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Abstract: Field-programmable gate arrays (FPGAs) have garnered significant interest in research on high-
performance computing because their computation and communication capabilities have drastically improved in recent
years due to advances in semiconductor integration technologies that rely on Moore’s Law. In addition to improving
FPGA performance, toolchains for the development of FPGAs in OpenCL have been developed and offered by FPGA
vendors that reduce the programming effort required. These improvements reveal the possibility of implementing a
concept to enable on-the-fly offloading computation at which CPUs/GPUs perform poorly to FPGAs while performing
low-latency data movement. We think that this concept is key to improving the performance of heterogeneous super-
computers using accelerators such as the GPU. In this paper, we propose a GPU–FPGA-accelerated simulation based
on the concept and show our implementation with CUDA and OpenCL mixed programming for the proposed method.
The results of experiments show that our proposed method can always achieve a better performance than GPU-based
implementation and we believe that realizing GPU–FPGA-accelerated simulation is the most significant difference
between our work and previous studies.
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1. Introduction

Graphics processing units (GPUs) offer good peak perfor-
mance and high memory bandwidth. They have been widely used
in high-performance computing (HPC) systems as accelerators.
However, enabling the execution of parallel applications on such
heterogeneous clusters requires inter-accelerator communication
between nodes. This means that maintaining multiple copies of
memory is required; this results in increased latency and severely
degraded application performance, particularly when short mes-
sages are involved. Moreover, while the GPU has the above ben-
eficial characteristics, it is not effective as an accelerator in ap-
plications that employ complicated algorithms using exceptions,
non-single instruction multiple data streams (SIMD), and par-
tially poor parallelism.

Field-programmable gate arrays (FPGAs) have emerged in re-
search on high-performance computing (HPC), and several stud-
ies have been reported in the past several years. In Ref. [1], the
authors proposed a PCI express (PCIe)-based interconnect for
accelerators that can reduce accelerator to accelerator commu-
nication latency over different nodes. They also developed an
FPGA-based network interface card to support direct communi-
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cation through the PCIe protocol. In addition to the communica-
tion logic, the authors in Refs. [2], [3] implemented application-
specific computational logic on FPGAs that enabled the on-the-
fly offloading of certain specific computational loads to FPGAs
while performing cross node data transfers; a significant improve-
ment in performance was achieved. We think that this imple-
mentation of low-latency communication-enhanced parallel pro-
cessing running on multiple FPGAs connected by a high-speed
interconnect is crucial to further improving the performance of
modern HPC systems that use accelerators. We call this con-
cept Accelerator-in-Switch (AiS) as shown in Fig. 1. Accelera-
tors such as GPUs are used for coarse-grained parallel applica-
tions, whereas multiple FPGAs connected by a high-speed inter-
connect autonomously perform communication and computation
in areas where CPUs/GPUs are inefficient.

One reason to need such a GPU–FPGA coupling is to accel-
erate multiphysics applications. Multiphysics is defined as the
coupled processes or systems involving more than one simultane-
ously occurring physical fields and the studies of and knowledge
about these processes and systems [4]. Therefore, multiphysics
applications perform simulations with multiple interacting phys-
ical properties and there are various computations within a sim-
ulation. Because of that, accelerating simulation speed by GPU
only is quite difficult and this is why we try to combine GPU
and FPGA and make the FPGA cover GPU-non suited compu-
tation. In this paper, we focus on a radiative transfer simulation
code that is based on two types of radiation transfer: the radiation
transfer from spot light and the radiation transfer from spatially
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Fig. 1 Overview of the AiS.

distributed light. We make GPUs and FPGAs work together, and
perform the former radiation transfer on the GPU and the latter
radiation transfer on the FPGA. As a result, we realized GPU–
FPGA-accelerated simulation of which the performance was as
much as 17.4× higher than GPU-based implementation and was
still 1.32× higher even when solving problems of the largest size,
which is the fastest problem size for GPU-based implementation.

Our contributions in this paper are:
• We propose how to accelerate a multiphysics application

with the GPU and the FPGA. In other words, we ana-
lyze the characteristics of the target application qualitatively
and quantitatively, and present a methodology to show what
kind of computation should be offloaded to the GPU and the
FPGA, taking into account the characteristics of each com-
puting device.

• We detail our implementation with CUDA and OpenCL
mixed programming for the proposed method.

• We analyze the application code by performing experimen-
tal evaluations in detail. As a result, we are able to quanti-
tatively derive in which cases our proposed method of com-
bining the GPU and the FPGA is most effective.

This paper is organized as follows. We describe our target ap-
plication code accelerated by the AiS concept in Section 2 and
show how to use the FPGA for the target application in Section 3.
The GPU–FPGA cooperative computation for our target applica-
tion is shown in Section 4. In Section 5, we perform experimental
evaluations. We introduce several previous studies in Section 6
and show how to extend the proposed method to multiple compu-
tation nodes in Section 7. And finally, this paper is concluded in
Section 8.

2. ARGOT: Radiative Transfer Simulation
Code for Astrophysics

ARGOT is an astrophysics simulation code developed in our
organization. As shown in Fig. 2 (a), it combines two algorithms
to solve radiative transfer problems: the ARGOT algorithm [5],
which computes the radiative transfer from point sources, and the
ART algorithm [6], which computes the radiative transfer from
sources spreading out in the target space. To accelerate the AR-
GOT code, we make the ARGOT algorithm run on GPUs and
make the ART algorithm run on FPGAs separately, as shown in
Fig. 2 (b). We give a brief description of the two algorithms in the
next section.

2.1 ARGOT Algorithm
To solve the radiative transfer from point radiation sources,

computation of the optical depth between each pair of a point

Fig. 2 (a) Overview of the ARGOT code and (b) how to accelerate it by the
AiS concept.

radiation source and a target mesh grid, i.e., an end point of each
light-ray (see Fig. 3 (a)), is necessary. Assuming that the number
of mesh grids is constant, the computational complexity is pro-
portional to the number of point radiation sources. To address
this, the ARGOT algorithm builds an oct-tree data structure for
the distribution of radiation sources, as shown in Fig. 3 (b). A cu-
bic computational domain is hierarchically subdivided into eight
cubic cells until each cell contains only one radiation source or
the size of a cell becomes sufficiently small compared to that of
the computational domain. In other words, sources in a distant
tree node can be treated as a single luminous source and the ef-
fective number of point radiation sources is reduced from N to
logN. When targeting a mesh grid, e.g., a target mesh grid in
Fig. 3 (b), photon flux coming from each radiation source at tar-
get mesh grids is given by

f (ν) =
L(ν)e−τ(ν)

4πr2
(1)

where L(ν) and τ(ν) stand for is the intrinsic luminosity and the
optical depth for a given frequency ν, respectively. τ(ν) is given
by

τ(ν) = σ(ν)
∫

n(x)dl � σ(ν)
∑

i

n(xi)Δl (2)

where n(x) is the number density of gas molecules that absorb
light.

Figure 3 (c) shows how to parallelize the ARGOT algorithm.
This parallelized technique is called “Node Parallelization”. It
decomposes the simulation volume evenly along each direction.
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Fig. 3 (a) Schematic illustration of the ray-tracing method for the radiation emitted by a point radiation
source in the two-dimensional mesh grids, (b) how to solve it with the ARGOT algorithm, and (c)
parallelized ARGOT algorithm.

Light rays are divided by boundaries of parallel domains into
several “ray segments” and computation of optical depths of as-
signed ray segments in each parallel domain is performed. In
GPU simulations, this computation is performed on GPUs con-
currently. After that, sum reduction of optical depths of each ray
segment to their target mesh grids is performed. However, in this
paper, the ARGOT code runs on a single node and we do not use
this parallelization technique. In that case, the number of ray seg-
ments is treated as the number of light rays. The radiative transfer
for each ray is assigned to each CUDA thread of the GPU, and
then each computation is performed in parallel.

