
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

NS record History Based Abnormal DNS traffic Detection
Considering Adaptive Botnet Communication Blocking

Hikaru Ichise1,2,a) Yong Jin3,b) Katsuyoshi Iida4,c) Yoshiaki Takai4,d)

Received: May 10, 2019, Accepted: November 7, 2019

Abstract: DNS (Domain Name System) based name resolution is one of the most fundamental Internet services for
both of the Internet users and Internet service providers. In normal DNS based name resolution process, the cor-
responding NS (Name Server) records are required prior to sending a DNS query to the authoritative DNS servers.
However, in recent years, DNS based botnet communication has been observed in which botnet related network traffic
is transferred via DNS queries and responses. In particular, it has been observed that, in some types of malware, DNS
queries will be sent to the C&C servers using an IP address directly without obtaining the corresponding NS records
in advance. In this paper, we propose a novel mechanism to detect and block abnormal DNS traffic by analyzing the
achieved NS record history in intranet. In the proposed mechanism, all DNS traffic of an intranet will be captured and
analyzed in order to extract the legitimate NS records and the corresponding glue A records (the IP address(es) of a
name server) which will be stored in a white list database. Then all the outgoing DNS queries will be checked and
those destined to the IP addresses that are not included in the white list will be blocked as abnormal DNS traffic. We
have implemented a prototype system and evaluated the functionality in an SDN-based experimental network. The
results showed that the prototype system worked well as we expected and accordingly we consider that the proposed
mechanism is capable of detecting and blocking some specific types of abnormal DNS-based botnet communication.

Keywords: Botnet communication, DNS, NS record, glue A record, direct outbound query, NS history database

1. Introduction

Botnet, a malicious logical network constructed by cyber at-
tackers, has become one of the critical security threats in cy-
berspace [4], [5]. Once a computer is infected by a bot program,
which is a kind of malware and also a core program of a bot-
net, the bot-infected computer basically attempts several kinds
of cyber attacks such as Advanced Persistent Threat (APT), Dis-
tributed Denial of Service (DDoS), spreading spam mails, ran-
somware attacks, phishing [6], [7], etc. In general, the botnet-
based cyber attack can be divided into infection, botnet commu-
nication and attack. First, a computer in an intranet, which is an
internal computer network within an organization such as univer-
sities, companies and governmental departments, etc., somehow
gets infected by a bot program such as through web browsing,
spam mail, or clicking a phishing site by mistake. Then, the bot
program sends probes to its corresponding Command and Con-
trol (C&C) server to identify its existence as well as to update
its status. After collecting a number of bot-infected computers,

1 Graduate School of Information Science and Technology, Hokkaido Uni-
versity, Sapporo, Hokkaido 060–0814, Japan

2 Technical Department, Tokyo Institute of Technology, Ota, Tokyo 152–
8550, Japan

3 Global Scientific Information and Computing Center, Tokyo Institute of
Technology, Ota, Tokyo 152–8550, Japan

4 Information Initiative Center, Hokkaido University, Sapporo, Hokkaido
060–0811, Japan

a) hichise@nap.gsic.titech.ac.jp
b) yongj@gsic.titech.ac.jp
c) iida@iic.hokudai.ac.jp
d) takai@iic.hokudai.ac.jp

the C&C server can instruct them to perform several kinds of
cyber attacks. Here, we refer to the communication between a
bot-infected computer and the C&C server, which is the most im-
portant information transmission in a botnet-based cyber attack,
as botnet communication. With regarding the above workflow,
in this research we target botnet communication as a means to
analyze and detect botnet-based cyber attacks.

Many recent reports indicate that DNS protocol [8], [9] has be-
come used in botnet communication [10], [11], [12]. DNS proto-
col has been mainly used for name resolution, such as translating
hostnames to IP addresses on the Internet. However, the increase
of Internet services has led to wide uses of some minor records
such as DNS TXT record. In Ref. [13], Xu et al. empirically
showed that cyber attackers can effectively hide botnet commu-
nication by using a DNS-based stealthy messaging system that
uses hash functions to encode the contents. In Refs. [14], [16],
Ichise et al. analyzed DNS packet traces to differentiate the nor-
mal and abnormal uses of DNS TXT records. Consequently, DNS
traffic which so far has been considered to be secure network traf-
fic has also become a target of being monitored communication
since network administrators cannot simply block all DNS traffic.
Thus, it is important for the network administrator to detect and
block DNS-based botnet communications.

Figure 1 shows a general DNS based name resolution process
with a deployed DNS full resolver in an intranet. A client com-
puter first sends a DNS query to the DNS full resolver for request-

Preliminary versions of this paper have been presented in Refs. [1], [2],
[3].

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 1 An example of normal DNS name resolution.

ing name resolution. Then the DNS full resolver performs the
name resolution and replies back the DNS response to the client
computer. In the name resolution process, the DNS full resolver
achieves the corresponding DNS NS (Name Server) records and
glue A records of the authoritative DNS servers prior to sending
DNS queries to them. Here, a NS record is used for indicating
the hostname of an authoritative name server of the queried do-
main name, and its corresponding glue A record means the IP ad-
dresses of the authoritative name servers. In almost of all cases,
the internal clients rely the DNS name resolution on the DNS full
resolvers deployed in the intranet.

On the other hand, botnet communications may not follow the
same process [17], [18] as we will explain in the next section.
Figure 2 shows a typical anomalous DNS traffic such as a type
of botnet communication using DNS protocol. In this example, a
client computer sends a DNS query to the Internet directly with-
out using the DNS full resolver deployed in the intranet. We call
this type of DNS name resolution request as a direct outbound
DNS query. However, there also exist some exceptions that this
type of direct outbound DNS Q&R can be used for normal use
cases. For example, in the case of using public DNS servers such
as Public DNS operated by Google [20] and/or Cloudflare [21], a
client computer may send direct outbound DNS queries to the
public DNS servers without using the DNS full resolvers de-
ployed in the intranet. Therefore, in the proposed system, we also
consider these exceptions and allow the computers in the intranet
use the public DNS servers.

In summary, DNS name resolutions are supposed to be per-
formed by DNS full resolvers in almost all normal cases, whereas
it is not general in abnormal use cases. Based on this observation,
we propose a detection and blocking method of anomalous DNS
traffic. Our key idea is that normal name resolution obtains the
NS and glue A records of the corresponding authoritative DNS
servers prior to sending DNS queries to them while bot programs
send direct outbound DNS queries without obtaining the NS and
glue A records.

