
Toward the Application of Uncertainty Handling
Methods to the Continuous Software Engineering

Hiromasa Inoki
Kyushu University

Fukuoka, Japan
inoki@f.ait.kyushu-u.ac.jp

Kenji Hisazumi
Kyushu University

Fukuoka, Japan
nel@slrc.kyushu-u.ac.jp

Takahiro Ando
Kyushu University

Fukuoka, Japan
ando.takahiro@f.ait.kyushu-u.ac.jp

Tsuneo Nakanishi
Fukuoka University

Fukuoka, Japan
tun@fukuoka-u.ac.jp

Akira Fukuda
Kyushu University

Fukuoka, Japan
fukuda@f.ait.kyushu-u.ac.jp

Abstract—Continuous software engineering has attracted at-
tention because the scale of software is large and the frequency
of changing specifications in accordance with the social situation
and needs is high. In order to cope with uncertainties in con-
tinuous software development, a lifecycle-oriented architecture
is required. It realizes the feedback between operational infor-
mation and system design and ensuring the traceability of the
operational information and the uncertainties. The framework
for this uncertainty handling method has been proposed but
the process of applying it to continuous software engineering
is not defined. Therefore, we aim to clarify the detailed process
and issues through a case study. We apply the method to the
development of a parking lot recommendation system called
”Free Parking System (FPS)”.

Index Terms—uncertainty, continuous software engineering,
smart mobility

I. INTRODUCTION

In recent software development, continuous software engi-
neering(CSE) [1] has attracted attention because the scale of
software is large and the frequency of changing specifications
in accordance with the social situation and needs is high.
However, CSE is currently focusing on methods for speeding
up iterations, such as Continuous integration and Continuous
Delivery, and does not apply a method for appropriately
managing feedback in iterations.

A lifecycle-oriented architecture realizes the feedback be-
tween operational information and system design by analyzing
which operational information should be collected to deter-
mine the uncertainties identified in the development stage, and
ensuring the traceability of the operational information and the
uncertainties. This makes it possible to cope with uncertainty
and facilitate continuous software development.

Although a framework for this uncertainty handling method
has been proposed, the process of applying it to actual continu-
ous software engineering is not well defined. Therefore, in this
paper, we aim to clarify the detailed process and issues when
applying this method to actual continuous system development
through case study. As a case study, we apply the method to the
development of a parking lot recommendation system called
”Free Parking System (FPS)”.

The rest of paper is organized as follows: Section 2 in-
troduces existing researches about the definition of uncer-
tainty, related modeling notations, and the uncertainty handling
method. In Section 3, we propose the process of applying the
uncertainty handling method to continuous software engineer-
ing. Section 4 describes a case study conducted to demonstrate
the proposed method. Section 5 describes some discussions,
and Section 6 summarizes this paper.

II. RELATED WORKS

A. Continuous Software Engineering(CSE) [1]

CSE is a comprehensive term that describes several aspects
of iterative software application development, including con-
tinuous integration, continuous delivery, continuous testing,
and continuous deployment.

1) Continuous integration: Continuous integration refers
specifically to the process of steadily adding new code com-
mits to source code. Each team member to submit work as
soon as it is finished and for a build to be conducted with each
significant change. Usually, a certain baseline of automated
unit and integration testing is performed to ensure that new
code does not break the build. This way developers know
as soon as they’re done if their code will meet minimum
standards and they can fix problems while the code is still
fresh in their minds. An important advantage of continuous
integration is that it provides developers with immediate
feedback and status updates for the software they are working
on.

2) Continuous delivery: Continuous delivery builds on con-
tinuous integration and as with continuous integration, each
code commit is automatically tested at the time it is added.
In addition to the automated unit and integration testing,
a continuous delivery system will include functional tests,
regression tests and possibly other tests, such as pre-generated
acceptance tests. After passing the automated tests, the code
changes are sent to a staging environment for deployment.