2.2 ART Algorithm
To solve radiation transfer from spatially diffuse sources, the

ART algorithm is used that is based on a ray-tracing method in
a 3D space split into meshes. The computation part of the ART
algorithm accounts for more than 90% of the ARGOT code, and
this is why accelerating the ART algorithm directly results in the
performance improvement of the ARGOT code. As shown in
Fig. 4, multiple incident rays come from a boundary and move in
a straight direction parallel with each other, without any reflec-
tion or refraction. The ART algorithm solves a radiation transfer
equation along parallel light-rays starting from one edge to an-
other of computational volume, using the following equation.

Iout
ν (n̂) = Iin

ν (n̂)e−Δτν + S ν(1 − e−Δτν ) (3)

This calculation is performed every time the ray is passed through
a mesh grid. For a given incoming radiation intensity Iin

ν along
a direction n̂, the outgoing radiation intensity Iout

ν after getting
through a path length ΔL of a single mesh is computed by the
above integrating equation, where Δτ is the optical depth of the
path length ΔL (i.e., Δτ = κνΔτ), and S ν and κν are the source
function and the absorption coefficient of the mesh grid, respec-
tively. The direction (angle) of the ray is computed using the
HEALPix algorithm [7]. The number of meshes depends on the
configuration of the target problem. There will be between 1003

and 10003 meshes in our target problems. The number of ray
angles also depends on the problem size. It will be at least 768,
where resolution parameter Nside = 8 in the HEALPix.

Because the ART method uses ray tracing, computational order

Fig. 4 Ray tracing method used in the ART method. Arrows and yellow
cloud show rays and gas to compute reactions, respectively.

within a ray must be sequential, whereas computations for differ-
ent rays can be performed in parallel because no two rays are
computationally dependent on each other. However, implement-
ing the ART method on SIMD-like architecture is problematic in
two ways.

First, because the memory access pattern of the mesh data
varies depending on the ray direction, hundreds or thousands of
different patterns are possible. In some cases, the computation
of multiple ray interactions in the SIMD manner requires the
mesh data to be accessed in non-continuous locations in memory,
which causes a low cache hit ratio on the CPU and long latency
in the GPU.

Second, the integration of mesh data resulting from two rays
being close to each other would cause conflict. When multiple
light rays pass through shaded mesh grids, as shown in Fig. 4, the
physical quantities in those mesh grids must be incremented in an
atomic manner. However, the atomic operation itself has a over-
head. If a large number of threads perform atomic operations at
the same time, many contentions may occur and the processing
speed may be significantly slowed down. The number of atomic
operations is cubically proportional to the size N of one side of the
mesh, that is O(N3). To avoid this atomic operation, the method
proposed in Ref. [6] is to not compute the neighboring rays at
the same time, which means that ray tracing along the red and
blue light rays is separately performed as shown in Fig. 4. How-
ever, this method further exacerbates the memory access prob-
lems in the ART algorithm described in the first reason because
this method causes the memory access patterns to become more
scattered. And, this overhead is expected to be close to cubically
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proportional as well as the number of atomic operations.
Given this ART algorithm’s characteristics, we consider that

SIMD-style processors such as CPUs and GPUs are unsuitable
for this algorithm. On the other hand, FPGAs can access their
on-chip internal memory with low latency and high bandwidth
for random accesses. In addition to its performance, we can
program memory access patterns as a part of the FPGA hard-
ware. Therefore, we consider that the use of the ART method
on an FPGA is suitable. There is a previous study of implement-
ing an FPGA-based hardware engine with OpenCL programming
framework [8] and we integrate the engine to the ARGOT code.
The implementation of Ref. [8] is described in the next section.

Please note that the ART algorithm is based on a raytracing
one, but it is essentially different from that of computer graphics
(CG) that can be accelerated by Turing architecture-based GPUs.
The CG’s raytracing retroactively calculates the light reflection
and transmission on the object surface from the observer’s view-
point. On the other hand, the ART algorithm calculates radia-
tion intensity every time the ray is passed through a mesh grid
and takes an average intensity by calculating radiation intensity
on each ray direction. In short, their common point is only the
phrase “raytracing”.

3. ART on FPGA Implementation

3.1 Intel FPGA SDK for OpenCL
3.1.1 Overview

For the proposed method of Ref. [8], an OpenCL-based FPGA
development toolchain is used, the Intel FPGA SDK for OpenCL;
Fig. 5 shows its programming model. The host code is for pro-
gramming the host application; it runs on a host PC and manages
an FPGA device at runtime with a set of common application pro-
gramming interfaces (APIs). The code is compiled using a stan-
dard C compiler such as GCC on Linux or Visual Studio C/C++
on Windows to generate a host binary. The kernel code is for
designing units of computation that are offloaded to the FPGA;
it is compiled using an Intel FPGA OpenCL compiler, offered
by the toolchain, to convert into synthesizable Verilog HDL files
which are then used in Quartus Prime to generate an aocx file that
includes FPGA configuration information. The aocx file is down-
loaded to the FPGA during execution of the host application by
using the APIs; any data required for kernel execution as well as
any data generated are transferred via the PCIe bus.

Figure 6 shows a schematic of the Intel FPGA SDK for an
OpenCL platform. As described above, the host application is
implemented using the OpenCL host code, and the application-
specific pipelined hardware is generated from the OpenCL ker-
nel code. The PCIe and external memory controllers are offered
by the board support package (BSP) and are automatically con-
nected to the pipelined hardware during kernel code compilation.
The PCIe software driver is also provided by the BSP and en-
ables data movement between the host PC and FPGA boards.
In other words, programmers essentially do not have to be con-
cerned about anything other than the host and kernel code im-
plementation and it is possible to port existing OpenCL kernel
code for an FPGA board to any other board, as long as its BSP is
available.

Fig. 5 Intel FPGA SDK for OpenCL programming model.

Fig. 6 Schematic of the Intel FPGA SDK for OpenCL platform.

3.1.2 Inter Kernel Communication Using Channel
“Channel” is one of the extensions of the Intel SDK for the

OpenCL language. It makes it possible to exchange data between
two kernels without any external memory access. A channel can
directly connect two kernels with an optional First-In-First-Out
(FIFO) buffer.

When two kernels are connected through a channel, the data
can be transferred between them without reading or writing on
external memory. Instead of that, they are transferred through the
buffer inside an FPGA chip to reduce the latency and increase the
bandwidth.
3.1.3 Launching Kernels Automatically Using Autorun At-

tribute
The “autorun” attribute is another extension for the OpenCL

language. In the standard OpenCL environment, OpenCL kernels
must be managed by the host and invoked explicitly. If a kernel
has an autorun attribute, it will be started automatically after the
FPGA becomes ready without any interaction from the host.

Autorun kernels are commonly used in combination with the
channels described in the previous subsection. If a kernel uses
no global memory access and uses channels only as its input or
output, we can make it as an autorun kernel. This programming
model is similar to a daemon in a general operating system, where
a daemon is started automatically in the background and uses net-
work sockets to do its work.

In general, if an FPGA design consists of multiple kernels con-
nected to each other by channels, we have to start or finish a large
number of kernels even for a stream of computation. Each API
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call to manage the execution of a kernel has control overhead,
including PCIe communication overhead. Therefore, it is impor-
tant for us to keep the overhead small by using the autorun at-
tribute. Because autorun kernels are controlled inside the FPGA,
they have low control overhead and low resource usage on the
FPGA. No connection between the host and the FPGA is required
for them.

3.2 Implementation Overview
The basic strategy of the ART on FPGA implementation is to

allocate multiple computation kernels into an FPGA and connect
them using channels. Each kernel computes the reaction between
a mesh and a ray in its own computation space. During this com-
putation, a ray traverses multiple computational kernels and takes
different meshes in the space depending on its location. If a ray
leaves a kernel’s space, its data will be transferred to the kernel
for a neighboring mesh through a channel.