In this paper, we focus on detecting and blocking anomalous
DNS traffic by analyzing the achieved NS records history. Based
on our proposed method, we constructed a prototype system for
detecting and blocking anomaly DNS traffic using virtual ma-
chines. In particular, for detecting a botnet communication that
uses direct outbound DNS queries, we analyze the achieved NS
record and the corresponding glue A record from our campus net-
work and created a legitimate NS record history database. We

Fig. 2 An example of abnormal DNS name resolution.

evaluated the features of the prototype system and also performed
some preliminary performance evaluations using a local experi-
mental network. According to the evaluation results, we con-
firmed that the prototype system worked effectively as it was ex-
pectable to deploy our proposed method in real network environ-
ment.

2. DNS-based Botnet Communication and Re-
lated Work

As stated in the Introduction, the objective of our research is
to construct a system for detecting and blocking DNS-based bot-
net communication. In this section, we introduce three types of
DNS-based botnet communication; the way of using via-resolver
DNS query, the way of using direct outbound DNS query and the
way of using indirect outbound DNS query. Then we introduce
some related researches.

2.1 Three Types of DNS-based Botnet Communication
We find out that there are three types of botnet communica-

tion using DNS; via-resolver DNS query, indirect outbound DNS
query, direct outbound DNS query. The way of using via-resolver
DNS query relies on DNS full resolver completely. In Ref. [22],
the authors have reported the uses of DNS TXT records in botnet
communication using via-resolver DNS query. Next, botnet com-
munication using indirect outbound DNS queries is detected in a
bot program named Morto [23], which uses direct outbound DNS
queries after identifying its C&C server. Figure 3 (a) shows that
a bot-infected computer obtains the IP address of C&C servers
by name resolutions via DNS full resolver at first, then sends
DNS queries to a C&C server directly. On the other hand, a bot
program named Feederbot never uses DNS full resolvers, which
is called a direct outbound DNS query. Figure 3 (b) shows that
the IP address of C&C servers are hard-coded in the bot pro-
gram so that the bot-infected computer can send DNS queries
to C&C server using the IP address directly. These two types
of DNS-based botnet communication which are used in Morto
and Feederbot, never obtain legitimate NS records and the corre-
sponding glue A records before sending DNS queries to the C&C
servers. In this paper, we define “legitimate NS record”, “nor-
mal DNS query and response” and “abnormal DNS query and
response” as follows:
• Legitimate NS record: NS records obtained from authorita-

tive DNS servers.
• Normal DNS query and response (Q&R): DNS queries sent

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 3 Direct & indirect outbound DNS queries.

Fig. 4 NS record process.

to DNS full resolver or authoritative DNS servers. DNS
responses received from DNS full resolver or authoritative
DNS servers.

• Abnormal DNS query and response (Q&R): DNS queries
sent to other than DNS full resolver and authoritative DNS
servers. DNS responses received from other than DNS full
resolver and authoritative DNS servers.

Figure 4 illustrates DNS NS record resolution process in de-
tail. First, the client sends a DNS query to the DNS full resolver.
DNS full resolver then obtains NS record of all authoritative name
severs from the root server. Finally, the DNS full resolver obtains
the destination IP address of “www.example.com” and notifies
the destination IP address to the client.

It should be noted that DNS full resolvers and authoritative
DNS servers can also be compromised and reply wrong DNS re-
sponses. In this paper, we keep the point on the normal DNS
name resolution process by focusing on obtaining legitimate NS
records prior to sending DNS queries. Therefore, the case of a
compromised DNS full resolver and authoritative DNS servers
is beyond the scope of this paper and we omit the detailed dis-
cussion. Accordingly, we consider that if we can collect obtained
legitimate NS records as well as the corresponding glue A records
and check the destination IP addresses of all the DNS queries in
the intranet, it will be possible to detect and block these types of
DNS-based botnet communication.

Fig. 5 In Ref. [16]. The number of direct outbound DNS.

Fig. 6 In Ref. [16]. The number of indirect outbound DNS.

2.2 Related Work
In recent years, many securities related types of the research re-

ported that the the DNS protocol had been widely used for botnet
communication as well as malware attacks [15], [16], [17], [18],
[19], and we introduce some DNS based related solutions in the
following.

In Ref. [15], the authors surveyed and categorized the existing
researches about DNS-based botnet detection. The major topic
of this paper is to introduce the detection method using a DNS
mechanism, it also explains some existing researches about bot-
nets that use the DNS protocol.

In Ref. [16], the authors focused on the fact that DNS TXT
records might be used for botnet communication and categorized
the uses of a DNS TXT record in order to differentiate the nor-
mal use of a DNS TXT record and the use of a DNS TXT record
in a botnet communication. From the analysis results, obtain-
ing all DNS traffic from a border router in our university, Fig. 5
in Ref. [16] showed the number of malicious destination IP ad-
dresses in direct outbound DNS queries is 5 per day, that is,
the average hit rate is about 8%. In addition, Fig. 6 in Ref. [16]
showed the rate of the malicious destination IP address in an in-
direct outbound DNS query is 22%. The authors confirmed that
besides the malicious uses of a DNS TXT record, there were also
several normal uses so that it was necessary to detect and block
malicious uses effectively.

In Ref. [17], the authors analyzed 14 million DNS TXT queries
and found the bot program named “Feederbot” which has to query

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

the C&C server directly, that is to say, bypassing the DNS full re-
solver. However, none of the existing researches considered the
role of DNS NS (Name Server) records in the name resolution
process. Moreover, as all reports never discussed direct/indirect
outbound DNS queries so far, it was difficult to detect and block
only DNS-based botnet communications. Thus, we tend to create
automatic detecting and blocking system for DNS-based botnet
communications by constructing the legitimate NS records his-
tory database for monitoring all DNS queries.

In Ref. [18], the authors referred to DNS tunneling technology
in which the malicious contents are included in the labels of do-
main names being used as a part of DNS queries. To detect ma-
licious DNS tunneling traffic, they discussed two separated cate-
gories, payload analysis, and traffic analysis. In payload analysis,
they analyzed tunnel indicators from the payload of a DNS query
and response packets with focusing on Domain Generation Algo-
rithms. In traffic analysis, they analyzed over time in DNS traffic.

In Ref. [19], the authors proposed a real-time detection method
of tunneling of data over DNS using machine learning techniques.
The authors also implemented and preliminarily evaluated the
proposed system. Since this method is based on machine learn-
ing, the performance will heavily depend on the learning datasets.