3) Continuous testing: Continuous testing adds manual
testing to the continuous delivery model. With continuous

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 8



testing, the test group will constantly test the most up-to-
date version of available code. Continuous testing generally
adds manual exploratory tests and user acceptance testing.
This approach to testing is different from traditional testing
because the software under test is expected to change over
time, independent of a defined test-release schedule.

4) Continuous deployment: Continuous deployment adds
more automation to the process to the software development
process. After passing all the automated delivery tests, each
code commit is deployed into production as soon as it is
available. Because changes are delivered to end-users quickly
and without human intervention, continuous deployment can
be seen as risky. It requires a high degree of confidence both in
the existing application infrastructure and in the development
team.

B. Definition of uncertainty

The paper [2] defined that uncertainty is the unresolved
information needs that the developers identify and share,
which is definitely needed for developing the target system. In
addition, the uncertainty must be defined so that it can clearly
judge whether or not the expected information is obtained.

C. D-Case [3]

D-Case(Dependability Case) is a notation for goal-oriented
analysis, is used to make a clear Assurance Case. Basically,
the following five symbols are used in D-Case.

• Goal: Proposition to discuss for the system
• Strategy: Discussion strategies for dividing goals into

subgoals
• Solution: Evidences finally guaranteeing that a refined

goal has been achieved
• Context: Informations to be considered in discussing the

goal
• Undeveloped Goal: Goals that are not given evidence and

can not be further refined
• Monitor: Operational information to guarantee the goal
The proposed method described later uses D-Case because

D-Case is suitable for the method which aims to resolve
uncertainties by using operational information.

D. Development Process for Realizing Feedback of Opera-
tional Information to Request and Design

The paper [4] proposed a development method for realizing
feedback of operational information to request and design. In
this method, the uncertainties found at the request and design
stage are focused on, and they are fixed by using the opera-
tional information. By modifying the model based on the fixed
result of uncertainty, realize the change of request and design
smoothly. In the proposed method, this development method
is used to realize feedback between operational information
and requirements and design.

The procedure of the method consists of three steps.

STEP1: Making uncertainty table
The first step is making an uncertainty table based on

the request specification. This table summarizes the
options, influence ranges, dependency relationships,
and fixed results on each uncertainty.

• Options: Solution candidates for each uncer-
tainty

• Influence ranges: Parts of the model diagram that
may change due to each uncertainty

• Dependency relationships: Dependence between
uncertainties

• Fixed results: Name of fixed option(If it has not
fixed, leave it blank)

STEP2: Analysis of operational information

• Making model of uncertainty:
At the beginning of STEP2, the model of
uncertainty is made by using notation such as
GSN or D-Case. The goal of it is properly
resolving of each uncertainty. Some goals can
be given ”Solution” at design and development
stage, but others cannot. Such a goal is given
”Monitor”, list of the operational informations
which are necessary for achieve the goal.

• Making table of operational informations:
The operational informations, described as
”Monitor”, are summarized in this step. The
table shows what the corresponding uncertainty
is and whether the function of collecting
operational informations is implemented.

STEP3: Improvement plan analysis
After starting operation of the system, uncertainties
are traced using the obtained operational information
and consider fixing them based on the table of
operational informations. When an uncertainty
is fixed, feedback is realized by changing the
corresponding part of the request and design model
based on the uncertainty table.

III. PROPOSED METHOD

The current continuous software engineering does not apply
an appropriate method of managing feedback in iterations of
development. In order to smoothly feed back the obtained op-
erational information to requirements and design, we propose
the process of applying the uncertainty handling method to
countinuous development. The process is shown in Fig. 1.
First, create a D-Case about the application and find out
uncertainties. At this time, traceability between operational
information and requirements / design is secured based on
uncertainty handling method. Then, classify each uncertainty
depending on whether it is resolved in the simulation phase
or the operation phase. When classification is over, start
the simulation phase. Resolve the uncertainty that can be

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 9



fixed by simulation and improve the system. After resolving
uncertainties by simulation and improving the system as much
as possible, start the operation phase. Resolve the remaining
uncertainties by operational information and further improve
the system.

