
Testing-based GPU-Memory Consumption Estimation for
Deep Learning

Haiyi Liu1,a) Shaoying Liu2,†1,b) Ai Liu2

Abstract: Deep learning(DL) has been successfully applied in many software systems and deployed to a variety of
server. The training of DL needs a lot of GPU computing resources. However, it is difficult for developers to accurately
calculate the GPU resources that the model may consume before running the model, which brings great inconvenience
to the development of DL system. Especially nowadays, a lot of model training runs on cloud services. Therefore, it is
very important to estimate the GPU-memory resources that any model may use in a certain computing framework. The
existing work mainly focuses on the static analysis method to evaluate the GPU-memory consumption, which is highly
coupled with the framework implementation, and lacks the research on the software testing and evaluation method of
GPU-memory consumption (It does not depend on the framework implementation itself). In this paper, we propose
a new method to estimate the memory consumption of DL framework. The method is based on software testing and
static analysis estimation. Firstly, heuristic random search algorithm is used to explore the real GPU-memory con-
sumption of different DL models at runtime. At the same time, the software static analysis method is used to evaluate
the theoretical memory consumption of DL model, which can reduce the number of model testing (because the testing
model requires computing resources). Finally, the known data is modeled to estimate the real memory consumption of
different models in different computing frameworks. To evaluate the effectiveness of our proposed method, we apply
it to the mainstream computing framework, i.e., TensorFlow, Pytorch. The results show that our method can achieve
more accurate evaluation of GPU-memory consumption without knowing the operation mechanism of the framework.

Keywords: Deep Learning, Program static analysis, Automated testing, Bug detection

1. Introduction
In recent years, with the continuous improvement of computer

performance and the continuous accumulation of various data, the
research and engineering implementation of artificial intelligence
algorithms have made great progress. Deep learning system is
the most applied and realized system in artificial intelligence sys-
tem. It is widely used in many scenes, such as image recognition,
speech recognition, recommendation system and so on. Although
the accuracy and breadth of artificial intelligence systems such as
deep learning are improving year by year, the hardware cost and
time cost of constructing neural network system are also increas-
ing year by year. In 2020, the gpt-3[1] model released by open AI
has 175 billion parameters, and the cost of training the network
is as high as $12 million and the high cost of model training is
a common phenomenon of neural network system. Facing such
a high cost of model training, how to ensure that the constructed
deep learning model will not report errors in the model training
stage has become an important issue. Among the many errors
that may occur in the construction of deep learning model, video

1 Graduate School of Advanced Science and Engineering, Hiroshima Uni-
versity

2 Graduate School of Advanced Science and Engineering, Hiroshima Uni-
versity

†1 Presently with Graduate School of Advanced Science and Engineering,
Hiroshima University

a) d200101@hiroshima-u.ac.jp
b) sliu@hiroshima-u.ac.jp

memory overflow is a kind of error that greatly affects the model
training. This error is caused by the fact that developers cannot
accurately estimate the size of the video memory occupied by
the model before the model runs, so they cannot find the upper
and lower limits of the super parameters suitable for their own
development environment. According to relevant research liter-
ature, among all program failures of deep learning jobs, out of
memory(OOM) account for 9.1% (including GPU and CPU)[2],
and often occur in training process[3], which makes all the pre-
vious efforts of ongoing model training wasted. This not only
wastes GPU computing resources, but also affects the develop-
ment progress of engineers. Therefore, the memory consumption
of different deep learning models and various deep learning li-
braries becomes particularly important. In terms of deep learning
model and memory consumption, many researchers have made
great contributions and provided corresponding solutions from d-
ifferent angles. The main methods include memory exchange,
memory sharing, recalculation, and compressed neural network,
etc. these methods reduce the use of memory in the training pro-
cess of deep learning model by analyzing the calculation graph
model and using the technologies such as liveness analysis in stat-
ic analysis or dynamic memory sharing and memory exchange.
But their technology is usually used to make the built model in-
put a larger batch size in the current hardware environment. Not
to evaluate that the built model will cause memory overflow in a
certain environment before model training.

In terms of deep learning framework and memory consump-

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 196

tion, Gao et al.[4] proposed the method of using static analysis
and calculation diagram and resident buffer to predict the memo-
ry utilization before model training.

Although the above methods have made effective solutions,
there are still the following problems in the memory consump-
tion evaluation of deep learning model:
(1) Deep learning library (e.g., TensorFlow, Pytoch)[5]

generally contains two main functions, automatic differen-
tiation, and GPU acceleration. Automatic differentiation is
usually implemented by deep learning library, while GPU
accelerated process is usually implemented by calling multi-
ple NVIDIA components(e.g., CUDA, cudnn), it is difficult
to achieve static analysis for the cooperative calls of multi-
ple non-open-source components. Because the components
called by the framework are in the closed source state, users
cannot carry out common memory analysis methods such as
context analysis. It also makes the deep learning library a
black box for users.