As we can see from the above DNS based related researches,
many of them only focused on DNS traffic analysis and failed
to consider the DNS name resolution process. In this paper, we
purpose to solve this issue in conventional solutions.

3. Proposed System

In order to detect and block DNS-based botnet communica-
tions, we first construct a database of whitelisted DNS NS and
glue A records. This list includes the DNS NS records of domain
names achieved from all received normal DNS responses such as
domain names “.com” and “.net” and their corresponding glue
A records. We also include other well-known IP addresses for
specific applications such as update servers of anti-virus software
and public DNS servers to which the internal computers may send
DNS queries directly. When a client sends direct outbound DNS
queries to the listed servers we consider them as normal, while to
those not listed in the white list we will drop the packets and log
them down for further investigations. We use Software Defined
Network (SDN) technology, specifically OpenFlow switch and
controller, for detecting and blocking the DNS traffic in the pro-
posed system. When a DNS query packet is “packet in” from the
switch to the controller, the controller queries the aforementioned
white list database for the destination IP address. The controller
will then send instructions to the switch to drop or allow the DNS
query packet. Figure 7 shows the brief workflow of the proposed
system.

3.1 Design of NS Record History Database
Figure 8 illustrates the detailed flow chart of NS DB oper-

ations. First, we construct the NS DB from the corresponding
DNS queries and responses. One of the simple methods is to ob-
tain all DNS traffic from an intranet and pick out legitimate DNS
NS records as well as the corresponding glue A records. For the
simplicity, we create query DB first for storing all normal DNS

Fig. 7 Overview of the workflow in the proposed system.

Fig. 8 The workflow of NS DB creation program.

queries. Next, we construct the NS DB using all the achieved
normal DNS responses to the queries stored in the query DB. We
captured all DNS traffic in pcap format using tcpdump program
and analyzed them in order to construct the NS DB. Specifically,
in the pcap file, if the line is a DNS query the analysis program
performs the procedure for a DNS query otherwise for a DNS re-
sponse. In the DNS query procedure, a new entry will be added to
query DB while in the DNS response procedure a new entry will
be added to NS DB. Note that some responses have NS records
with the corresponding glue A records while some others have
NS records only. In case of where the DNS responses only have
NS records (such as when an out-of-bailiwick domain name is
used for NS record), only the NS records will be registered to
the NS DB. Then the analysis program continuously monitor-
ing DNS traffic. If DNS queries for the NS records are sent and
the corresponding responses are received, the glue A records ob-
tained from the responses will be registered as glue A records in
NS DB. Thus, we defined glue A record as glue A record in an
additional section and A record for out-bailiwick NS record in an
answer section. We set the following column of NS DB.
• querytime: Received time of DNS query in milliseconds
• queryid: Message id of the query
• queryname: FQDN and record type of the query
• res time: Received time of DNS response in milliseconds
• zname: Zone name of authoritative name server

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 1 Configuration of MariaDB.

querytime queryid queryname res time zname nsttl nsfqdn glueAttl glueA del time
decimal(20,0) int varchar(10000) decimal(20,0) varchar(1000) decimal(20,0) varchar(1000) decimal(20,0) varchar(1000) decimal(20,0)

• nsttl: TTL of NS record
• nsfqdn: FQDN of authoritative name server
• glueAttl: TTL of glue A record
• del time: Expected expire time in milliseconds calculated

through nsttl or glueAttl
Table 1 showed as configuration of MariaDB.

3.2 Overview of SDN and Ryu
SDN technology [24], [25] refers to a new approach for net-

work programmability by providing the capacity to initialize,
control, change and manage network behavior dynamically via
open interfaces. SDN introduces the abstraction of the data for-
warding plane from the control plane. What this means is that
SDN allows a network engineer to develop a program that can
control, inspect and/or modify the flow of all network traffic.
With this ability, we can check if the packets are sent from the
client is a DNS query and how to handle them. SDN is able to
perform this task by decoupling the standard routine of a switch
or router into 3 separate planes: application, control, and data
plane.

The lowest level, the data plane, has no logic. Logical deci-
sions are made in the control plane. The data plane is in charge
of sending and receiving frames based on instructions received
from the control plane. The middle level, the control plane, is a
black box that provides an interface from the application plane to
the data plane. The key takeaway is that the control plane’s logic
can be logically centralized. This makes the management and
scalability of an intranet easy. The highest level, the application
plane, is where network engineers write a program to control the
network traffic. We will write a program here to inspect, deter-
mine if the client’s query has legitimacy and drops the packet if
it is not normal by sending a dropped signal to the control plane.
There are many SDN APIs available out on the Internet such as
Floodlight [26]. In this paper, we write the controller program us-
ing Python [27] based SDN solution Ryu [28] which supports the
OpenFlow protocol.

3.3 System Architecture
We use the following terminologies in the description of the

proposed system:
• Query destination IP Address: The destination IP address to

which the client sends a DNS query.
• Database: For storing the legitimate DNS NS and glue A

records as well as normal public DNS servers.
Basically, we use SDN technologies for controlling the pack-

ets in the proposed system. All packets will be transferred to the
OpenFlow switch and the OpenFlow controller decides whether
or not pass through the specific packets. In the proposed system,
the destination IP address of a packet will be checked in the NS
record history database. Figure 9 shows a simple system archi-
tecture of the proposed method by using SDN technologies. We
describe the basic procedure of the proposed system using an ex-

Fig. 9 The detailed procedure of the proposed system.

ample in which a client sends a direct outbound DNS query to the
Internet in the following.
(1) A client sends a DNS query to the Internet directly and the

packet will be transferred to the OpenFlow switch.
(2) The OpenFlow switch receives the DNS query and forwards

the packet to the OpenFlow controller since the information
about the destination IP address of the DNS query packet is
not in the flow table.

(3) When the OpenFlow controller receives the DNS query
packet, it inspects the packet to obtain the queryname and
the destination IP address. The controller checks the desti-
nation IP address of the DNS query packet in the NS record
history database.

(4) The database replies the corresponding entry (can be multi-
ple entries) if the destination IP address is in the database.

(5) The OpenFlow controller decides whether or not the DNS
query packet passes through based on the result. If the
destination IP address of the DNS query packet is in the
database, then the OpenFlow controller passes it as a normal
DNS query, otherwise, the OpenFlow controller will drop
the DNS query packet.

(6) In the case where the destination IP address of the DNS
query packet is in the database, the DNS query packet will
be allowed to be transferred to the Internet.

