the graph. This makes it harder for driver agents to effectively
predict strategies police agents will play in the future. The aver-
age payoff for dynamic-EWA driver agents converges to a value
of 1.6 (after smoothing the payoffs) when playing against random
police. This suggest that randomness makes police locations un-
predictable and hence it is the best strategy for police agents. This
is consistent with results obtained when modeling security prob-
lems as Stackelberg games [21]. However, Stackelberg leaders
play strategies with probabilities that maximize expected payoffs,
while police agents playing randomly always play strategies with
uniform probabilities, they do not attempt to maximize their pay-
offs.

The payoffs for dynamic-EWA drivers are roughly twice as
large as the average payoffs of Opponent Q-learning driver agents
(1.6 versus 0.8). The difference in average payoffs indicates that
dynamic-EWA drivers adapt better against random police agents
than Opponent Q-learning drivers. The dynamic-EWA algorithm
takes advantage of combining the history of joint plays and the
changes in collected rewards to compute probabilities for choos-
ing actions, and hence agents adapt faster. Opponent Q-learning
driver agents garner their highest payoffs when playing against
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(a) Dynamic-EWA on the Grid graph (b) Opponent Q-learning on the Grid graph

Fig. 4 Regrets for dynamic-EWA and Opponent Q-learning drivers in the Grid graph.

static police agents (1.6). To the contrary, dynamic-EWA drivers
perform poorly against static police. This is because EWA plays
all strategies with non-zero probabilities, thus, dominated strate-
gies may be probabilistically chosen. If instead the agent chose
the best response every time, then, none of the dominated strate-
gies would be chosen.

Dynamic-EWA drivers experience the highest regret when
playing against police agents that play randomly. This is con-
sistent with the payoffs agents receive. Opponent Q-learning
drivers also experience highest regret when playing against police
that play randomly (Fig. 4 (b)), and smallest regret when playing
against static police. Driver agents become conservative in the
presence of random police and choose not to speed on roads in
which they received tickets. Playing against static police illus-
trates how Opponent Q-learning drivers exploit police suboptimal
decisions by speeding where police are not present and not speed-
ing in locations where they received tickets in the past. The aver-
age regret Opponent Q-learning drivers experience against adap-
tive police is cyclic, evidencing adaptive behavior. Both dynamic-
EWA and Opponent Q-learning drivers experience similar regrets
(with the mean of the average regrets between 0.6 and 0.8) when
playing against the EWA-based police and the adaptive police,
respectively.

The large police to driver ratio (1:2, with 12 drivers and 6 po-
lice units) in this setup leads to low payoffs for driver agents.
This example illustrates the fact that larger police presence leads
drivers to lose more from suboptimal decisions.

6.2 Downtown Graph
The Downtown graph (Fig. 5) contains 279 nodes, with edges

that reflect the real traffic directions in the city. We use six drivers
and three police agents. The start and destination nodes for the
drivers are landmark places in the city. Two of the three police
agents start at locations that intersect drivers’ shortest paths in at
most one edge. This map was chosen to study how the size of the
decision space affects the prediction ability of the agents.

In Fig. 5 we show the paths for two of the drivers, D1 and
D2. The blue and green circles indicate their start and destina-

Fig. 5 Map of a section of the downtown of Minneapolis, with paths of two
drivers and two police agents.

tion nodes respectively. Two police agents, P1 and P2, are rep-
resented by red circles. Because P2 is in the path of D2, D2 will
eventually get ticketed if it decides to speed on the road segment
that leads to the location of agent P2.

To generate traffic data we used real distances for the Down-
town graph and computed the travel time assuming agents travel
30 mph. To compute the travel time when drivers speed, we ran-
domly generated the travel times for speeding below and above
10 mph. We ran 30,000 iterations per experiment.