Figure 7 shows how the implementation is. The “memory
reader” reads the mesh and ray data from the DDR memory,
which is seen as a global memory in the OpenCL environment.
The “memory writer” is the counterpart to the reader. It writes
ray data to the memory and updates mesh data based on the com-
putational results. Because the ART algorithm computes the in-
tegration of a gas reaction, both read and write memory accesses
are required for the mesh data. The “buffer” is a mesh data buffer
used to improve the memory access performance. The “PE ar-
ray” is an array of Processing Elements (PEs). A PE computes
a kernel using the ART algorithm (see Equation (3)), and the ar-
ray consists of multiple kernels. All computations use a single
precision floating point and are implemented by Digital Signal
Processors (DSPs) in an FPGA including the exponent functions.

In our implementation, the “buffers” and “PE array” kernels
shown in Fig. 7 are marked as “autorun” kernels. The remaining
kernels are regular kernels and controlled by the host. Because
of their global memory access, making them autorun kernels is
impossible. Applying the autorun attribute to kernels reduces the
number of kernels managed by the host. As a result, the control
overhead is decreased, and the total computational performance
is increased.

3.3 Parallelization Using Channel in FPGA
In this section, we describe the structure of the “PE array”

shown in Fig. 7. The “PE array” is a group of OpenCL kernels
that implement the ART algorithm and is composed of the Pro-
cessing Element (PE) and Boundary Element (BE), as shown in
Fig. 8. For running the ART method on the FPGA, the PEs and
BEs mutually communicate the ray data with each other via chan-
nels.

The PE is an arithmetic kernel for the ART algorithm. In our
implementation, the problem space for an FPGA is divided into
small blocks and each block is assigned to each PE. The data
for computation is stored in Block Random Access Memories
(BRAMs) because of the need for high frequency random access,
and each PE has its own BRAM for the computation. BRAMs
are memories (generally SRAMs) that are implemented inside
the FPGA and are distributed in blocks of a certain size on the

Fig. 7 Overview of the ART on FPGA implementation.

Fig. 8 Structure of the “PE array”.

FPGA chip. They have powerful random access capability with
low latency and high bandwidth, but their capacity is lower than
that of external memory, such as the DDR memory. Therefore, it
is essential to use BRAM in conjunction with the DDR memory
when running the ART algorithm for a problem size that does not
fit within the FPGA.

The BE is a kernel that performs the input and output process-
ing of the ray required by the PE, which means that the BE is re-
sponsible for the boundary processing of ray tracing. Therefore,
the BE performs the initial generation of the ray, the discarding
of unneeded rays, the reading of the rays generated by past com-
putation from a ray buffer, and the writing of the rays to the ray
buffer for the computation in the next time step. It is essential to
use the DDR memory for the process of using the ray buffer as
well. We describe how the DDR memory is used for the ART
algorithm on the FPGA in the next section.

As described in the beginning of this section, the FPGA im-
plementation developed in this study uses channels for parallel
execution of the ART algorithm. This implementation is based
on the Multiple Wave Front (MWF) method [9] that is an inter-
node parallelization method used in the original CPU/GPU im-
plementation of the ART algorithm, and is refined for the FPGA.
Since the cost of channel communication is lower than inter-node
communication on CPUs and GPUs, channel accesses are built
into the computation pipeline for finer-grained communication.
Inside the FPGA, the problem space handled by a single FPGA is
divided into several small spaces and the processing for the prob-
lem space is also divided among the PEs. In other words, the
MPI process in the CPU’s MWF implementation corresponds to
the PE.

A PE is connected with a neighboring PE in the x, y and z
dimensions. There are two PEs in the x-, y-, and z-dimensions,
i.e., 2 × 2 × 2 = 8 PEs implemented in the FPGA. The num-
ber of the PEs depends on hardware resources of the FPGA and
we have taken the maximum number of PEs that can be imple-
mented in the FPGA. A BE is connected with an adjacent PE,
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as it is responsible for the boundary processing. The connection
of a BE differs from the connection of a PE, which means that A
BE is connected with only one adjacent PE and not an adjacent
BE. The two channels are used for the ray data communication
in both directions. The bit width of the channel is determined by
the size of the structure that the ART algorithm uses to represent
the ray.

Channel accesses are embedded in the computation pipeline,
and one element of data (the channel bit-width’s data) is com-
municated per clock cycle if both the sender and receiver operate
without pipeline stalls. Moreover, when there are multiple chan-
nels in the FPGA, each channel can operate and be responsible for
the ray data communication independently. Therefore, the cost of
communication using channels in FPGAs is lower than that of
inter-node communication of the CPU/GPU implementation.

3.4 DDR Memory Access of the FPGA-based ART Algo-
rithm

As described in the previous section, the problem size that can
be solved by the FPGA is limited by the capacity of the BRAM.
We believe that we need to be able to allocate at least 1283 prob-
lem space per FPGA to compute practical problems in the AR-
GOT code. While 1283 meshes require 192 MB of memory, and
current state-of-the-art FPGAs have BRAM capacities of at most
20∼30 MB, which means that it is essential to use DDR mem-
ory in conjunction with the BRAM to solve larger problems. The
data used for the ART algorithm is stored in DDR memory, and
the BRAM is treated such as a scratchpad cache. In other words,
a large problem stored in the DDR memory is divided into small
blocks that can be stored in the BRAM, and the FPGA performs
the computation of the ART in block-wise and time-division-
multiplexing manner.

The pseudo code of the DDR implementation is shown in Al-
gorithm 1. Please note that this shows the flow of DDR mem-
ory accesses and does not reflect the actual implementation.
ray directions[] is an array of positive and negative ray di-
rections for the X, Y and Z axes, small blocks[] is an array of
the small blocks to be computed, ipix list(dir) is a function
that returns angles pointing towards dir from angles computed
using the Healpix library. In the actual implementation, the al-
gorithm is divided into multiple kernels and they are connected
using channels, as described in the previous section.

To use DDR memory, there are two key OpenCL kernels; one
is to replace the mesh data along with the computation progresses,
and the other is about the ray data. The mesh data refers to the
region that stores the source function parameters (absorption and
diffusion of photons) in Eq. (3) and the intermediate results of the
integration, which requires 4 × sizeof ( f loat) × ν bytes. The ray
data contains the radiation intensity and occupies sizeof ( f loat)×ν
bytes. As previously described in Section 2.2, the ART algorithm
solves the radiation transfer by dividing the three-dimensional
space into meshes, and therefore, the amount of memory used
for mesh data is cubically proportional to the problem size. Also,
since the number of rays is squarely proportional to the mesh size
of the problem’s boundary plane, the maximum amount of mem-
ory required is 12×N2

side×N2 bytes (Nside is resolution parameter

Algorithm 1 Pseudo code of the DDR implementation
1: for dir in ray directions[] do

2: for b in small blocks[] do

3: mesh load(b)

4: for ipix in ipix list(dir) do

5: for iray in rays(ipix) do

6: r = ray load(iray)

7: for m in compute path(r) do

8: compute reaction between r and m

9: end for

10: ray store(iray, r)

11: end for

12: end for

13: mesh store(b)

14: end for

15: end for

Fig. 9 Overview of the ray buffer. Red boxes, blue boxes and blue arrows
represent output ray buffers, input ray buffers, and rays to compute,
respectively.

in the Healpix. 12 × N2
side ray angles are generated).

For DDR memory access to mesh data, the BRAM for mesh
data in the PE is used as a cache. The mesh data is copied from
DDR memory to BRAM (Line 3 in Algorithm 1), the compu-
tation of the ART algorithm is performed on BRAM (Line 8 in
Algorithm 1, no DDR memory access at this point), and then the
computation results are written back from the BRAM to the DDR
memory (Line 13 in Algorithm 1). Since the DDR memory ac-
cess order of the mesh data is fixed and known beforehand, the
next required data can be pre-fetched from the DDR memory into
the FIFO buffer during the computation. As a result, minimizing
the computation pipeline stall can be achieved.