Based on the above procedure, the proposed system can detect
and block abnormal DNS traffic which is supposed to be used in
some types of DNS-based botnet communication.

4. Implementation

Based on our proposed system, we created two programs for
the implementation of the prototype system: the program to cre-
ate NS DB and the controller program to control the OpenFlow
switch. We describe the detailed contents in the following sec-
tions.

4.1 Construction of NS Record History Database
In order to create the NS record history database using DNS

traffic in pcap format, we created a DNS query database named
query DB first and eventually created the database NS DB.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 2 An example of a table entry in the NS record history database.

querytime queryid queryname res time zname nsttl nsfqdn glueAttl glueA del time
1414782044594 31812 yahoo.co.uk 1414782044659 yahoo.co.uk 57954000 ns3.yahoo.com 51169000 203.84.221.53 1414833213659

Fig. 10 DNS data collection in case of DNS response with NS and glue A
record.

Fig. 11 DNS data collection in case of a DNS response with NS but without
glue A record.

We used Python language in the program and imported the
dpkt module for processing the pcap files, and finally we used
MariaDB [29] as the database system.

Figures 10 and 11 illustrate the brief network topology we
used to obtain DNS traffic in our campus network. All DNS
queries (the arrows numbered 1 in Fig. 10) and DNS responses
(the arrows numbered 2 in Fig. 10) are obtained from the border
switch in pcap format. Then the analysis program analyzes the
pcap file and stores the legitimate NS records and corresponding
glue A records in the NS DB. Note that we do not construct an
empty database in the initial NS DB, but register destination IP
addresses of root server and TLD in the initial setup. Table 2
shows an example of the entry in the NS DB. Moreover, if the
DNS response only includes NS records, that is, the correspond-
ing glue A records are not included, the NS records will be reg-
istered without glue A records as Fig. 11 shows. After that, if
the glue A records will be received continuously within two sec-
onds the remaining information about the corresponding glue A
records will be added in the NS DB. Otherwise, the NS records
will be deleted. Some destination IP addresses of the direct out-
bound queries are normal. For example, we need to register IP
addresses of public DNS, of DNS full resolver, and of antivirus
to glue A records, because those IP addresses are normal. Note
that the DNS traffic of fixed interval (appropriately one month)
is obtained, analyzed by setting in period of learning. Then, our
system sets NS DB in a real SDN network, obtains the DNS traf-
fic, which update NS DB, and runs a blocking direct outbound
DNS query. The NS record and the corresponding glue A record
is deleted in expiring time to live. The size of NS DB can be
restrained.

Table 3 Software versions used in the implementation.

Operating system, software and database Version
CentOS 7.4
Open vSwitch 2.9
Ryu 4.23
Python 2.7
MariaDB 10.3

4.2 Detection and Blocking Features
In the prototype system, we used the SDN technology to realize

the detection and blocking features, specifically OpenFlow solu-
tions. We choose Open vSwitch [30] and the OpenFlow switch
and Ryu program as the OpenFlow controller. The former is a
software version of the OpenFlow switch program and the latter
is a solution of OpenFlow controller program. We constructed
the network environment using Kernel Virtual Machine (KVM)
and used CentOS 7.4 operating system for both host and guest
machines. Table 3 shows the detailed version information for
the operating system, SDN solutions and database system. In
the prototype system, all packets will be transferred to the Open
vSwitch and the Open vSwitch only checks DNS packets. When
the Open vSwitch cannot find an entry for a DNS query packet,
the “packet in” function will send the DNS query packet to the
Ryu controller. Then the Ryu controller checks the destination IP
address of the DNS query packet in the NS DB in order to de-
termine how to process it. If the destination IP address is stored
as a glue A record in the NS DB, the DNS query packet will be
passed through the Open vSwitch by the Ryu program. Other-
wise, the DNS query packet will be blocked by the Ryu program.
It should be noted that in the current system other traffic will be
passed through the Open vSwitch.

5. Evaluation

In order to verify the feature and performance of the proposed
system, we evaluated our system in a local testbed. In the feature
evaluation, we mainly focused on the functionality of the con-
troller program to check the ability of the system about detect-
ing and blocking malicious DNS traffic. The evaluations include
database construction part and malicious DNS traffic detection
and blocking part. Next, to quantitatively evaluate the perfor-
mance, we conduct the stress test by comparing the conventional
and proposed systems.

5.1 Experimental Network Environment
To conduct the evaluation of the prototype system, we have

set up a local experimental network environment consisting of
an OpenFlow swtich (Open vSwitch), an OpenFlow controller
(Ryu), a NS record history database (NS DB) which is created
from pcap files, a replica database to be accessed from Open-
Flow controller, a client, C2Server to send a direct outbound DNS
query, Web to download program with a direct outbound DNS
query, and a DNS, which DNS application is BIND version 9.9.4.
These are shown in Fig. 12. The OpenFlow switch was installed

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 4 The results of feature evaluation.

Command Result of checking the destination IP address by NS DB Behavior of OpenFlow switch
nslookup www.google.com 8.8.8.8 8.8.8.8 is unknown blocked
nslookup www.google.com 8.8.4.4 8.8.4.4 is registered glueA record passed
nslookup www.yahoo.co.uk 203.84.221.53 203.84.221.53 is registered glueA record passed

Fig. 12 The network topology used in evaluation.

on a host OS, whereas the controller (RYU), client (Client01),
DNS (DNS), replica database (NSDB replica), C2Server, Web,
and NS record history database (NSDB) were installed as Ker-
nel Virtual Machine (KVM) on host OSs. The controller, DNS,
client, C2Server, Web, and replica database were configured to
be connected to the same network in an OpenFlow switch and
they could only communicate with the global Internet through the
OpenFlow switch. The replica database and NS history database
were connected to another network in the OpenFlow switch and
synchronized by Galera Cluster, which is one of the most ad-
vanced software for multi-master synchronous replication [31].
Moreover, NS DB can use index for improving search perfor-
mance. We used NSDB replica in order to avoid a deadlock
caused by simultaneous update and reference for the same entry.
That is NSDB master will be used for maintaining the database
while the NSDB replica will be used for search and reference.
More specifically, we created a replica database from the NS
record history database using Galera Cluster. Note that records
of the NS record history database will be deleted when del time
expires. Consequently, all traffic from the client and the DNS will
pass through the OpenFlow switch and thus the OpenFlow con-
troller can check the destination IP addresses as well as the result
of packet filtering at the switch. In our previous study [32], we
obtained many pcap files of DNS traffic from the border router of
our campus network. In the evaluation, we used the pcap files for
constructing the NS record history database. A pcap file of DNS
traffic for about two hours approximately has a size of 200 MB
and we used it in the evaluation. It took one hour to analyze
the pcap file and to store the NS records history in the database.
In particular, from the pcap formatted file, we matched the DNS
queries and the responses. Next, we registered all NS records
in the authority section and the corresponding glue A records in
the additional section to the NS DB. If the response only has
NS records without glue A records like out-of-bailiwick domain
name, we only registered the NS records in the NS DB. Note that
the normal destination IP addresses, such as Public DNS, were
registered to NS DB. As a result, 18,100 legitimate NS records
were picked from the pcap file and stored in the NS record history
database.