Driver agents that use Dynamic-EWA and Opponent Q-
learning attain similar average payoffs when playing against EWA
police and adaptive police (Fig. 6 (a) and Fig. 6 (b)), respectively.
The payoffs are close to the maximum attainable. The limited
movement of both types of adaptive police agents combined with
the large number of uncovered paths driver agents can take are the
main reasons for the success of these driver agents. These police
agents cover a smaller percentage of the area, which allows driver
agents to speed without punishment on uncovered edges. The
same is not true when playing against police agents that play ran-
domly, since those agents can see the whole map. Dynamic-EWA
drivers perform better than Opponent Q-learning drivers when
playing against random police agents. This advantage is mostly
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(a) Dynamic-EWA on the Downtown graph (b) Opponent Q-learning on the Downtown graph

Fig. 6 Payoffs for dynamic-EWA and Opponent Q-learning drivers in the Downtown graph.

(a) Dynamic-EWA on the Downtown graph (b) Opponent Q-learning on the Downtown graph

Fig. 7 Regrets for dynamic-EWA and Opponent Q-learning drivers in the Downtown graph.

due to two factors: first, dynamic-EWA drivers only travel on the
shortest paths returned by the Dijkstra’s algorithm. Hence, agents
explore fewer paths than Opponent Q-learning drivers. Exploring
fewer paths makes it less likely for random police agents to oc-
cupy nodes on the driver’s path more frequently than nodes out-
side the path. Thus, dynamic-EWA agents take advantage of the
absence of police agents to speed and collect higher rewards. Sec-
ond, dynamic-EWA driver agents are risk-takers. These agents
might choose to speed, even in nodes where they previously re-
ceived a ticket, provided that the node has a higher attraction than
the recently played nodes.

The regret results for the dynamic-EWA (Fig. 7 (a)) and for
the Opponent Q-learning driver (Fig. 7 (b)) agents confirm that
dynamic-EWA algorithms do worse against static police, while
Opponent Q-learning drivers are able to learn to play against
static police agents. It also confirms that both agents struggle
against police playing random strategies.

7. Experiments with Real-Life Traffic Data

For our experiments with real data we use the traffic data gener-
ated in Motorways and A roads in the UK *1 collected via speed

*1 We thank the UK Highways Agency and their partners for making this
data available (http://data.gov.uk/dft-eng-srn-routes-journey-times).

sensors mounted on the monitored roads. A police agent uses
these data and its learning algorithm to predict where drivers
speed, and patrols these areas. The lack of ticket enforcement
data, and the difficulties in inferring these events from the traf-
fic data make it impossible to model driver speeding and routing
choices in the road network. Therefore, we do not consider these
experiments to be a game between police and driver agents, in-
stead, it is a game between police and a nature player, where the
strategies of the nature player are generated from the traffic data
from driver agents.

Another factor that makes these experiments different from the
ones with synthetic data is that we model police agents with a
single centralized agent which deploys different police units. The
centralized agent computes the location of the police units, so
police units do not need to know the graph of the road network.
Instead, only the central unit needs to know the current location
of the agents, and allocate them according to the strategies that
best-respond against the predicted driver speeding behavior in the
network. This is convenient from a learning perspective, because
only one agent learns from the data, instead of all the police units
learning in a decentralized way.
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Fig. 8 Region from which links and traffic data were sampled.

7.1 Data Description and Preparation
The traffic data has many attributes of which we chose the fol-

lowing: LinkId, a unique identifier for each section of a road;
Date; Speed, the average speed of cars entering a link over a 15
minute collection period; x and y location; and Flow, a measure
of the number of cars that enter a link over the 15 minute period.

Due to the large number of links, we sampled the links
by placing a bounding box over the map of road networks
of London and nearby cities and collecting all the links
that have one end within the box. The corners of the
box have the following latitude and longitude coordinates:
(51.75, −0.586), (51.75, 0.086), (51.46, −0.586), (51.46, 0.086),
respectively (roughly shown in the black box on the map in
Fig. 8). Our choice of the area is motivated by the concentration
of links (4,960 links) and the high volume of traffic data in the
region, which generates enough data for the learning algorithm.
To further reduce the amount of data, we sampled data for 10 and
30 links, respectively.