DDR memory access for ray data is more complicated than
that for mesh data. Since the amount of memory required for the
ray buffer is large compared to the size of the BRAM, the ray
buffer must be allocated on the DDR memory. Figure 9 shows
how the ray buffer is used for the ART algorithm. This figure is
simplified to 2D space, but there is a similar structure in the Z-
dimension because the actual computation deals with 3D space.
Also, This figure shows only the case where the ray is computed
along the X+ and Y+ axes. However, since the ray is input at
various angles, there are eight directions in total. The eight di-
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rections mean that there are positive and negative directions in
the X, Y and Z axes, respectively. Therefore, there are 8 com-
binations of data flows in the actual computation as well. In this
figure, there are nine boxes and each of them represent mesh data.
The solid black box (A) in the center represents the block that is
currently being computed (variable b in Algorithm 1). The ray
data used in the calculation of block A are loaded from the two
blue input ray buffers (numbers 1 and 2) and the results are stored
in the two red output ray buffers (numbers 3 and 4). The input
and output ray buffers vary according to the position of the mesh
to be computed, e.g., when computing block B, the 4th and 5th
are the input buffers and the 6th is the output buffer. In addition,
there is no output buffer to the right of block B because block B
is located at the edge of the computational domain, and if a ray
appears outside the computational domain, it is discarded.

4. GPU–FPGA-accelerated ARGOT code

4.1 Overview
The implementation overview of the ARGOT code with the

GPU and the FPGA is shown in Fig. 10. The GPU implementa-
tion of the ARGOT code that performs both the algorithms on the
GPU has already been implemented. Based on the GPU imple-
mentation of the ARGOT code, we replace the GPU-based ART
algorithm with the ART on the FPGA implementation. To do that,
data transfer between the GPU and the FPGA has to be performed
appropriately. The initial data of the ART algorithm is generated
on the GPU and it is sent to the FPGA, and then the result data
of the ART is sent back to the GPU. Here, the initial and result
data of the ART refer to the mesh data representing the initial
state before ray tracing and the mesh data reflecting the effects
of ray tracing, respectively. Normally, the data transfer between
the GPU and the FPGA is performed through the CPU memory,
but such an indirect data movement is obviously inefficient. To
address that issue, a method for high performance direct memory
access (DMA) between the two devices has been proposed [10].
The DMA feature is implemented in an FPGA using a PCIe in-
tellectual property (IP) core and can be controlled using OpenCL
code.

The ARGOT code was implemented in multilingual program-
ming composed of CUDA and OpenCL, and therefore a separate
compilation was needed. Figure 11 shows the flow of the com-
pilation. The CUDA code and OpenCL host code were compiled
with nvcc and g++ separately, and the generated object files were
linked using nvcc to generate an executable and linkable-format
(ELF) file. As previously described in Section 3.1, the OpenCL
kernel code for the ART algorithm was compiled offline using the
Intel FPGA OpenCL compiler.

4.2 OpenCL-enabled GPU–FPGA DMA
As previously described in Section 3.1, BSPs support exter-

nal hardware component access from an FPGA (OpenCL kernel
code). However, they provide a minimum set of peripheral con-
trollers to enable OpenCL programming (i.e., PCIe and external
memory controllers). We modify a PCIe controller into a BSP
so that an FPGA can access the GPU’s global memory directly
through the PCIe bus. In other words, realizing OpenCL-enabled

Fig. 10 The implementation overview of GPU–FPGA-accelerated ARGOT
code.

Fig. 11 The compilation flow of GPU–FPGA-accelerated ARGOT code.

Fig. 12 Overview of GPU–FPGA DMA.

GPU–FPGA DMA is essentially synonymous with modifying the
BSP.

Figure 12 shows our developed GPU–FPGA DMA method
controlled by the OpenCL kernel. By mapping the GPU’s global
memory and external FPGA memory to PCIe address space, the
DMA controller in the PCIe IP core performs memory copies
between the devices. This feature is almost identical to a tech-
nique proposed in Ref. [1], but our developed method allows the
FPGA to autonomously perform the DMA transfer without sup-
port from the CPU. Our developed GPU–FPGA DMA method is
performed using the following procedures.
• The procedures at the CPU

( 1 ) Mapping GPU’s global memory to the PCIe address
space

( 2 ) Sending PCIe address mapping information of the
GPU’s global memory to the FPGA

• The procedures at the FPGA
( 3 ) Generating the descriptor [11] based on the PCIe ad-

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

dress mapping information and passing it to the descrip-
tor controller through an I/O channel

( 4 ) Writing the descriptor to the DMA controller while pre-
venting any other device (such as the CPU) from access-
ing the controller

( 5 ) Performing GPU–FPGA DMA transfer
( 6 ) Receiving the DMA completion notification
( 7 ) Obtaining the completion notification through an I/O

channel
Procedures at the CPU are performed only once because the

address information of GPU’s global memory mapped to PCIe
address space is stored and reused in the FPGA.
4.2.1 PCIe Address Mapping

To map GPU’s global memory to PCIe address space so that
the FPGA can access it through the DMA controller in the PCIe
IP core, we use a set of APIs (GPU Direct for RDMA) offered in
NVIDIA that was also used in the technique proposed in Ref. [1].
The technique has the global memory address mapped to PCIe
address space with the NVIDIA Kernel API, and we use this fea-
ture to reduce the cost of implementation.

Figure 13 shows how to map GPU’s global memory to PCIe
address space and obtain the memory addresses. By passing the
pointer ptr to the tcaCreateHandleGPU() function that is an
API of the technique, the GPU’s global memory is mapped to
PCIe address space, and memory address information is stored
in the variable paddr with a set of NVIDIA APIs. The map-
ping information is sent to the FPGA upon the initialization of
OpenCL (setting the mapping information to an OpenCL kernel
argument).
4.2.2 DMA Descriptor

Our target FPGA board for the implementation of the devel-
oped method was a PCIe-based FPGA board with Intel Arria 10
FPGA whose BSP was ready to use. The PCIe controller in the
BSP used an IP core “Arria 10 Hard IP for PCI Express Avalon-
MM with DMA” that can be controlled by writing the descrip-
tor [11]. Table 1 shows the format of the descriptor, and contains
the source and destination addresses, the size of transfer data in
dwords, and the DMA descriptor ID. Note that the size of trans-
fer data is encoded in 18 bits, and therefore, the DMA controller
in the IP core can transfer up to 1,024 × 1,024 − 4 bytes per de-
scriptor.

For example, by setting the mapping information of the PCIe
addresses of GPU’s global memory to the source/destination ad-
dresses in the descriptor, the FPGA can move data from the GPU
to the FPGA or the other way round. As described in the pre-
vious section, the FPGA (OpenCL kernel) receives the address
information of GPU’s global memory mapped to PCIe address
space from the CPU and generates a descriptor with the address.
Following this, the descriptor is sent to the descriptor controller
through an I/O channel.
4.2.3 Descriptor Controller

The descriptor controller is a hardware module to write the
descriptor to the DMA controller in the PCIe IP core, which is
implemented in the PCIe controller provided by the BSP. Our
developed method needs to control the descriptor controller from
OpenCL kernel, but this module is instantiated in the PCIe IP core

Fig. 13 Mapping GPU’s global memory to PCIe address space. Line 12:
The tcaCreateHandleGPU() function performs the mapping and
stores the memory address information in paddr.

Table 1 DMA descriptor format.