Fig. 13 Check registration of glue A in NS DB.

5.2 Feature Evaluation
After constructing the NS records history database in the ex-

perimental network environment, we evaluated the malicious NS
traffic detection and blocking feature of the proposed system,
which is mainly implemented in the controller program. Specif-
ically, we attempt to check the destination IP address of a DNS
query packet sent from the client with the glue A records stored
in the NS record history database (NS DB) and the OpenFlow
switch will be instructed by the controller program to block the
DNS query if there was no glue A record in the database.

To test the controller program, we sent DNS query from the
client (172.16.101.11) through the command described in Ta-
ble 4. When the OpenFlow switch receives a DNS query packet
having a new query request, “packet in” packet will be forwarded
to the controller program, which will check whether the destina-
tion IP address is stored in the database. If the destination IP
address is stored as a glue A record in the NS DB, the controller
program will create a log entry “<destination IP address> is reg-
istered as a glue A record” and the query has to be passed and
passes the DNS query packet. Otherwise, it will log “<destina-
tion IP address> is unknown” and the query has to be blocked
and blocks the DNS query packet.

We described the evaluation results in Table 4. We tested for
three types of IP addresses as the destination IP address of the
DNS query from the client; 8.8.8.8 which is an open DNS re-
solver provided by Google and we did not register it in NS DB to
be able to perform the test, 8.8.4.4 which is another open DNS
resolver provided by Google and is registered in NS DB, and
203.84.221.53 which is an authoritative DNS server of the do-
main name “yahoo.co.uk” and is registered in the NS DB.

In addition, we checked the feature of the program to ma-
nipulate the NS DB with the flow illustrated in Fig. 13 in the
following. Firstly, we made the NS DB empty and then made
the client send the DNS query using “dig @68.180.131.16
www.google.co.uk” to the Internet with running the RYU con-
troller. The results showed that the RYU controller blocked
the DNS query with “68.180.131.16 is unknown” message due
to the destination IP address “68.180.131.16” does not exist in
NS DB. Next, we updated the NS DB with adding the IP address
“68.180.131.16” as a glue A record which eventually showed

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 5 The results of query time performance using dig.

Command Type of DNS resolver Conventional method Proposed method
Average [ms] Standard deviation [ms] Average [ms] S. D. [ms]

dig @172.16.101.20 www.google.com (w/o cache) Internal 515.5 92.13 530.7 69.42
dig @172.16.101.20 www.google.com (with cache) Internal 0 0 0 0
dig @8.8.8.8 www.google.com Public DNS (8.8.8.8) 40.9 2.33 42.9 22.85
dig @1.1.1.1 www.google.com Public DNS (1.1.1.1) 4.6 2.00 4.0 1.25

Table 6 The results of query speed performance using dnsperf.

Command Type of Conventional method Proposed method
DNS Average S. D. of Limitation of Average S. D. of Limitation of

Resolver query speed [query/s] q. s. [q/s] max. q. s. [q/s] q. s. [q/s] q. s. [q/s] m. q. s. [q/s]
dnsperf -s 172.16.101.20 domainlist Internal 80.13 5.81 108 40.14 0.23 42

(w/o cache)
dnsperf -s 172.16.101.20 domainlist Internal 2976.59 409.52 N.A. 2955.29 1014.65 N.A.

(with cache)

“68.180.131.16 is registered in glue A column of NS DB” mes-
sage. We checked that there is “68.180.131.16”. Then we
also manually checked the NS DB and confirmed the IP address
“68.180.131.16” had been added as a glue A record entry. Af-
ter that, we made the client send the same DNS query using “dig
@68.180.131.16 www.google.co.uk” again to the Internet. The
results showed that the RYU controller passed the DNS query
with “add flow table 68.180.131.16” message since the destina-
tion IP address “68.180.131.16” had been added in the NS DB.

Moreover, we performed the additional feature evaluation in
the following Fig. 12 as a tested environment again. The objec-
tive showed that our proposed system can block a direct outbound
DNS query which was sent to a C&C server in a real compli-
cated network environment. We constructed a virtual environ-
ment as well as a real network on host OSs, generated a direct
outbound DNS query which was sent to C2server and checked
whether the direct outbound DNS query was blocked. Firstly, the
destination IP address of C2Server was not registered in NS DB.
In addition, we constructed a HTTP server including perl pro-
gram “query.pl” which sends a direct outbound DNS query to a
C2server on the Web. This is one process to be a bot-infected
PC in a real environment. In this condition, we run the con-
troller program. Client01 was able to download query.pl by “wget
http://web01.exampl.com/query.pl” from Web. When client01
run “query.pl”, we checked blocking the DNS query with a TXT
record sent to C2Server by the tcpdump command in C2Server.
This result showed that the system worked well as we expected.
Note that we maintain the NS record and glue A record entries for
all domains including the root domain and the top level domains,
which prevents unnecessary blocks of the DNS queries.

5.3 Performance Evaluation
After completing the feature evaluation of NS DB, we also

evaluated the performance of the prototype using the experimen-
tal network shown in Fig. 12 in order to check the overhead of
OpenFlow architecture in the proposed system. Note that 8.8.8.8
is registered in the NS DB and the query has to be passed and
passes the DNS query packet. The Client01 can send a DNS
query to the DNS or a public DNS server on the Internet. We
measured the latency of the DNS name resolution in various pat-
terns and the detailed results are described in Tables 5 and 6.