There are 96 daily traffic data points for each link. The data
points are generated from aggregating the data from all the 15
minute intervals in the day. To generate speeding events, we av-
erage the speed on each link over the 96 data points and compare
the average to the speed limit for the link (70 mph or 112 kilo-
meters/hour). Speeding occurs if the average is above the speed
limit. To simplify the generation of speeding events, we assume
that all vehicles and all roads have the same speed limit. The as-
sumption on the speed requirements for the roads is reasonable
since most roads of interest are motorways and A roads, which
have a speed limit of 70 mph.

We use two months of data (December 2012 and January
2013). The data in the first month are used to generate prior prob-
abilities and historic data of drivers’ speeding choices. The data
are also used to tune the learning parameters for the police agents.
The data in the second month are used to measure agents perfor-
mance (model evaluation period).

7.2 Police Agents
We tested the following centralized police agent types:
• EWA-Trained. This agent uses, as the EWA police agents in

the synthetic case, Eqs. (1)–(3) to update its learning model.
The difference is that this agent starts with prior probabili-

ties on the links to patrol, which are learned from the drivers
average speeding in the training data. Moreover, the agent
starts with a nonempty history, because the data for the first
month are used to compute where drivers sped.

• EWA-Untrained. This agent differs from the trained one be-
cause it starts with uniform probabilities on the links to pa-
trol (no prior knowledge). However, like the trained agent, it
uses the learning parameters tuned using the training data.

• Random. This agent has no specific knowledge on where
drivers are likely to speed, so it allocates the units with uni-
form probabilities over the links.

The probabilities used as prior for the learning model of the
EWA-Trained police agent are computed as the average across
the probabilities of speeding on each link over the entire training
month. The same data was used with a randomized grid search to
tune the EWA parameters.

While most of the parameters remain the same as in the exper-
iments with synthetic data, we used a different function to com-
pute the parameter φ.

Let h(t) be the entire history the EWA police agent observes for
all links, and hl(t) the history for link l. In the history the agent
keeps track of the frequency with which drivers sped in each link
from the beginning of the training data up to time t.

Let rh(t) be the recent history at time t. The recent history is
a window over the last N days, where N ≤ |h(t)|. N is a param-
eter to our learning algorithm, and its optimal value is computed
during parameter tuning. The value for the history of a link is 1
if drivers always sped on the link throughout the length of history
(both for the recent history and the entire history), and 0 if drivers
never sped on the link. The recent and entire history values for a
link are numbers in the range [0, 1].

Using the history variables we compute the value of φ at time t

in the same way as Ho et al. [12], where L is the set of links:

φ(t) = 1 − 1
2

L∑

l=1

(hl(t) − rhl(t))2 (13)

In addition to the EWA parameters κ, λ and W, we also find the
optimal value for the minimum speeding probability in a link (ε).
This is a threshold value that allows police to consider links with
low probabilities of speeding as links where speeding does not
occur. The grid search keeps the set of values for the parameters
for which the average police regret is minimized.

8. Results with Real-Life Traffic Data

We performed two sets of experiments, one with 10 road links
and five police units, and another with 30 links and 15 police
units. We report:
• The average payoff per police unit that the central police

agent collects in a day. This is reported over the evalua-
tion period. Unlike the payoff definition used in Section 4,
here the payoff is proportional to the number of roads where
speeding occurred and where police agents were allocated.
A payoff of 1 indicates that a police unit was correctly allo-
cated to a road link with speeding; a payoff of −1 indicates
that a police unit was allocated to a link where speeding did
not occur while links where speeding occurred remained un-
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Fig. 9 Average payoffs per police unit per day for the two EWA police types
and the Random police agent with 10 links, 5 police units. Parameter
values used are κ = 0.01, λ = 0.5, ε = 0.0061 and W = 7.

covered; a payoff of 0 indicates that a police unit was allo-
cated to a link where speeding did not occur and speeding
did not occur in any other uncovered link. The average pay-
off per police unit is computed as in Eq. (8). The maximum
average payoff per police unit in a day is 1 because we as-
sume that each unit monitors one road per day.