By repeating this process of resolving the uncertainties and
improving the model using the operational information in each
phase, it contributes to the continuous software engineering
based on the operation.

Create D-Case 
(Find uncetainties and establish 
traceability between operation 

and requirements / design)

Classify 
uncertainties

Resolve some 
uncertainties in 

simulation

Resolve remaining 
uncertainties in 

operation

Improvement of 
requirements 

and design Fixed result

Fixed result

Fig. 1. The overall picture of the proposed method

When using this method, it is necessary to make D-Case.
The procedure for making D-Case is as follows.

1) ”The application operates properly” is set as the top
”Goal.”

2) Divide Goal into detailed sub goals according to the
”Strategy”(how to divide the goal). The prerequisite
information is connected with each goal as ”Contexts”
when describing the goal.

3) Repeat the operation of 2 until a goal cannot be divided
anymore.

4) When a goal that can not be divided anymore is found,
information that guarantees the goal is described as
”Monitor” and connected with the goal. For a goal
that does not have Monitor, add a mark indicating
”Undeveloped.”

Monitors include information necessary for resolution of
uncertainties that are unknown at the requirement analysis,
design, and implementation phase. They are divided according
to which phase each information is obtained. In order to
recognize the division, each Monitor is classified visually
by assigning unique color it. This coloring method makes it
easier for developers to know what information to note when
simulating or operating.

Fig. 2 shows an example of creating a D-Case. The D-
Case set ”The system is grasping the vacancy of the parking
lot” as top ”Goal.” ”The system gets sufficient data from
application users and sensors” is connected with the goal as
”Context” because it is prerequisite information. The goal is

divided into two goals according to the ”Strategy” which says
”Divide by conditions.” Each goal is divided again into two
goals according to strategy ”Divide by elements.” Since further
division cannot be found, information to guarantee each of
these four goals is described in ”Monitor” and connected.
At last, each Monitor is classified by assigning color it. The
information obtained in the simulation phase is colored with
orange and in the operation phase is colored in blue.

Fig. 2. D-Case example for parking recommendation application

IV. CASE STUDY

For the case study, we use parking recommendation appli-
cation which is using a system named ”Free Parking System
(FPS)” [5]. This system is a parking recommendation system
that targets a busy parking lot like a free curbside parking.
The system has three major features as follows.

1) It consists of a smartphone application and a server and
does not necessarily need a sensor.

2) Priority is given to shortening the total travel time for
the entire user, not to shortening the travel time of
individuals.

3) It also considers the existence of drivers who do not use
the system.

We apply uncertainty handling method to this system. The
created D-Case model is shown in Fig. 7. ”G” means Goal,
”S” means Strategy, and ”C” means Context in the figure.
In the applying, we set ”The parking assignment application
operates properly” as top goal(G1) at first, and divided it into
subgoals according to Strategy ”Divide by function(S1).” After
repeat of this procedure, we connected Monitor to the goal
which is judged that it cannot divide any further. If it doesn’t
need Monitor, a diamond mark which means ”Undeveloped”
has been attached. Each Monitor describes the information
necessary to achieve the goal, and it is colored orange or
blue. The informations described in orange Monitors can be

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 10



confirmed at the simulation phase, and in blue Monitors can
be confirmed at the operation phase.

FPS does not require a sensor, but we think that the accuracy
of the parking assignment can be further improved by using
several sensors. Therefore, ”There is sufficient data from the
sensor(G18)” exists in the subgoal to achieve the goal ”The
system grasps the vacancy information of the parking lot(G9).”

As a result of creating the D-case as described above, we
were able to discover some uncertainties included in FPS.
Among them, this paper focuses on ”sufficient number of
sensors(G22).” We resolved the uncertainty through simulation
using SUMO (Simulation of Urban MObility) [6].

A. Simulation Settings

The simulation was carried out using map data of Ito
Campus of Kyushu University. The three parking garages were
set as three stories each. We set the number of vehicles visiting
campus based on traffic survey [7] every hour from 7 to 18.
The number of vehicles is shown in Fig. 3. Each car was set
to go to one of the three parking garages, and the parking
assignment was done in the floor unit.