Bits Name
[31:0] Source Low Address
[63:32] Source High Address
[95:64] Destination Low Address
[127:96] Destination High Address
[145:128] DMA Length
[153:146] DMA Descriptor ID
[158:154] Reserved
[159] Immediate Write

Fig. 14 External instantiation of the descriptor controller.

and only CPU can access it by default. Therefore, the descriptor
controller must be externally instantiated so that OpenCL kernel
can access it as well. Figure 14 shows what it looks like. Neces-
sary connections between the descriptor controller and the PCIe
IP core is done with the GUI tool Platform Designer and OpenCL
kernel can access the descriptor controller by adding Avalon-ST
interface used for I/O channels to the externally instantiated mod-
ule.

Figure 15 shows a schematic of the descriptor controller. Our
developed method performs GPU–FPGA DMA transfer by send-
ing a descriptor generated in the OpenCL kernel to this hard-
ware module through an I/O channel and writing the descriptor
to the DMA controller. To realize this, exclusive access con-
trol is necessary because the CPU also manipulates this mod-
ule for CPU–FPGA DMA transfer using OpenCL APIs such as
clEnqueueReadBuffer() and clEnqueueWriteBuffer().

As shown in Fig. 15, the descriptor controller is composed of
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Fig. 15 Schematic of the descriptor controller. The hardware components
of Verilog HDL surrounded by the red dotted line are added to
enable the descriptor controller to write the descriptor sent from
OpenCL kernel to the DMA controller in the PCIe IP core.

a write module and a read module, and each contains registers
reserved for the CPU and a FIFO buffer to store a descriptor for
DMA transfer between the CPU and the FPGA. The CPU first
manipulates a reserved register of the read or write module with
programmable IO (PIO) access to assemble a descriptor to fetch
the CPU-to-FPGA or FPGA-to-CPU DMA descriptor from the
host (system memory). The read module writes the assembled
descriptor to the DMA controller in the PCIe IP core, and the
CPU–FPGA DMA descriptor is fetched and forwarded to the read
or write module’s FIFO buffer. Finally, CPU–FPGA DMA trans-
fer is performed by dequeuing the descriptor from an FIFO buffer
to the DMA controller. In case of CPU-to-FPGA DMA transfer,
the FPGA receives data from the CPU and forwards them to its
external memory through the read bus, and sends data from the
external memory to the CPU through the write bus if the FPGA-
to-CPU DMA transfer is performed.

To perform GPU–FPGA DMA transfer without disturbing the
operation, we add the hardware components of Verilog HDL, sur-
rounded by the red dotted line shown in Fig. 15. Descriptors sent
from the OpenCL kernel with an I/O channel are stored in the read
or write module’s FIFO buffer and dequeued to the DMA con-
troller by a scheduler implemented in the descriptor controller at
an appropriate time. Because the operating frequencies between
the domains of the OpenCL kernel and PCIe are different, asyn-
chronous (dual-clock) FIFOs are required to send the descriptor
successfully from the OpenCL kernel. Similar to CPU–FPGA
DMA transfer, the FPGA sends data from the external memory
through the write bus or forwards data to it through the read bus.
4.2.4 Example of OpenCL code

Figure 16 shows an example of OpenCL kernel code to per-
form DMA transfer from the GPU to the FPGA. As described
in the previous section, the descriptor controller is manipu-
lated through I/O channels and therefore, the pragma #pragma
OPENCL EXTENSION cl intel channels: enable has to be
written in OpenCL kernel code at first.

The DMA descriptor is generated in OpenCL kernel code and,
based on Table 1, a struct data structure for the descriptor is de-
clared from lines 3 to 10. The size of the descriptor is 160 bits but
we set it to 256 bits because channel width that is not a power of
two currently does not work in this toolchain. Therefore, a 256-
bit data structure is generated and passed through I/O channels,

Fig. 16 OpenCL kernel code to perform GPU-to-FPGA DMA transfer.

and the descriptor’s 160 bits are retrieved in the Verilog HDL
layer.

An I/O channel variable is used to define connectivity between
kernels and the I/O. It needs to be declared with an io attribute in
the OpenCL kernel code, which is shown in lines 12 and 13. The
io(“chan fpga dma”) and io(“chan dma stat”) attributes specify
paths to transfer the descriptor and the DMA completion notifi-
cation, respectively, and the value used in the attribute must be
the chan id of the I/O interface listed in the board spec.xml file.
The depth attribute is set to zero because FIFO buffers required
to perform GPU–FPGA DMA transfer have already been imple-
mented using Verilog HDL.

Finally, all necessary data for GPU-to-FPGA DMA transfer are
set from lines 21 to 23, and the generated descriptor is sent to the
descriptor controller using the write channel intel() func-
tion. Following this, DMA transfer from the GPU to the FPGA is
performed and the DMA controller in the PCIe IP core notifies the
descriptor controller of the completion of the data transfer. The
completion notification is stored in a FIFO buffer implemented in
the descriptor controller and OpenCL kernel fetches it using the
read channel intel() function.

Please note that the DMA controller in PCIe IP core can trans-
fer up to 1,024 × 1,024 − 4 bytes per descriptor, which means
that in order to transfer more than the data size, the DMA transfer
has to be performed iteratively by sending a new descriptor to the
descriptor controller from OpenCL kernel. The new descriptor is
generated with recalculation of source and destination addresses
and the GPU global memory address is reused for that calculation
as a base address. Therefore, there is no need to resend the GPU
memory address from the CPU again.

4.3 ART on FPGA with OpenCL-enabled GPU–FPGA
DMA

As shown in Fig. 7, the data flow of the pipelined hardware is
Memory Reader → PE Array → Memory Writer, which means
that the ART execution starts from loading initialized data on the
external memory by the Memory Reader and is done by storing
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Fig. 17 An OpenCL kernel code snippet of the ART on FPGA with GPU–
FPGA DMA.

its execution result by Memory Writer. As previously described
in Section 4.1, the initialized data is located on the GPU memory
and the ART execution result is sent back to the GPU. Therefore,
by making the Memory Reader and the Memory Writer access
the GPU memory directly, more efficient FPGA offloading can
be realized and our developed GPU–FPGA DMA feature enables
it.

Figure 17 shows an OpenCL kernel code snippet of the ART
on FPGA with GPU–FPGA DMA. As previously described in
Section 3.2, the Memory Reader and Memory Writer are imple-
mented as OpenCL kernels. The function dma gpu to fpga()
in the Memory Reader is an OpenCL helper function to perform
GPU-to-FPGA DMA transfer as shown in Fig. 16 and requires the
address information of GPU’s global memory mapped to PCIe
address space, a external memory pointer as the DMA transfer
destination, and the size of transfer data. The GPU’s global mem-
ory address is set as a kernel argument at line 4 and the CPU ob-
tains this address information at first by using the API shown in
Fig. 13 and sends it to the FPGA. By performing this function, the
initialized data is transferred from the GPU to the FPGA directly
and is stored in the memory location pointed to by mem.

In the Memory Writer kernel, the ART result data is transferred
to the GPU memory by the dma fpga to gpu() function. The
GPU’s global memory address is set as a kernel argument at line
16 and this is used as a destination address. By performing this
function, the ART execution result located on the external mem-
ory pointed to by mem is sent back to the GPU, and then the FPGA
terminates the ART execution.

5. Evaluation

5.1 Experimental Settings
Figure 18 shows our experimental machine configuration.

This is a heterogeneous platform composed of three kinds of
devices: two Intel Xeon E5-2660 v4 CPUs, two NVIDIA P100
GPUs for PCIe-based servers (Gen3 x16), and a single BittWare
A10PL4 FPGA board [12] connected to the CPU through a PCIe
Gen3 x8 interface. In this evaluation, we used a single GPU and
an FPGA as surrounded by the red line shown in Fig. 18 in order

Fig. 18 Our experimental environment.

to avoid the performance degradation caused by a PCIe access
over a Quick Path Interconnect (QPI).