First, we measured the latency of a single DNS query by using

“dig” command from the Client01. As described in Table 5, when
the Client01 used the internal DNS full resolver (172.16.101.20)
the average latency in the conventional method (without using
the prototype) for ten times was 515.5 ms while that in the proto-
type was 530.7 ms. By calculating the difference between the two
types of latencies we confirmed the latency might be caused by
the proposed system which was 15.2 ms (530.7–515.5). In this
case, we restarted the DNS before sending each DNS query from
the Client01 which is indicating that the results were not cached
in the DNS. When we used the cache in the DNS, we can see that
all the latencies are “0” since all the DNS responses were sent
back from the DNS. On the other hand, we also measured the
latency with the same scenario using public DNS servers (8.8.8.8
and 1.1.1.1) and we found that, in both public DNS servers, the
latency of the prototype was only a little more than that of a con-
ventional method. We consider the reason was that when we used
the DNS all the flow entries were added in the OpenFlow Switch
by checking the OpenFlow Controller with “packet in” function
thus the latency was much higher. Moreover, as we can see that
the standard deviation was also high in all evaluation cases and we
consider the reason was that the network conditions were chang-
ing dynamically on the Internet thus the latency of each DNS
query was also changed.

Next, we conducted performance evaluations using a DNS per-
formance measurement tool named dnsperf 2.1.0 [33] which was
installed on the Client01. In addition, the parameters of dnsperf
“-s” identified target DNS IP address. We used one thousand
domain names obtained from the QuantCast Measure [34] which
provides a list of web sites. In this case, we only used the DNS
and measured the query speed in [query/s] which indicates the
number of queries sent per second when there was no packet loss
which means all the one thousand domain names were processed
successfully with DNS name resolution. As we can see from the
Table 6, when we did not use the cache of the DNS, the average
query speed of the proposed method was 40.14 [query/s] which
was much less than that of the conventional method with 80.13
[query/s]. Here, when we add the limitation of maximum query
speed (query/s) with 108 in the conventional method, we found
that all the domain names were processed successfully while the
value was 42 in the proposed method. This means the latency in
the proposed method was much higher than that in the conven-
tional method which shows the same results as in Table 5. On the

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 7 List of public DNS servers.

8.8.8.8, 8.8.4.4 (dns.google)
1.1.1.1, 1.0.0,1 (Cloudflare)
208.67.222.123 (opendns)
9.9.9.9 (quad9.net)
64.6.64.6, 64.6.65.6 (nstld.net)
216.146.35.35, 216.146.36.36 (dynect.net)
77.88.8.1, 77.88.8.2,
77.88.8.3, 77.88.8.88 (yandex.ru)
185.228.168.10, 185.228.168.11,
185.228.168.168, 185.228.168.169 (cleanbrowsing.org)
180.76.76.76 (baidu.com)
114.114.114.114 (114dns.com)
8.20.247.20 (dnsbycomodo.com)
161.97.219.84 (sourpuss.net)
104.168.144.17 (hostwindsdns.com)

other hand, when we allow the cache function of the DNS, in this
case we did not indicate the limitation of max query speed, we
can see that the query speed of the proposed method was about
a half of that of the conventional method. We consider the rea-
son was that the overhead of the OpenFlow architecture in the
proposed method caused the low performance. However, we also
think that it is possible to improve the performance of the pro-
posed method by tuning up the OpenFlow Controller program as
well as the matching method of the “packet in” function and we
plan to address this problem in our future work. Finally, as we
can see from Table 6 when we limited the max query speed, the
standard deviation was small while when we did not set the lim-
itation the standard deviation was large. We consider the reason
was that when there was no limitation on query speed the network
condition can be easily changed so that the query speed can also
be easily affected.

So far, our proposed method is basically an off-line detection
method. To construct an online and pseudo real-time detection
method, we can adjust the interval to create a single pcap file.
For example, in our campus network, a two hours interval is cor-
responding to approximately 200 MB of pcap file size. If a two
hours interval does not satisfy a requirement from users, we can
choose a smaller interval time, e.g., two minutes. Another impor-
tant thing is the processing speed. Let’s consider the following
scenario with a two hours interval. In the first interval, the system
records the first pcap file. In the second interval, the system up-
dates NS DB based on the first pcap file as well as it records the
second pcap file. If the NS DB update processing requires more
than two hours, the system will not work as an online method.
According to our experiments, the processing time becomes less
than two hours, which is fast enough to construct an online sys-
tem.

6. Discussion

In this paper, to identify the abnormal DNS traffic used in bot-
net communication, we have proposed a detection system based
on the observation; in a typical anomalous DNS traffic, a client
computer sends a DNS query to the Internet directly without us-
ing the DNS full resolver. To identify such anomalous DNS traf-
fic, we maintain a database of NS record history. Based on this
concept, we have designed, implemented a system and evaluated
the feature and performance. One important issue in the proposed

Table 8 False positive rate of the proposed system.

The number of destination The number of Ratio (%)
IP addresses in pcap files destination IP

(excluding registered addresses in
glue A in NS DB) pcap files

1st pcap file 1573 10773 14.60
2nd pcap file 1441 9599 15.01
3rd pcap file 1676 9694 17.28
4th pcap file 1647 9455 17.41
5th pcap file 1255 7095 17.68
6th pcap file 1395 9437 14.78
7th pcap file 1445 10170 14.20
8th pcap file 1460 10933 13.35
9th pcap file 1567 11239 13.94
10th pcap file 1544 10896 14.17
Avarage N/A N/A 15.25
Total 2479 26894 9.22

system is the database learning time (e.g., for one month), be-
cause the proposed system can decrease false positive/negative
by storing many NS records and glue A records. Database entries
will be updated dynamically, and if the database does not contain
required NS record history entries, e.g., at the beginning phase
of the system, then the false positive/negative may occur. To deal
with this matter, we have to introduce the database learning phase.
(1) Just after the system started, no DNS queries will be imme-

diately blocked.
(2) After the learning phase finished, anomalous DNS queries

will be blocked.
We evaluated a metric in terms of the detection accuracy of

our proposed. The evaluation metric was the false positive rate
(FPR) in terms of malicious DNS queries, which is presented in
Table 8. More specifically, we use the first ten pcap files in log
data, which were obtained in our previous study [32]. First, we
manually confirmed that the pcap files do not contain any mali-
cious traffic. And, a pcap file of DNS traffic for about two hours
approximately has a size of 200 MB. In our proposed method,
the destination IP address of DNS query packets will be regis-
tered in NS DB if the query was legitimate. So, the destination
IP address not registered in NS DB was a false positive. In Ta-
ble 8, we show the FPR of ten individual pcap files as well as
the total FPR which was calculated using concatenated ten pcap
files. As a result, the ratio was 9.22% (=2479/26894) in the total.
2479 IP addresses may include public DNS, and other legitimate
use cases including the software update protocol. Note that the
famous public DNS servers described in Table 7 were registered
in NS DB for decreasing the FPR, however other legitimate use
cases may exist. Another source of the false positive is the divi-
sion of multiple pcap files, i.e., after a change in saved pcap files,
glue A record happens, so that the NS record has not been reg-
istered in NS DB. This is the reason why the total FPR is much
larger than the individual FPRs. We can decrease this type of
false positive to shorten the interval of pcap file saving.

