
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Detection of Mergeable Wikipedia Articles Utilizing
Multiple Similarity Measures

RenzhiWang1,a) Mizuho Iwaihara1

Received: June 9, 2019, Accepted: October 2, 2019

Abstract: Wikipedia is the largest online encyclopedia, in which articles are edited by different volunteers with differ-
ent thoughts and styles. Sometimes two or more articles’ titles are different but the themes of these articles are exactly
the same or strongly similar. Administrators and editors are supposed to detect such article pairs and determine whether
they should be merged together. We call an article pair is mergeable if it is discussed for possible merge, and a merged
article pair is such that the pair is actually merged. In this paper, we propose a method to automatically determine
whether an article pair is mergeable or merged. According to Wikipedia Guidelines for article merge, in the duplicate
case, the article pairs are covering exactly the same contents. In the overlap case, the article pairs are covering related
subjects that have a significant overlap. The content of an overlapped part is similar but the words in the pair can be
extensively different, so methods that exploit semantic relatedness are necessary. We consider various textual similar-
ities and semantic relatedness. For integrating word embeddings on the target dataset and the global large corpus, we
propose linear and non-linear combinations of multiple embedding results and rebuilding word vectors for evaluating
semantic relatedness. We clarify the differences between our method and previous researches for combining multiple
word embeddings. We also deal with overlap cases by computing Jaccard similarity between article pairs. We combine
Jaccard similarity, common-link article count and word embedding-based relatedness together, to predict whether the
article pair should be merged. We explore the relationship between segment-level (paragraph-level) similarity and
mergeable/merged article pairs, then propose Multimodal Similarity-Based Merge Prediction (MSBMP) which com-
bines the proposed new features by Random Forest, to predict mergeable/merged article pairs. Our evaluations are
performed on real mergeable and merged article pairs. Remarkable superiorities of MSBMP are shown, with apparent
improvement from baselines of WikiSearch, TFIDF and word embeddings.

Keywords: word embedding, mergeable article, Wikipedia, text mining

1. Introduction

Wikipedia articles are edited by various volunteers from all
over the world. Each article in Wikipedia identifies a clear con-
cept. Due to diverse culture and cognition backgrounds, one con-
cept may be written in various styles by different editors in differ-
ent articles. In Wikipedia, detection of near duplicate texts is nec-
essary for copyright enforcement and for helping version man-
agement. Administrators and editors need to find and merge du-
plicate articles to avoid confusing readers and maintain integrity.
As stated in the Wikipedia guidelines for merge, there are four
reasons to merge articles [26]: 1) Duplicate: There are two or
more pages on exactly the same subject, with the same scope. 2)
Overlap: There are two or more pages on related subjects that
have a large overlap. 3) Text: If a page is very short and is un-
likely to be expanded within a reasonable amount of time, it often
makes sense to merge it with a page on a broader topic. 4) Con-
text: If a short article requires the background material or context
from a broader article in order for readers to understand it.

One example of article merge is that the articles “Chickens and
dumplings” and “Bott boi,” shown in Fig. 1, are suggested to be
merged together on August 1st, 2018. One of the reasons is that

1 Waseda University, Kitakyushu, Fukuoka 808–0135, Japan
a) ouninnyuki.ips@asagi.waseda.jp

Fig. 1 Mergeable Wikipedia Articles.

these two dishes use the same cooking materials, and their recipes
are similar. The people who disagree on merging these two arti-
cles comment that these two dishes taste different. We call an
article pair to which merge is proposed as a mergeable article
pair. Another case is the articles “Illegal taxicab operation” and
“Amish taxi,” shown in Fig. 2. They were actually merged to-
gether after discussion, and “Amish taxi” is already redirected to
“Illegal taxicab operation.” We call these cases as merged arti-
cle pairs. In this paper, we focus on two tasks such that, the first
is to detect mergeable article pairs from candidate similar pairs,
and the second is to detect article pairs that should be actually
merged.

Currently the Wikipedia article merge task is done by human
editors through discussion. Editors firstly create a talk page to

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 2 Merged Wikipedia Articles.

Fig. 3 Containment relationship between mergeable article pairs and
merged article pairs.

discuss whether an article pair should be merged. If most of
the editors agree to merge the article pair, then the pair will be
merged. So there exist two stages for merging articles. In the
first stage two articles are proposed to be merged but still un-
der discussion, and in the second stage the two articles are ac-
tually merged. Therefore, there exist containment relationships
between similar, mergeable, and merged article pairs, as depicted
in Fig. 3. In real situations, the number of similar article pairs is
much higher than the number of mergeable article pairs. Most of
similar article pairs are not considered for possible merge. The
number of pairs actually merged after editors’ agreement is fur-
ther reduced. Here we show a real example of this situation.
When we executed query “3D printing” on WikiSearch, 27,554
results were returned. These results are regarded as similar to
article “3D printing.” But in the talk page of this article, only
three articles “3D printer,” “additive manufacturing,” and “rapid
prototyping” were mergeable, namely they were discussed to be
merged with “3D printing.” These three articles were mergeable
articles at the query time, but after discussion, only “3D printer”
and “additive manufacturing” were merged into “3D printing,”
becoming merged article pairs. Article “rapid prototyping” was
rejected to be merged with “3D printing.”