The operating system of our experimental machine was Cen-
tOS 7.3 and the GPU–FPGA-accelerated ARGOT code was sep-
arately compiled using nvcc and g++, as shown in the previ-
ous section. The CUDA version was 9.1.85 and the GCC ver-
sion was 4.8.5, respectively. The ART algorithm working on the
FPGA was implemented in OpenCL kernel code and was com-
piled with the offline compiler provided by the Intel FPGA SDK
for OpenCL whose version was 17.1.2.304 Pro edition.

The problem size used for the evaluation ranged from 163 to
1283. The ART on FPGA implementation used a design with 8
PEs (23), and each PE had BRAMs for an 83 meshes. Therefore,
163 meshes are stored in an FPGA in each step. Nside, which is
a parameter used to determine the resolution in the HEALpix, is
set at 8, which generates 768 of different angles of rays (768 is
the number of angles, not the number of rays for the ray tracing).
In this evaluation, the computation time on a CPU is measured
and included the cost of launching and synchronizing the device,
both for FPGA and GPU implementations. And, the time for data
transfer between the host and the devices is also included.

5.2 Resource Consumption
Table 2 shows a comparison of FPGA resource usage. The

adaptive logic module (ALM) is a term used by Intel, and is a
logic component that includes a logically partitionable lookup ta-
ble (LUT) and several registers (flip-flops). ALM utilization is a
metric used to estimate the size of the area of the hardware com-
ponents implemented in the FPGA. The M20K memory block
is an internal memory of the FPGA that is called a Block RAM,
and internal buffers such as FIFOs are implemented using mem-
ory blocks. The digital signal processor (DSP) is a built-in hard-
ware component that is faster and offers more compact imple-
mentations of floating-point operations than programmable logic
components. “Freq.” means the operating frequency in the clock
domain for OpenCL kernels.

As shown in Table 2, resource consumption differences be-
tween designs with and without the GPU–FPGA DMA are quite
negligible. The frequency is slightly dropped, but is acceptable
for performing the ART algorithm. Verilog HDL codes generated
by the OpenCL compiler are not human readable, and it is nearly
impossible to understand how OpenCL kernels are implemented
as circuits.

There is a large difference in resource usage between the 163

implementation and the 323 implementation and this is because
the DDR control kernels have to be implemented for solving more
than 323 problem sizes. They are not necessary in the 163 imple-
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Table 2 Resource usage and clock frequency of the ART on FPGA implementation.

Mesh size # of PEs DMA ALMs (%) Registers (%) M20K (%) DSP (%) Freq. [MHz]
(16, 16, 16) (2, 2, 2) w/o DMA 160,308 38% 312,477 18% 1,104 41% 752 50% 210.4

w/ DMA 163,203 38% 315,692 18% 1,116 41% 752 50% 198.3
(32, 32, 32) (2, 2, 2) w/o DMA 191,477 45% 368,778 22% 1,179 43% 752 50% 184.4

w/ DMA 195,447 46% 373,350 22% 1,197 44% 772 51% 181.7
(64, 64, 64) (2, 2, 2) w/o DMA 191,120 45% 368,875 22% 1,180 43% 752 50% 182.5

w/ DMA 195,576 46% 373,546 22% 1,198 44% 772 51% 181.5
(128, 128, 128) (2, 2, 2) w/o DMA 191,001 45% 368,997 22% 1,180 43% 752 50% 185.7

w/ DMA 195,378 46% 373,517 22% 1,198 44% 772 51% 182.5

Table 3 DDR memory utilization.

Mesh size Allocated for the mesh data Ray buffer
(16, 16, 16) 0.375 MB 0 MB
(32, 32, 32) 3 MB 264 MB
(64, 64, 64) 24 MB 1,128 MB

(128, 128, 128) 192 MB 4,584 MB

mentation because the problem size is small, and all of the meshes
can be stored in an FPGA’s BRAM.

As listed in the table, the DSP is the greatest resource user in
this design, with the half of the total DSPs used, which becomes
a bottleneck when attempting to increase performance. However,
an Intel Stratix 10 FPGA has more than 3x DSPs compared to
the Intel Arria 10 FPGA used for this evaluation, and there is
room for further performance improvement. In addition, if we
optimize the OpenCL code to decrease the resource usage in the
design, implementing more PEs into the FPGA is possible and
this directly leads to the reduction of the execution time. And in
general, as resource usage is reduced, the operating frequency be-
comes higher because place-and-routing is easy to be performed.
This also improves the ART performance.

Table 3 shows DDR memory utilization. As described above,
163 problem size is small and all of the meshes can be stored in
an FPGA’s BRAM, and this is why the ray buffer is not necessary
because it is used when the FPGA computes a large problem that
cannot be stored in the BRAM in block-wise and time-division-
multiplexing manner described in Section 3. In this evaluation,
we used the A10PL4 FPGA board and the amount of memory
available for the board is 8 GB. According to Table 3, memory
usage for the ray buffer is dominant and is squarely proportional
to the mesh size of the problem’s boundary plane. Therefore,
this evaluation took up to 1283 problem size because the FPGA-
based ART algorithm for solving 2563 problem size requires four
times as much memory as 1283 problem size, which exceeds the
amount of memory available for the A10PL4.

5.3 Performance Evaluation of the ARGOT code
Figure 19, Fig. 20, Fig. 21, and Fig. 22 show the performance

comparison between the CPU, GPU, and FPGA implementations,
depending on the problem size. These results are execution time
per simulation step. ARGOT(CPU) / ART (CPU) represents that
both the algorithms are the CPU implementation, and the remain-
ing graph items represent each implementation in the same man-
ner. The CPU implementation is written in C and uses OpenMP
for the thread parallelization. In this evaluation, we use a single
Xeon CPU and the CPU implementation is performed with 14
OpenMP cores (threads). The GPU implementation is based on
the CPU implementation but written in CUDA.

Fig. 19 Performance comparison between FPGA, CPU, and GPU imple-
mentations. The problem size is 163.

Fig. 20 Performance comparison between FPGA, CPU, and GPU imple-
mentations. The problem size is 323.

Fig. 21 Performance comparison between FPGA, CPU, and GPU imple-
mentations. The problem size is 643.

As shown in these figures, not only the ART algorithm but also
the “Others” execution are dominant in the CPU implementation.
This part mainly solves chemical reactions and radiative heating/-
cooling of each mesh, based on the execution results of the AR-
GOT and ART algorithms. Fortunately, solving chemical reac-
tions and radiative heating/cooling of each mesh is independent
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Fig. 22 Performance comparison between FPGA, CPU, and GPU imple-
mentations. The problem size is 1283.

and this is why the GPU implementation can accelerate its exe-
cution.

However, the ART algorithm does not benefit from this situ-
ation and is still dominant in the ARGOT code even when the
GPU is used. Considering the GPU implementations in Fig. 19
and Fig. 20, the execution of the ART algorithm is not accelerated
at all. This is because SIMD-style processors, such as CPUs and
GPUs, are unsuitable for this algorithm as previously described in
Section 2.2. In addition to this, their problem sizes are too small
to sufficiently exploit the 3,584 CUDA cores of the GPU because
the requisite parallelism is not achievable. On the contrary, the
performance is worse compared to the CPU, due to the lower per-
formance of the cores themselves compared to the CPU cores,
and due to the overhead of GPU kernel activation and CPU-GPU
communication.

On the GPU, the performance of the ART algorithm improves
significantly when solving larger sized problems, such as in
Fig. 21 and Fig. 22. This is because the parallelism increases
on the order of O(N2) and computational complexity increases
on the order of O(N3), where N is the size of one side of the
mesh. As described in Section 2, the ART algorithm is based on
a ray-tracing method in a 3D space split into meshes, and this
is why the increase of the computational complexity is cubically
proportional. And, the ART algorithm solves radiation transfer
equation along parallel light-rays starting from one edge to an-
other of computational volume, which means that each CUDA
thread is mapped to each ray in two dimensions, and this is why
the increase of the parallelism is squarely proportional. In other
words, by increasing the problem size, sufficient computational
complexity and parallelism begin to appear in the GPU-based
ART algorithm, which push away the inherently unsuitable for
SIMD-type processors to perform the ART algorithm and the
overhead of offloading it to the GPU, and can fully operate all of
the CUDA cores. As a result, the performance of the GPU-based
ART algorithm becomes better due to these reasons and the per-
formance difference between the GPU and the FPGA becomes
smaller. Therefore, the performance of the GPU and the FPGA
performing the ART algorithm may be reversed because of the
further increase in the computational complexity and parallelism
at more than 2563 problem sizes. However, the experiments to
clarify this cannot be conducted due to the maximum amount of
memory in the FPGA and this is our future work.