Another way to decrease the false positive/negative rates is to
introduce a monitoring system; the network administrator will
cooperate with the automatic detection system. The design and
performance evaluation of the learning phase and the monitoring
system will be future work.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

7. Conclusion

According to many security reports and researches, several
types of DNS-based botnet use direct outbound queries and re-
sponses (Q&R), which are different processes form the normal
DNS name resolutions. Based on this observation, in this pa-
per, we proposed a detection and blocking system of DNS-based
botnet communication using a NS record database. In order to
differentiate the normal and abnormal DNS queries, we created
a database which stores NS records and the corresponding glue
A records. In the normal use cases, NS records and the corre-
sponding glue A records will be obtained prior to sending DNS
queries to them, whereas some types of DNS-based botnet com-
munication will not confirm the principle necessarily. Therefore,
by using our proposed system, the destination IP address of a
DNS query in a normal DNS name resolution will be stored in
the database and the packet will be passed through as is while
the destination IP address of malicious DNS traffic will not be
included in the database so that the traffic will be blocked.

Based on our proposed system, we also implemented a proto-
type system using SDN technologies and performed feature eval-
uations and a preliminary performance evaluation. The proto-
type system consists of a NS record history database (NS DB),
a replica of NS DB, an Open vSwitch and a Ryu controller.
We used MariaDB for the database system and customized the
Ryu controller using Python programing language. Based on
the feature evaluation results using the prototype system on a lo-
cal network environment, we confirmed that our proposed sys-
tem worked as we designed and it was expectable to detect and
block some types of DNS-based botnet communication. More-
over, based on the preliminary performance results we consider
that although the results did not show a good performance it is
possible to improve it by tuning the Ryu program, and finally, the
proposed system can also be deployed in a real network environ-
ment.

For the future work, we obtain a NS record and need to analyze
the corresponding glue AAAA record. Thus, we plan to set IPv6
in an OS or a network environment. we plan to tune up the Ryu
controller program in order to improve the performance of the
proposed system and feature evaluation as well as performance
test on a real network environment. Furthermore, we also plan
to expand the proposed system to apply for other types of DNS-
based botnet communication as well as malicious DNS traffic.

References

[1] Ichise, H., Jin, Y., Iida, K. and Takai, Y.: Detection and Block-
ing of Anomaly DNS Traffic by Analyzing Achieved NS Record
History, Proc. Asia-Pasific Signal and Information Processing Asso-
ciation, Annual Summit and Conference 2018 (APSIPA-ASC2018),
pp.1586–1590 (2018) (online), available from 〈http://www.apsipa.org/
proceedings/2018/pdfs/0001586.pdf〉.

[2] Li, S., Jin, Y. and Iida, K.: Detection and Control of DNS-based Bot-
net Communications by using SDN-Ryu Solution, IEICE Technical
Report, Vol.115, No.482, pp.73–78 (2016).

[3] Ichise, H., Jin, Y. and Iida, K.: Design and Implementation of NS
Record History Database for Detecting DNS-based Botnet Communi-
cation, IEICE Technical Report, Vol.117, No.299, pp.7–11 (2017).

[4] Khattak, S., Ramay, N.R., Khan, K.R., Syed, A.A. and Khayam, S.A.:
A Taxonomy of Botnet Behavior, Detection, and Defense, IEEE Com-
mun. Surveys & Tutorials, Vol.12, No.2, pp.898–924 (online), DOI:

10.1109/SURV.2013.091213.00134 (2013).
[5] Amine, A., Mohamed, O.A. and Benatallah, B. (Eds.): Network Secu-

rity Technologies: Design and Applications, Binsalleeh, H.: Botnets:
Analysis, Detection, and Mitigation, pp.204–223, IGI Global (online),
DOI: 10.4018/978-1-4666-4789-3.ch012 (2013).

[6] Soltani, S., Seno, S.A.H., Nezhadkamali, M. and Budiarto, R.: A Sur-
vey on Real World Botnets and Detection Mechanisms, Int’l Journal
of Information and Network Security, Vol.3, No.2, pp.116–127 (2014).

[7] McAfee Labs: Threats Report (online), available from 〈https://www.
mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-mar-
2018.pdf〉 (accessed 2018-12-10).

[8] Mockapetris, P.: Domain Names: Concepts and Facilities, IETF
RFC1034 (1987).

[9] Mockapetris, P.: Domain Names: Implementation and Specification,
IETF RFC1035 (1987).

[10] Feily, M., Shahrestani, A. and Ramadass, S.: A Survey of Botnet and
Botnet Detection, Proc. IEEE Int’l Conference on Emerging Security
Information, Systems and Technologies, pp.268–273 (online), DOI:
10.1109/SECURWARE.2009.48 (2009).

[11] Bromberger, S.: DNS as a Covert Channel within Protected Networks
(online), available from 〈http://energy.gov/oe/downloads/dns-covert-
channel-within-protected-networks〉 (accessed 2018-12-10).

[12] Hands, N.M., Yang, B. and Hansen, R.A.: A Study on Botnets Uti-
lizing DNS, Proc. ACM Conference on Research in Information Tech-
nology (RIIT’15), pp.23–28, ACM (2015).

[13] Xu, K., Butler, P., Saha, S. and Yao, D.: DNS for Massive-scale
Command and Control, IEEE Trans. Dependable and Secure Comput-
ing, Vol.10, No.3, pp.143–153 (online), DOI: 10.1109/TDSC.2013.10
(2013).

[14] Ichise, H., Jin, Y. and Iida, K.: Analysis of Via-resolver DNS
TXT Queries and Detection Possibility of Botnet Communications,
Proc. IEEE Pacific Rim Conference on Communications, Comput-
ers and Signal Processing (PACRIM2015), pp.216–221 (online), DOI:
10.1109/PACRIM.2015.7334837 (2015).

[15] Singh, M., Singh, M. and Kaur, S.: Issues and Challenges in DNS
based Botnet Detection: A Survey, Computers & Security, Vol.12,
pp.28–52, Elsevier (online), DOI: 10.1016/j.cose.2019.05.019 (2019).