• The daily probabilities of drivers speeding in the sampled
links, The daily probabilities of speeding for a link are com-
puted by dividing the number of periods in which the aver-
age speed in the link was above the speed limit by the total
number of 15 minute intervals (96 intervals in a day).

• The percentage of links in which speeding occurs.
• The police allocation efficiency. The police allocation ef-

ficiency is computed as the proportion of police units cor-
rectly allocated to links in which speeding occurs. This was
computed only for the EWA-Trained police agent, but the
EWA-Untrained police agent has similar values.

Figure 9 shows the average payoff for police for the experi-
ment with 10 links and five units. The results show that the EWA-
Trained police agent (line with crossed patterns) predicts better
or with the same accuracy as the other types of police agents.
EWA-Trained superiority is due to seeding. This agent’s beliefs
on where drivers are likely to speed are seeded with probabilities
that summarize the historic speeding behavior of drivers in the
past month. Meanwhile, the EWA-Untrained agent does not have
the initial knowledge, hence it starts with random probabilities
of patrolling links and it learns until it attains the maximum pay-
off, at which point it places all the agents in roads in which the
probability of speeding is high.

Note however that even when police plays randomly there are
many days (e.g., 9–13 and 16–21 in Fig. 9) in which their aver-
age payoff is 0.6, indicating that the five police units were able to
cover three out of the five links they could cover. This is due to
the high daily percentage of links where speeding occurs (60%),
which is shown in Fig. 10. The daily percentage is the percentage
of roads in which speeding occurred at any time in a given day.

The higher is the number of links where speeding does not oc-
cur, the poorer the prediction ability of police units becomes. This
is shown in Fig. 11 where the 15 police units that have to cover 30
links predict poorly when there are many roads in which speeding

Fig. 10 Daily probabilities of speeding on 10 links during the month of data
used for evaluation. The threshold speed is set to 0.0065 ruling out
40% of the links.

Fig. 11 Average payoff per police unit per day for the two EWA police types
and the Random police agent with 30 links and 15 police units. Pa-
rameter values used are κ = 0.1, λ = 0.5, ε = 0.01 and W = 7.

Fig. 12 Percentage of the 30 links in which speeding occurred during the
month of data used for evaluation.

does not occur and therefore receive negative payoffs.
Figure 12 shows the daily percentage of speeding for the ex-

periments with 30 links and 15 police units. There are four peaks:
the first one is on the 1st day (January 1st 2013), the second on the
6th, the third on the 12th, and the fourth on the 27th day. In some
cases the EWA police agent is able to identify these peaks. For
example, it takes advantage of the higher percentage of speed-
ing in the links on the 12th and 14th days to fully use its units
(100% as shown in Fig. 13), thus collecting the maximum possi-

c© 2014 Information Processing Society of Japan 316



Journal of Information Processing Vol.22 No.2 307–318 (Apr. 2014)

Fig. 13 EWA-Trained versus Random Police allocation efficiency. Experi-
ment with 30 links and 15 units per agent.

ble average payoff. However, it mis-predicts the high speeding
percentage for both the 13th and 27th days. On the other hand,
the police agent playing randomly mis-predicts continuously and
ends up with negative payoffs throughout the entire learning pe-
riod.

Figure 13 provides evidence that the EWA-Trained police
agent has higher prediction power than the random police agent.
This result can also be extended to the EWA-Untrained agent.
As shown in the figure, the EWA police agent exploits the high
percentage of speeding on the links of the road network, while
the random agent does not. The advantage EWA police enjoy is
attributed to learning, which helps the agent mitigate its losses.

9. Discussion

The interactions between police and driver agents in our ex-
periments with synthetic traffic data show that both types of
driver agents experience higher regret when playing against po-
lice agents that play randomly than they do when playing against
police agents that learn. Random police agents are not ratio-
nal players, hence playing against them leads to situations from
which drivers cannot learn. The frequency with which random
police agents change strategies, and their disregard for payoff
maximization is at the heart of the difficulty drivers experience
when predicting police behavior. Therefore, while this type of
police can take advantage of the rational decisions drivers make,
hence the high driver regret, adopting their strategies does not
lead to equilibrium.