(2) Each framework of deep learning is iterating rapidly
in months, and new deep learning frameworks emerge one
after another. The method of static analysis requires expert-
s to analyze the framework. Therefore, the static analysis
method undoubtedly increases the labor cost and time cost
of evaluating the memory consumption of the deep learning
model[6].

To solve the above problems, this paper proposes a method based
on the combination of static analysis and dynamic test modeling
analysis[7][8]. Firstly, using the method of static analysis, the
calculation graph of neural network is statically analyzed to pre
estimate the memory that may be consumed by the model. Then
the pre estimated model is run in the deep learning framework to
obtain the real value of the model under the framework. Finally,
Polynomial regression?[9] is used to analyze the gap between the
memory consumption estimated by static analysis and that of the
real model, to deduce the possible memory consumption of the
deep learning framework under different models.

2. Overview
In this chapter, we first define the formal description of the

problem[10] and formalize the solution of the problem. For each
function of the formalized scheme, the corresponding solution
is given. Finally, a test-based GPU − memory usage evaluation
method is formed.

2.1 Formal Description of Problem
In order to more clearly describe the problem that we solve and

the methods to be proposed. First, we write the formal specifica-
tion of the deep learning framework and the formal specification
of the deep learning model in the framework. Then we use two
formal specifications to express the problems to be solved.
(1) Formal specification for deep learning framework.[11] Let’s

define set API as I = {Ai}
n
i=1 = {A1, A2, . . . , An}, Where Ai is

the existing API in the neural network framework, and n is
the number of I. At the same time, The set of hyperparam-
eters to be set for each I is defined as HPAi = {p j

Ai
}nj=1 =

{p1
Ai
, p2

Ai
, . . . , pn

Ai
} Where p j

Ai
is the specific hyperparameter

to be set in each I. Ai is the element in set API and j is
the number of all Hyperparameters of the I. For example,∑n

i=1 |HPAi | can represent the types of all settable hyperpa-
rameters in the framework.

(2) Formal specification for deep learning model in frame-
work[12] Next, we describe the form of the model in the
framework based on the definition of the deep learning
framework. Given a set of I, We do a finite Cartesian product

K︷ ︸︸ ︷
I × I × · · · × I denoted as IK and IK = {< A1, A2, . . . , An >

|Ai ∈ I, 1 ≤ i ≤ K}.Then, the model in the deep learn-
ing framework can be defined as model ∈ I∗ =

⋃∞
K=1 IK .The

overview is shown in Figure 1.

2.2 Method Overview
Because in the DL framework, the model usually runs in the

form of calculation graph, so we mark the calculation graph[13]
set as G. Let CG : model → G represents the mapping between
the model and the calculation graph, for a given input m ∈ model,
there will be a corresponding calculation garaph g ∈ G.

Meanwhile, let GU be the set of interger means the size of the
GPU − memory consumed by the model, for each m ∈ model,
a corresponding GPU − memory usage can be obtained by run-
ning the model or static analysis for the graph[14]. Let GV :
model → GU be a function of GU for the model. Through the
investigation of previous studies, it can be seen that the static
analysis of the calculation graph can roughly estimate the usage
of the GPU − memory of the model at run time. Therefore, let
S GV : graph → GU be a function of GU for the model. There
will be a certain gap between the GU obtained by static analysis
of the model and the GU obtained by running the model. This gap
can be defined as Gap(model) = GV(model)−S GV(CG(model)).
It is critical to define the relationship between Gap(model) and
model. Not only can it be used to get a more accurate model
GPU − memory usage, but it can also be used to evaluate the
execution efficiency of the DL framework[15].

In order to find the specific mathematical form of Gap(model),
we propose a data fitting method based on orthogonal array test
strategy(OATS). First, a certain scale of deep learning model is
generated through the orthogonal array test strategy, which is
used as a test case to test the GU value (Test Oracle) of the DL
framework at runtime. Next, use the regression algorithm to find
the relationship between test case and test oracle, that is, to ob-
tain GV(model). However, if we want to know Gap(model), we
still need to know the specific value of SGV. This paper adopt-
s the method of static analysis of the computational graph, and
evaluates the specific value of S GV(CG(model)) [2]through the
analysis of the tensor scale.

3. preliminaries
3.1 Orthogonal array testing strategy

Orthogonal array testing strategy(OATS) is a technology ap-
plied to software integration testing. The shape of the test case
table depends on the number of factors and levels in the test.[7]

Definition 1 An Orthogonal can be defined as OA(p, l, n, d),

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 197

Fig. 1 Overview

where:
(1) p is the number of rows in the array.In the test, it represents

how many test cases there are.
(2) l indicates how many parameters (factors) need to be tested.