On the other hand, the FPGA-based ART implementations
with and without GPU–FPGA DMA are always better than the
GPU-based one when solving any problem size. As reported
[8], this high performance comes from the pipelined ART al-
gorithm implemented in the FPGA. Both FPGA implementa-
tions are 1.6x better even when solving 1283 problem size that
is the fastest problem size for the GPU, and as the problem size
becomes smaller, the performance of the ART on the FPGA is
much more significant compared to the GPU. Understandably,
the problem sizes 163 and 323 are too small to use in practice.
The reason why we measured performance at such small problem
sizes is to quantitatively clarify that offloading small-sized ART
to the FPGA is much better than the GPU in order to offer strong
scalability. If the problem size is fixed and the system size is in-
creased, the problem size of each computation kernel becomes
smaller and this is why the obtained result in this research shows
good characteristics to realize that offering. Furthermore, the lat-
est FPGAs (Stratix 10) are equipped with multiple high speed op-
tical communication interfaces, such as 400 Gbps Ethernet unlike
the GPU. We expect that this strength is also suitable for offering
strong scalability and have plans to integrate such communication
feature into the ART algorithm in future work.

Some readers may also wonder if it would be better to offload
the ARGOT algorithm to an FPGA in addition to the ART al-
gorithm. However, it has not been done for the following two
reasons. First, since the ARGOT algorithm is already sufficiently
accelerated on GPUs, it is not worth the time and effort to of-
fload such a GPU-friendly algorithm to the FPGA. Second, of-
floading to an FPGA means consuming hardware resources in
the FPGA, which could deplete resources that should be spent on
hardware to further accelerate the ART algorithm and implement
the communication mechanism described above. In addition, the
consumption of hardware resources affects the place-and-route,
which may reduce the operating frequency in some cases. For
these reasons, it is not practical to offload both the ARGOT and
ART algorithms to the FPGA, and therefore, the significance of
the proposed method of using the GPU and the FPGA together is
unassailable.

5.4 Performance Analysis of the GPU–FPGA DMA
In this section, we analyze how much the GPU–FPGA DMA

contributes to the performance improvement of the ARGOT code.
To investigate this, we measured execution time for data transfer
when offloading the ART algorithm to the FPGA that is included
in the execution time of the ART on the FPGA shown in the pre-
vious section.

Table 4 shows performance breakdown of the FPGA-based
ART of the ARGOT code between with and without GPU–FPGA
DMA. For measurement of data transfer performance with and
without the DMA, we implemented an OpenCL helper function*1

to obtain the number of elapsed cycles for the former case and
used gettimeofday function for the latter case. In Table 4,
“Comp.”, “G2F Comm.”, and “F2G Comm.” correspond the exe-

*1 We could not integrate that function into the DMA-enabled ART algo-
rithm solving 163 problem size because of unknown failure of the FPGA
toolchain.
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Table 4 Performance breakdown of the FPGA-based ART of the ARGOT code between with and without
GPU–FPGA DMA.

Mesh size DMA Comp. [s] G2F Comm. [s] Size [MB] F2G Comm. [s] Size [MB]
(32, 32, 32) w/o DMA 0.240 0.003 1 0.004 2

w/ DMA 0.241 0.002 1 0.002 2
(64, 64, 64) w/o DMA 1.920 0.015 8 0.025 16

w/ DMA 1.923 0.016 8 0.015 16
(128, 128, 128) w/o DMA 15.13 0.104 64 0.229 128

w/ DMA 15.28 0.133 64 0.118 128

Fig. 24 An ideal timing chart for an iteration within a simulation step for the ARGOT code with the 1283

problem size running on the GPU and the FPGA.

Fig. 23 Comparison of communication bandwidth between the GPU–
FPGA DMA and non-DMA (through CPU memory) [10].

cution part of the ART on the FPGA, data transfer for initialized
data of the ART, and data transfer for sending the ART execution
result back to the GPU, respectively. Therefore, this summation
is equal to the execution time of the ART on the FPGA shown
in Fig. 20, Fig. 21, and Fig. 22. Please note that a simulation step
has two or more ART executions and these measured execution
times are the total value within a simulation step.

Taking a look at the Comp. of both cases, the FPGA-based
ART without the DMA shows a slightly better performance be-
cause of the operating frequency shown in Table 2. In the GPU-
to-FPGA data transfer, the FPGA-based ART with the DMA
shows a better communication performance when transferring the
initialized data for solving 323 problem size. However, when
solving more than 643 problem sizes, its communication perfor-
mance becomes lower than in the case without the DMA. This
is because performance degradation when transferring more than
8 MiB data occurred as reported [10] and its experiment is shown
in Fig. 23. According to NVIDIA engineers, this is caused by L2
cache of P100 overflows and we are currently investigating this
reason in detail. In the opposite data movement, the FPGA-based

ART with the DMA always achieves better communication per-
formance that is shown in Fig. 23.

We discuss in detail how the developed GPU–FPGA DMA
feature improves the overall performance of the ARGOT code.
Figure 24 shows an ideal timing chart for an iteration within a
simulation step for the ARGOT code with the 1283 problem size
running on the GPU and the FPGA. The sequence of processes in
the iteration shown in the figure is repeated until the convergence
condition is satisfied. Then, when the conditions are met, the
next simulation step begins. Therefore, as described above, the
execution time of the ARGOT code shown so far is the sum of
the execution times for all the iterations. And, “ideal” means that
GPU–FPGA communication is 100% of the performance shown
in Ref. [10], and using of the GPU–FPGA DMA feature does not
cause a decrease in the operating frequency, and the FPGA’s com-
putational performance is equivalent to that of the case without
the GPU–FPGA DMA feature. In other words, the difference in
communication time between with and without the DMA feature
in Fig. 24 is the difference in the time required to communicate
the amount of data shown in Table 4 with the communication
bandwidth reported in Ref. [10].

Based on this timing chart, the analysis of the performance in
Fig. 22 and Table 4 shows the same behavior as the timing chart,
that is, the ART algorithm is still the dominant computation, ac-
counting for more than 50% of the total, while GPU-FPGA com-
munication accounts for only about 1% of the total processing.
However, unlike the ideal timing chart, the actual operating fre-
quency of the FPGA was slightly reduced by the addition of the
DMA feature. Therefore, the advantage of using the DMA fea-
ture, which was only marginally available in an ideal case, is lost.

This is an analysis for 1283 problem sizes, but even if the prob-
lem size is changed, the processing time is globally cubic propor-
tional and the ratio of the processing time breakdown remains the
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same. In terms of communication time, although the smaller the
problem size is the more beneficial for the use of the DMA fea-
ture, it cannot be the key to a significant performance improve-
ment (or it may be ineffective due to the reduction in the oper-
ating frequency) because communication time accounts for only
a small percentage of the total processing. Therefore, the bot-
tleneck of the GPU–FPGA-accelerated ARGOT code is still the
ART algorithm, and a method to accelerate this part is required.

One way to achieve this is to increase the number of PEs im-
plemented in the FPGA to increase the throughput of the ART al-
gorithm. As previously described in Section 5.2, the latest FPGA,
Intel Stratix 10, has three times as many DSPs as the FPGA used
in this experiment, and we have been developing a version with
twice as many PEs for the Intel Stratix 10. And, the execution
time of the ARGOT algorithm and Others can be expected to be
shortened by using V100 that has a better processing performance
than P100 used in the experiments.