Fig. 3. Number of vehicles visiting Ito campus

B. Evaluation: sufficient number of application users

By changing the proportion of vehicles to which the parking
recommendation application is applied, ”Percentage of appli-
cation users in the whole driver” is changed, and ”Percentage
of parking assignment error to application users” per hour
is confirmed through simulation. ”Parking assignment error”
means that the application user can not park as planned. There
are two kinds of errors floor error and building error. The
floor error makes users change the floor. The building error
makes users change the parking garage. These have different
importance, but this time we treat them as the same error.
The result is shown in Fig. 4. ”Parking ratio” means what
percentage of the parking lot is parked. Looking at the solid
line representing the simulation result at each user percentage,
the percentage of parking assignment error is the highest at 9

a.m. in most user percentages. For the sake of clarity, the graph
focusing on only the percentage of parking assignment error
at 9 a.m. is shown in Fig. 5 . Looking at 9 a.m., we can see
that when the percentage of users exceeds 70% of all drivers
(red line in graphs), the error rate falls below 50%. From
this, we concluded that ”70% of all drivers” is appropriate
for ”sufficient number of application users.”

Fig. 4. The relationship between user percentage and parking assignment
error rate

Fig. 5. The relationship between user percentage and parking assignment
error rate at 9 a.m.

C. Evaluation: sufficient number of sensors

”Number of sensors installed in the parking garage” was
changed, and ”Percentage of parking assignment error to ap-
plication users” every hour was confirmed through simulation.

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 11



”Parking assignment error” means that the application user
can not park as planned. There are two kinds of errors: floor
error and building error. The floor error makes users change
the floor. The building error makes users change the parking
garage. These have different importance, but this time we treat
them as the same error.

In the simulation, sensors were installed to three parking
garages in four ways: only on each 1st floor, each 1st and 2nd
floor, all the floors, and no sensors. Application user rate was
30% in this simulation.

The result is shown in Fig. 6. When the sensor was installed
only on the first floor, the percentage of parking assignment
error rapidly increases at 9 a.m. On the other hand, when
the sensor was installed on the first and second floor, the
percentage rapidly increases at 10 a.m. This result is because
cars park from the first floor in order, it is considered that
the percentage of parking assignment error is increasing at
the time when parking starts on the floor where sensors are
not installed. Regarding the maximum rate of the parking
assignment errors, the parking assignment error rate is less
than 50% when installing sensors on the 1st and 2nd floor.
From this result, we concluded that ”install sensors on the
1st and 2nd floor” is appropriate for ”sufficient number of
sensors.”

Fig. 6. The relationship between the floors on which the sensor is installed
and parking assignment error rate

V. DISCUSSION

A. Case study achievements

In this case study, the D-Case diagram clarified uncertainties
involved in system development. In addition, we clarified in
the Monitor what operational information is necessary to re-
solve each uncertainty. The color coding of Monitor indicates
the timing to focus on each Monitor. Then, the simulation was
performed, and the uncertainty could be resolved smoothly
using the operational information obtained by the simulation.

B. Continuous verification of the proposed method

Two simulation-related uncertainties were solved through
case study, but this is not sufficient to verify the application
of the method to continuous software engineering, so it is
necessary to continue the case study, including operation
phase. Specifically, we will confirm what is uncertain again
due to changes in the simulation environment settings such as
the number of users and building settings, and clarify what
information is necessary for that.

C. Automate processes by clarification of criteria

Each Monitor in D-Case is color-coded according to when
the operation information can be obtained. However, this
classification criterion is still ambiguous, so its clarification is
necessary. If this clarification is realized, it will be possible to
automate classification. The resolving criteria for uncertainties
are also needed because it probably enables automation of the
improvement process of requirements and design based on
operation information. Specifically, information such as the
conditions for automatically determining uncertainty, priority,
and weight will be added to the model by connecting to
Monitor. In addition, it will provide a means to acquire infor-
mation described in Monitor. Uncertainty will be determined
by the information described in Monitor and the information
connected to it.