In this article, factors represent hyperparameters in neural
networks.

(3) n represents the value range of each parameter.
(4) d is the strength of the array. An orthogonal array has

strength d if in any p × d sub-matrix (that is, select any d
columns), each of the n × d possible d-tuples (rows) appears
the same number of times.

3.2 Polynomial Regression
Definition 2 we have a polynomial equation of degree n rep-

resented as:
Y = δ0 + δ1xi + δ2x2

i + . . . + δnxn
i + ε(i = 1, 2, . . . ,m)

can be expressed in matrix form in terms of a design matrix X,
a response vector ~y,a parameter vector ~δ and a vector~εof random
errors. The i-th row of X and ~y will contain the x and y value for
the i-th data sample,Then the model can be written as a system of
linear equations:
~y = X~δ + ~ε

The vector of estimated polynomial regression coefficients is:
~δ = (XT X)−1XT~y

assuming m < n which is required for the matrix to be invert-
ible, then since X is a Vandermonde matrix, the invertibility con-
dition is guaranteed to hold if all the xi values are distinct. This
is the unique least-squares solution.

4. Approach
In this section, we first introduce what OATS is and how to

use OATS to generate test cases that can test the DL framework,
and then analyze the feasibility of test cases generated based on
OATS and the ability of the generated test cases and test oracle
to be applied to regression analysis feasibility. Finally, the re-
gression model and static analysis model used in this method are
introduced.

4.1 Test case generation based OATS
The purpose of testing is to find out how much GPU −memory

is consumed by different models running under a certain frame-
work. But there are many hyperparameters e.g., batch size[16].in

the deep learning algorithm, and not all hyperparameter changes
will have a huge impact on the GPU − memory. The static anal-
ysis of the deep learning calculation graph can filter out the APIs
that have a greater impact on the memory consumption.

Observatios and motivations about API screening: GPU’s ad-
vantage lies in parallel computing. In the process of training deep
learning models, there are a large number of operators that need
to be calculated in parallel. For example, feature mapping in
forward propagation, gradient mapping in back propagation, etc.
Therefore, we have screened APIs related to convolution opera-
tion, pool operation, and Batch Normalization that will generate a
large number of parallel calculations. In each API, the input scale
and output scale of each layer of neurons can be set, and differ-
ent parameters correspond to different memory usage. condition.
In addition, the depth in deep learning is also a major factor in
consuming memory. Therefore, in the test, models with differen-
t depths and different structures will be tested orthogonally[17].
Corresponding to the memory consumed by different models. Be-
cause the memory consumption of the underlying framework will
not decrease with the increase of the influencing parameters in the
model, that is, the direction of data change is known, and only the
rate of change is unknown. Therefore, the data obtained by the
orthogonal test is sufficient for multivariate polynomia regression
analysis.

Let’s take the classic visual geometry group network as a case
study.Suppose that through the static analysis[18] of the neural
network model, three representative hyperparameters are select-
ed, namely Batch-size, Depth and Number of convolutional lay-
ers[19]. These three hyperparameters constitute the factors in the
orthogonal array. As shown in Table 1.In an orthogonal array, the
range of values for each factor is called levels. Table 1 shows an
orthogonal array with a factor of 3 and levels of 4. If a compre-
hensive experimental method is used for testing, up to 34 tests are
required.And the number of tests increases exponentially with the
value of levels. However, using orthogonal experiments to gen-
erate orthogonal arrays requires only 42 tests. In other words,
when the levels become very large, a comprehensive test test is
impossible and unnecessary. Therefore, this article uses the OAT-
S method to generate test cases[20].

4.2 Polynomial regression
In 4.1, we got a lot of pairs of test case and test Ora-

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 198

Table 1 Orthogonal test example of VGG network

Test Number Batch-size Depth Number of convolutional layers
Case1 4 11 8
Case2 8 13 10
Case3 16 16 13
Case4 32 19 16

cle, where test case is marked as model and test Oracle is
marked as GU.Because the model is generated by trans-
forming parameters. therefore, model can be denoted as
model(hyperparameter1, hyperparameter2, . . . , hyperparametern)
and The hyperparameters are derived from the static analysis
calculation graph.

Next, we use polynomial regression to find the relationship be-
tween hyperparameters and GU, which is equivalent to finding a
way to solve GV(model). Furthermore, S GV(model) is known.
We have also found a way to solve Gap(model).

5. Conclusion and Future work
In this article, we propose a test-based method to evaluate the

memory usage of the DL framework. This method is different
from the previous static analysis method. The possible errors of
the static analysis method can be corrected through testing, and
the possible GPU-memory usage of the deep learning model can
be better evaluated before the deep learning model is running.

At present, it is only a theoretical framework. In the future, this
method will be used to automatically generate a large number of
test cases to test the mainstream DL framework, so as to prove
the effectiveness of this method.