As shown in the timing chart, the ARGOT and ART algorithms
are executed in series in the ARGOT code, but this is due to the
version of the ARGOT code that we have targeted in this study.
This means that since these algorithms are inherently indepen-
dent, they can be concurrently performed on each device using
OpenMP’s task-parallel programming. As a result, achieving a
higher simulation speed can be expected and this is our future
work.

6. Related Work

In recent years, many groups of researchers have been inter-
ested in applying FPGAs to HPC applications using OpenCL pro-
gramming frameworks [13], [14], [15].

In Ref. [13], the authors ported and optimized a subset of the
Rodinia benchmark suite to an FPGA platform using Intel FPGA
SDK for OpenCL, and compared the performance and energy ef-
ficiency of a modern CPU and a GPU. Their evaluation showed
that in most benchmarks, only energy efficiency was superior to
that of the GPU, whereas both performance and energy efficiency
were better than those of the CPU. The authors also proposed a
combined spatial and temporal blocking method for stencil com-
putation with OpenCL and built a performance model [14].

Weller et al. [15] proposed a comprehensive set of OpenCL
optimization techniques for a partial-differential equation includ-
ing dataset optimization, algorithmic enhancements, and data and
control flow tuning methods that improved performance and en-
ergy efficiency by several orders of magnitude. The authors also
compared FPGA implementations between Intel and Xilinx, and
showed that fundamentally different optimization approaches for
Intel and Xilinx are required to make OpenCL code efficient. So
far, such a comparative experiment has hardly been conducted
because the Xilinx OpenCL-based toolchain has been offered in
the last two years or three, and therefore, this research outcome
is quite interesting.

Reference [16] compared the performances and resource us-
ages between VHDL and OpenCL with the same algorithm. The
performance of the OpenCL implementation was almost equal to
that of the VHDL implementation. However, the resource usage
of the OpenCL implementation was much larger than that of the

VHDL implementation.
Reference [17] compared the irregular memory access perfor-

mance in XSBench on FPGAs using OpenCL. Intel Arria 10’s
performance was 35% slower than that of an 8-core Xeon CPU,
but the energy efficiency was 50% better than the CPU.

However, these related studies have focused on using
only the FPGA, and thus on implementing and optimizing
high-performance and energy-efficient computation units with
OpenCL capabilities. They have not considered how to enable
GPUs and FPGAs to work together. One of the important points
to enable that is to understand each device’s strength and weak-
ness and to offload appropriate computation to each device. The
absolute performance of an FPGA is not comparable with those
of other accelerators such as GPUs. Therefore, the type of com-
putation that is offloaded to an FPGA is important.

In this study, we optimized the ART algorithm on an FPGA us-
ing OpenCL because its memory access pattern is complicated to
SIMD-style processors, and performed the rest of the computa-
tion on the GPU. As a result, we achieved performance improve-
ment of the ARGOT code compared to the GPU-based imple-
mentation and we believe that realizing GPU–FPGA-accelerated
simulation is the most significant difference between our work
and previous studies.

7. Next Step: Parallelizing ARGOT Code with
Multiple GPUs and FPGAs

As discussed in Section 5, it was clarified that the performance
of the FPGA-based ART was significantly better than that of
GPUs at small mesh sizes, and slightly better than that of GPUs
even at large mesh sizes. Since these results show good prop-
erties for offering strong scaling, we plan to add a network fea-
ture to our ART on FPGA implementation to further increase the
problem size and improve performance.

In the GPU programming model, the GPU is a slave device
and has to be controlled by the host CPU, including inter-node
communication. Because of that, the CPU and the GPU must
be synchronized before the communication starts. When using a
combination of NVIDIA GPUs and Mellanox HCAs, the GPUDi-
rect for RDMA (GDR) can be used to improve communication
performance. The GDR will surely improve the bandwidth and
latency of the communication, and yet non-negligible communi-
cation overhead still exists because the communication is initiated
by the CPU.

In contrast, modern high-end FPGAs, such as the Intel Stratix
10, include several high-speed communication mechanisms that
currently support up to 100 Gbps × 4 links. Other research insti-
tutes have already been working on direct communication with
FPGAs without going through the CPU, and the high communi-
cation performance of FPGAs has been shown in Ref. [18], [19].
In addition to the above benefit of offloading the ART to the
FPGA, small communication overhead of the FPGA is another
benefit compared to the GPU because the FPGA is capable of au-
tonomously initiating such the powerful communication feature.
Given those advantages, we believe that the effective performance
of ART with multiple FPGAs can easily exceed that of ART with
multiple GPUs. Therefore, we have been studying a framework
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Fig. 25 Implementation plan when extending the proposed method to the Cygnus supercomputer.

for controlling the powerful communication capabilities of FP-
GAs from the OpenCL environment [20] and will integrate it into
our ART on FPGA implementation.

Figure 25 shows our implementation plan when extending the
proposed method to the Cygnus supercomputer that is installed
into our organization. A computation node of the Cygnus is com-
posed of the CPU, the GPU, and the FPGA as same as our ex-
perimental machine, and we will try to run the ART method on
the FPGA and the remaining computation part including the AR-
GOT method on the GPU, respectively. When the ART method is
parallelized, the ray data needs to be communicated through the
high-speed inter-FPGA direct network, and the BE described in
Section 3 will be responsible for this inter-FPGA communication.
This is why we have adopted a separate implementation of the PE
and the BE in order to facilitate the implementation of a parallel
ART algorithm using multiple FPGAs connected the inter-FPGA
network. Unlike the ray data, the mesh data is not transferred be-
tween FPGAs. The initial and post-computed mesh data of the
ART method are then sent and received between the GPU and
the FPGA on each node independently by using the GPU-FPGA
DMA function described in this paper. And meanwhile, the re-
maining computation part is parallelized on multiple GPUs the
MPI programming model that enables the GDR. For paralleliz-
ing the ARGOT algorithm, we will use the “Node Parallelization”
technique shown in Fig. 3 (c).

8. Conclusion

In this paper, we focused on accelerating a radiative transfer
simulation in astrophysics by combining the GPU and the FPGA.
The radiative transfer simulation code is based on two types of
radiation transfer: the radiation transfer from spot light and the
radiation transfer from spatially distributed light. Given the latter
radiation transfer characteristics, we decided to offload its com-
putation to the FPGA while performing the rest of the simula-
tion code on the GPU. As a result, we realized GPU–FPGA-
accelerated simulation and its performance was always better
than GPU-based implementation. In particular, as the problem
size becomes smaller, offloading the ART algorithm to the FPGA

becomes the best option to accelerate the ARGOT code. This ten-
dency is suitable for offering strong scalability and our next step
is to prove this hypothesis by implementing the ARGOT code
running on multi GPUs and FPGAs.

We have also developed the OpenCL-enabled GPU–FPGA
DMA feature for making efficient cooperative computation and
integrated it into the ARGOT code. The evaluation result showed
the communication performance between the GPU and the FPGA
when executing the ARGOT code was as reported in our previ-
ous study. However, that communication part accounts for only
2% of the ART on the FPGA itself, and therefore, we conclude
optimizing the pipelined hardware of the ART by increasing the
number of PEs and improving the operating frequency is the most
effective way in order to accelerate the ARGOT code further.
Currently, we are developing OpenCL-enabled inter-FPGA com-
munication hardware to enable the ART algorithm performed on
multiple PEs over FPGAs.

Finally, in order to address how an FPGA efficiently detects
whether GPU computation is completed, a sophisticated synchro-
nization mechanism needs to be implemented. Furthermore, we
plan to develop a software framework to comprehensively control
both of the proposed DMA functionality and such a mechanism
from a CPU in order to make cooperative GPU–FPGA computa-
tion more practical. These are our future works.
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