D. Responding to changes in uncertainty and its fixed result

It is difficult to truly determine uncertainties in continu-
ous software engineering. The uncertainties that have been
determined once may become indeterminate again or it may
often be better to change the ”Fixed results.” Furthermore, the
number of uncertainties may increase or decrease. In order
to cope with these problems, tools for managing uncertainties
will be needed. We intend to model uncertainty cancellation
criteria in D-case notation, evaluate them based on continuous
testing and obtained Monitor information, and make decisions
again.

E. Uncertainty about design

Uncertainty about design is also an issue. We have ana-
lyzed the uncertainty about the requirement that ”The parking
recommendation application operates properly,” but do not
consider the uncertainty about the design. It is also necessary
to verify design uncertainty and cases where uncertainty in
requirements affects the design.

VI. CONCLUSION

This paper has summarized the definition of uncertainty and
uncertainty handling method, and proposed the application of
the method to continuous software engineering. As a case
study, the uncertainty handling method was applied to the
development of the parking lot recommendation system called
FPS. Through this case study, we clarified uncertainty by
making D-Case diagram, classified Monitor based on the
timing when operational information of Monitor is obtained,
resolved uncertainty by simulation, and showed the process

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 12



of applying the uncertainty handling method for continuous
software engineering.

Future works of this research are to continue applying the
method to continuous software engineering, clarify the criteria
of Monitor classification and uncertainty determination, cope
with changes of uncertainties and their fixed result, and
consider design uncertainty.

ACKNOWLEDGMENT

This work is supported by JSPS KAKENHI Grant
No.15H05708.

REFERENCES

[1] Bosch, J.: Continuous Software Engineering, Switzerland, Springer,
2014.

[2] Nakanishi, T., Ma, L., Hisazumi, K., and Fukuda, A.: A Framework
to Manage Uncertainty in System Development, IPSJ SIG Technical
Report, pp.1-6, 2014.

[3] Kelly, T., and Weaver, R. ,: The Goal Structuring Notation A Safety Ar-
gument Notation, Proceedings of the dependable systems and networks
2004 workshop on assurance cases, 2004.

[4] Ishibashi, S., Hisazumi, K., Nakanishi, T., and Fukuda, A.: Establishing
Traceability between Requirements, Design and operational informa-
tion in Lifecycle-Oriented Architecture, Advanced Applied Informatics
(IIAI-AAI 2016), 5th IIAI International Congress on. IEEE, 2016.

[5] Hakeem, A., Gehani, N., Ding, X., Curtmola, R., and Borcea, C.: On-
The-Fly Curbside Parking Assignment, MobiCASE’16 Proceedings of
the 8th EAI International Conference on Mobile Computing, Applica-
tions and Services, pp.1-10, 2016.

[6] German Aerospace Center, Institute of Transportation Systems: Simula-
tion of Urban MObility, http://sumo.dlr.de/index.html, accessed 2018-02.

[7] Ministry of Land, Infrastructure and Transport: Heisei 27th Nationwide
Road/Street Traffic Situation Survey General Traffic Survey Total Sched-
ule, http://www.mlit.go.jp/road/census/h27/, accessed 2018-04.

[8] Chen, C., Hisazumi, K., Katahira, M., Nishihara, Y., Kawai, A., Nakan-
ishi, T., and Fukuda, A.,: Requirement, Deployment, and Design Model
Including Uncertainty, Embedded Systems Symposium 2013, pp.75-80,
2013.

[9] Bishop, P., and Bloomfield, R.,: A methodology for safety case de-
velopment, Industrial Perspectives of Safety-Critical Systems. Springer
London, pp.194-203, 1998.

[10] Kelly, T.,: Arguing Safety, a Systematic Approach to Managing Safety
Cases, PhD Thesis, Department of Computer Science, University of
York, 1998.

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 13



Fig. 7. D-Case model for parking assignment application

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2017 Information Processing Society of Japan
14