Compared to Opponent Q-Learning drivers, our results show
that EWA drivers attain higher payoffs when playing against ran-
dom police agents than Opponent Q-Learning drivers. We ar-
gue that the fast detection of changes in opponent strategies is
the main feature of EWA that leads to this result. In each learn-
ing step, drivers revisit history to see which strategies opponents
used, and if all strategies were uniformly chosen, driver reinforce
them with similar experience values. Thus, the only factor that
differentiates strategies is the payoff for each strategy. In the
worst-case, the probabilities EWA drivers compute will be nearly
uniform across strategies, depending on the negative outcomes
when playing different strategies.

A more surprising result is that drivers that use the dynamic-

EWA algorithm experience more regret when playing against po-
lice agents that do not move from their assigned positions. This is
attributed to the fact that on average, EWA agents play all strate-
gies with non-zero probabilities (unless equilibrium is achieved).
This seems consistent with our understanding of speeding behav-
iors of human drivers. Whenever human drivers get a ticket on
a road they might stay some time without speeding, but eventu-
ally they try again, in which case a fixed police agent will ticket
them again. Contrarily, Opponent Q-Learning drivers exploit the
higher police predictability and experience lower regrets against
static police than EWA drivers do.

Our experiments with real traffic data show that learning from
driver-generated traffic data helps police better predict drivers’
speeding behavior and leads to higher average payoffs than when
playing with random strategies. These experiments differ from
the ones with synthetic data because drivers do not respond to the
strategy choices of the police agents. Instead, police agents mine
the traffic and speeding data to build models of driver speeding
behavior, and play against these models. The main disadvantage
of such an approach is that the drivers’ reaction to police strate-
gies cannot be accurately measured, hence, the driver speeding
model we build might not conform to the actual strategic choices
drivers would make if they interacted directly with our police
agents. Therefore, we cannot directly compare our results here
with our results for the synthetic experiments. However, we can
still conclude that learning when and where driver agents speed
does improve police allocation efficiency.

10. Conclusions and Future Work

We modeled and built a full simulation of a stochastic game in-
volving police and driver agents. We proposed the dynamic-EWA
algorithm that enables drivers to adapt to police agents. Our algo-
rithm shows that the agents learn to adjust their strategies accord-
ing to the opponent strategy. We performed further experimental
studies with real traffic data from the road network of London and
nearby cities in which police used sampled data to learn when and
where speeding occurred. The main finding of the latter experi-
ments is that the EWA police agents learn, although not perfectly,
and outperform a police agent that allocates its units randomly.

Future work involves theoretical analysis of the convergence
properties of the dynamic-EWA algorithm and possibly more
complex models to capture other aspects of the domain, such as
communication and potential collusion, and the effect of signs
like “Speedometer” or “Radar Enforced” on the roads in the
model.

Another interesting avenue to further our studies and make the
system more applicable is to train the system offline by learning
from both ticket enforcement and traffic data. EWA police agents
would learn how drivers respond to ticket enforcement events,
and build more accurate models of driver behavior. Such a sys-
tem could then be deployed online, and continue to learn as it
interacts with speed sensors and enforcement data.
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and Tambe, M.: Software Assistants for patrol planning at LAX and
Federal Air Marshals Service, Interfaces, Vol.40, No.4, pp.267–290
(2010).

[15] Kim, D.-H. and Kim, D.H.: A system dynamics model for a mixed-
strategy game between police and driver, System Dynamics Review,
Vol.13, No.1, pp.33–52 (1997).

[16] Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V. and Tambe, M.:
Stackelberg vs. Nash in security games: An extended investigation of
interchangeability, equivalence, and uniqueness, Journal of Artificial
Intelligence Research, Vol.41, No.2, pp.297–327 (2011).

[17] Littman, M.: Markov games as a framework for multi-agent reinforce-
ment learning, Proc. Int’l Conf. Machine Learning (1994).

[18] Neu, G., György, A. and Szepesvári, C.: The online loop-free stochas-
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