[16] Ichise, H., Jin, Y. and Iida, K.: Analysis of DNS TXT Record
Usage and Consideration of Botnet Communication Detection, IE-
ICE Trans. Commun., Vol.E101-B, No.1, pp.70–79 (online), DOI:
10.1587/transcom.2017ITP0009 (2018).

[17] Dietrich, C.J., Rossow, C., Freiling, F.C., Bos, H., Steen, M. and
Pohlmann, N.: On Botnets that use DNS for Command and Con-
trol, Proc. IEEE European Conference on Computer Network De-
fence (EC2ND’11), pp.9–16 (online), DOI: 10.1109/EC2ND.2011.16
(2011).

[18] Farnham, G.: Detecting DNS tunneling (online), available from
〈https://www.sans.org/reading-room/whitepapers/dns/paper/34152〉
(accessed 2018-12-10).

[19] Ahmed, J., Gharakheili, H., Raza, Q., Russell, C. and Sivaraman, V.:
Real-Time Detection of DNS Exfiltration and Tunneling from En-
terprise Networks, Proc. IFIP/IEEE Symposium on Integrated Net-
work and Service Management 2019 (IM2019), pp.649–653 (2019)
(online), available from 〈http://dl.ifip.org/db/conf/im/im2019short/
188679.pdf〉.

[20] Google: Introduction to Google Public DNS (online), available from
〈https://developers.google.com/speed/public-dns/docs/intro〉
(accessed 2018-12-10).

[21] Cloudflare: Introduction to Cloudflare Public DNS (online), available
from 〈https://www.cloudflare.com/learning/dns/what-is-1.1.1.1/〉 (ac-
cessed 2018-12-10).

[22] OpenDNS: The Role of DNS in Botnet Command and Control
(online), available from 〈http://info.opendns.com/rs/opendns/images/
WB-Security-Talk-Role-Of-DNS-Slides.pdf〉 (accessed 2018-12-10).

[23] Mullaney, C.: Morto Worm Sets a (DNS) Record (online), available
from 〈http://www.symantec.com/connect/blogs/morto-worm-sets-
dns-record〉 (accessed 2018-12-10).

[24] Open Networking Foundation: SDN Architecture (online), available
from 〈https://www.opennetworking.org/images/stories/downloads/
sdn-resources/technical-reports/TR SDN ARCH 1.0 06062014.pdf〉
(accessed 2018-12-10).

[25] Denazis, S. et al.: Software-Defined Networking (SDN): Layers and
Architecture Terminology, IRTF RFC7426 (2015).

[26] Project Floodlight: Floodlight (online), available from 〈http://www.
projectfloodlight.org〉 (accessed 2018-12-10).

[27] Python: Python (online), available from 〈https://www.python.org〉 (ac-
cessed 2018-12-10).

[28] NTT: Ryu: Getting Started (online), available from 〈https://osrg.
github.io/ryu-book/en/html/〉 (accessed 2018-12-10).

[29] MariaDB: MariaDB (online), available from 〈https://mariadb.org〉 (ac-
cessed 2018-12-10).

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

[30] Open vSwitch: Open vSwitch (online), available from 〈https://
www.openvswitch.org〉 (accessed 2018-12-10).

[31] Galera Cluster: Galera Cluster (online), available from 〈http://
galeracluster.com〉 (accessed 2018-12-10).

[32] Jin, Y., Ichise, H. and Iida, K.: Design of Detecting Botnet Com-
munication by Monitoring Direct Outbound DNS Queries, Proc.
IEEE Int’l Confrerence on Cyber Security and Cloud Computing
(CSCloud2015), pp.37–41 (online), DOI: 10.1109/CSCloud.2015.53
(2015).

[33] Akamai: Measurement Tools (online), available from 〈https://www.
akamai.com/us/en/products/network-operator/measurement-tools.jsp〉
(accessed 2018-12-10).

[34] QuantCast: Measure Audiences (online), available from 〈https://www.
quantcast.com〉 (accessed 2018-12-10).

Hikaru Ichise received his B.S. degree in
mathematics from Kwansei Gakuin Uni-
versity, Sanda, Japan in 2008. Currently,
he is a technical staff in Tokyo Institue
of Technology, Tokyo, Japan and student
in Graduate School of Information Sci-
ence and Technology, Hokkaido Univer-
sity, Japan. His research interest is of de-

tecting botnet communciations using DNS protocol.

Yong Jin received his M.E. degree in
electronic and information systems engi-
neering and Ph.D. degree in Industrial In-
novation Sciences from Okayama Univer-
sity, Japan in 2009 and 2012, respectively.
In April 2012, he joined National Insti-
tute of Information and Communications
Technology, Japan, as a researcher. From

October 2013, he joined the Global Scientific Information and
Computing Center of Tokyo Institute of Technology as an assis-
tant professor. His research interests include network architec-
ture, traffic engineering, network security and Internet technol-
ogy. He is a member of IEICE and IEEE.

Katsuyoshi Iida received B.E., M.E. and
Ph.D. degrees in, respectively, Computer
Science and Systems Engineering from
Kyushu Institute of Technology (KIT),
Iizuka, Japan in 1996, Information Sci-
ence from Nara Institute of Science and
Technology (NAIST), Ikoma, Japan in
1998, and Computer Science and Systems

Engineering from KIT in 2001. Currently, he is an Associate Pro-
fessor in the Information Initiative Center, Hokkaido University,
Sapporo, Japan. His research interests include network systems
engineering such as network architecture, performance evalua-
tion, QoS, and mobile networks. He is a member of the WIDE
project and IEEE. He received the 18th TELECOM System Tech-
nology Award and the Tokyo Tech Young Researcher’s Award in
2003 and 2010, respectively.

Yoshiaki Takai was born in 1960. He
is currently a Professor and Director of
Information Initiative Center, Hokkaido
University. He is an Aide to CIO of
Hokkaido University. From 1988 to 1989,
he was a Research Associate of the Fac-
ulty of Science, the University of Tokyo.
In 1989, He joined the Faculty of Engi-

neering, Hokkaido University. His research interests include par-
allel computer architecture, parallel processing, distributed pro-
cessing, mobile agents applications, computer networks, aug-
mented reality, virtual reality, physically-based modeling, and
computer graphics applications. He received B.Eng. in electronic
engineering in 1983, and M.Eng. and D.Eng. in information en-
gineering in 1985 and 1988 from Tohoku University. He is a
member of IPSJ, IEICE, and IEEE Computer Society.

c© 2020 Information Processing Society of Japan