Acknowledgments The research was supported by ROIS
NII Open Collaborative Research 2021-(21FS02).

References
[1] Floridi, L. and Chiriatti, M.: GPT-3: Its nature, scope, limits, and con-

sequences, Minds and Machines, Vol. 30, No. 4, pp. 681–694 (2020).
[2] Zhang, R., Xiao, W., Zhang, H., Liu, Y., Lin, H. and Yang, M.:

An empirical study on program failures of deep learning jobs, 2020
IEEE/ACM 42nd International Conference on Software Engineering
(ICSE), IEEE, pp. 1159–1170 (2020).

[3] Humbatova, N., Jahangirova, G., Bavota, G., Riccio, V., Stocco, A.
and Tonella, P.: Taxonomy of real faults in deep learning systems, Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, pp. 1110–1121 (2020).

[4] Gao, Y., Liu, Y., Zhang, H., Li, Z., Zhu, Y., Lin, H. and Yang, M.:
Estimating gpu memory consumption of deep learning models, Pro-
ceedings of the 28th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering, pp. 1342–1352 (2020).

[5] Guo, Q., Xie, X., Li, Y., Zhang, X., Liu, Y., Li, X. and Shen, C.:
Audee: Automated testing for deep learning frameworks, 2020 35th
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), IEEE, pp. 486–498 (2020).

[6] Pham, H. V., Lutellier, T., Qi, W. and Tan, L.: CRADLE: cross-
backend validation to detect and localize bugs in deep learning li-
braries, 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), IEEE, pp. 1027–1038 (2019).

[7] LAZIĆ, L.: Use of orthogonal arrays and design of experiments via
Taguchi methods in software testing, 18th International Conference
on APPLIED MATHEMATICS (AMATH 2013), Budapest, Hungary
(2013).

[8] Wu, H.: Application of orthogonal experimental design for the au-
tomatic software testing, Applied mechanics and materials, Vol. 347,
Trans Tech Publ, pp. 812–818 (2013).

[9] Vesely, M.: Computer Curve Fitting of Polynomials, Technical re-
port, ILLINOIS UNIV URBANA COORDINATED SCIENCE LAB
(1972).

[10] Liu, S. and Nakajima, S.: Automatic test case and test oracle genera-
tion based on functional scenarios in formal specifications for confor-

mance testing, IEEE Transactions on Software Engineering (2020).
[11] Seshia, S. A., Desai, A., Dreossi, T., Fremont, D. J., Ghosh, S., Kim,

E., Shivakumar, S., Vazquez-Chanlatte, M. and Yue, X.: Formal spec-
ification for deep neural networks, International Symposium on Auto-
mated Technology for Verification and Analysis, Springer, pp. 20–34
(2018).

[12] Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A. and Seshia, S. A.:
A formalization of robustness for deep neural networks, arXiv preprint
arXiv:1903.10033 (2019).

[13] Chen, T., Xu, B., Zhang, C. and Guestrin, C.: Training deep nets with
sublinear memory cost, arXiv preprint arXiv:1604.06174 (2016).

[14] Wang, L., Ye, J., Zhao, Y., Wu, W., Li, A., Song, S. L., Xu, Z. and
Kraska, T.: Superneurons: Dynamic GPU memory management for
training deep neural networks, Proceedings of the 23rd ACM SIG-
PLAN symposium on principles and practice of parallel programming,
pp. 41–53 (2018).

[15] Peng, X., Shi, X., Dai, H., Jin, H., Ma, W., Xiong, Q., Yang, F. and
Qian, X.: Capuchin: Tensor-based gpu memory management for deep
learning, Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, pp. 891–905 (2020).

[16] Papini, M., Pirotta, M. and Restelli, M.: Adaptive batch size for safe
policy gradients, The Thirty-first Annual Conference on Neural Infor-
mation Processing Systems (NIPS) (2017).

[17] Liu, S. and Nakajima, S.: A” Vibration” method for automatically
generating test cases based on formal specifications, 2011 18th Asia-
Pacific Software Engineering Conference, IEEE, pp. 73–80 (2011).

[18] Radiuk, P. M. et al.: Impact of training set batch size on the perfor-
mance of convolutional neural networks for diverse datasets, Informa-
tion Technology and Management Science, Vol. 20, No. 1, pp. 20–24
(2017).

[19] Mittal, S. and Vaishay, S.: A survey of techniques for optimizing deep
learning on GPUs, Journal of Systems Architecture, Vol. 99, p. 101635
(2019).

[20] Di, B., Sun, J., Li, D., Chen, H. and Quan, Z.: GMOD: a dynamic
GPU memory overflow detector, Proceedings of the 27th Internation-
al Conference on Parallel Architectures and Compilation Techniques,
pp. 1–13 (2018).

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 199