Finding articles to be merged is similar to the near-duplicate
text detection problem. For a large collection of documents,
evaluating a query over every document in the collection is too
costly, so conventional approaches focus on how to initially se-
lect fewer candidates. After obtaining a small set of candidates,
two documents are compared closely by term co-occurrence sim-
ilarity. Previous researches [2], [5], [6], [7], [16] focus on clus-
tering similar documents over a large corpus. For plagiarism de-
tection, word co-occurrence-based features are quite important in
detecting duplicate texts. On the other hand, our goal is further
detecting article pairs which are not just heavily duplicated or

having a significant overlap, but also topic containment and con-
text containment, as stated in the Wikipedia guidelines for merge.
Our candidate merge pairs can be simply retrieved by a conven-
tional retrieval like WikiSearch, so we put more emphasis on de-
termining whether candidate similar pairs should be merged. In
Wikipedia, various editors often use varieties of expressions in
writing an identical article, although their intensions are basically
the same. Term co-occurrence similarity is not sufficient for the
case of diverse wordings with the same intension.

In this paper, we discuss integration of textual, semantic and
link-structural similarities, to determine whether a given article
pair is mergeable or merged. For semantic similarity, we adopt
the well-known word embedding method, word2vec [18], [19].
The difficulty of our task is that, the known pre-trained embed-
ding result is based on a very large corpus. Compared with such
a corpus, our target dataset is just a portion of Wikipedia, so the
distribution of word occurrence can be distinctively apart from
the general distribution. So directly using pre-trained embedding
causes undesirable results, such as words having a specific mean-
ing in our target dataset. Directly using our target dataset to train a
specific embedding result is also undesirable, because compared
with large corpora, our dataset is too small to train a good embed-
ding result. To solve this problem, we propose linear combination
and non-linear combination of multiple pre-trained embeddings
to train customized embedding results. In the linear combination,
we utilize transfer matrices, motivated by translation matrix in
Ref. [20], to combine multiple pre-trained embedding results. In
non-linear combination, we utilize a neural network to combine
multiple pre-trained embedding results. The main difference be-
tween our methods and the previous approaches is that we define
a new loss function and retrain the embedding results over our
target dataset.

Our approach is motivated by transductive transfer learn-
ing [12]. The concept of transductive transfer learning is that the
source domain (Ds) and source domain task (Ts) are given, and
the target domain (Dt) and target domain task (Tt) are the goal.
Here Ts is equal to Tt, but Ds is not equal to Dt. The transductive
transfer learning methods utilize the knowledge of the source do-
main and source domain task, to improve the prediction function
for the target domain and target domain task. Usually, the source
domain task is over a large labeled dataset, while the target do-
main task has only a limited labeled dataset. In our case, the
pre-trained embedding results are the source domain and source
task, and a given set of candidate article pairs for merge is the
target domain. We propose a new loss function to improve the
embedding results for our mergeable article dataset.

To be accordant with the criteria for merge of articles in
Wikipedia, we utilize both Jaccard distance and semantic similar-
ity to evaluate surface-level and semantic-level similarities. Fur-
thermore, since each article has a certain length and only a part of
one article may be overlapping with another article, we introduce
features on similarity distributions over article segments, where
segments mean any logical unit of articles, and in this paper we
adopt paragraphs as segments. We call the new method combin-
ing all the proposed features by Random Forest as Multimodal

Similarity-Based Merge Prediction (MSBMP).

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Our experiments on both real Wikipedia mergeable articles
and merged articles show that our method MSBMP predicts
better than subsets of proposed features, and baselines such as
WikiSearch, TFIDF, and global word embeddings trained over
large corpora, in terms of AVGRecall@K, mean reciprocal rank
(MRR), and area under the ROC curve (AUC).

The rest of the paper is organized as follows: Section 2 covers
related work. Section 3 shows our proposing method. In Sec-
tion 4, we describe our datasets in detail, and explain our experi-
mental process. In Section 5, evaluation results on the proposed
feature combination methods are shown. Section 6 studies the
impact of overlap size and article length on our task. Section 7
concludes this paper.

2. Related Work

For near duplicate text detection, a variety of signature genera-
tion methods, encompassing scalability, have been proposed. Pre-
vious researches [5], [6], [7], [16] separately proposed shingling-
based, windowing-based, simhash-based algorithms to detect
near duplicate texts. But these methods only exploit co-occurring
terms, where semantic relatedness is not considered. These meth-
ods cannot handle texts that use a large number of different terms
but expressing the same topic.

Weissman et al. [23] propose a minhash-based method over
MapReduce to detect near-duplicated texts in Wikipedia. Their
approach detects near-duplicated texts in the sentence level. On
the other hand, our task of detecting merged articles needs to de-
tect duplicates at the article level, where overlaps are often limited
to narrow segments.

Recent researchers consider incorporating semantic informa-
tion into document signatures. Alonso et al. [2] consider TF-IDF
weighting in their signature algorithm, to reflect certain semantic
information.

Schofield et al. [17] show learning on how repeated texts af-
fect semantic models. They trained a Latent Dirichlet Allocation
model and Latent Semantic Analysis model over different lev-
els of repeated texts. They discussed observing perplexity during
training progress and recommending a suitable model for differ-
ent levels of repeated texts in a corpus. In this paper, we also dis-
cuss the effect of varying overlaps, and discuss its suitable treat-
ment.

For plagiarism detection, word co-occurrence-based features
are very important in detecting duplicate texts. Pertile et al. [15]
utilized the Jaccard distance of article pairs and co-occurrences
in citations to detect plagiarism papers. But only word co-
occurrence-based features cannot detect semantic information
well.

Word embeddings are becoming an effective way to represent
words by relatively low-dimensional vectors, where semantic re-
latedness is easily measured by the cosine similarity of two word
vectors. Ferrero et al. [8] introduce a syntax weighting in dis-
tributed representations of sentences, and prove its usefulness for
textual similarity detection. But in their approach, they only uti-
lized one large dataset to build word vectors.

To integrate multiple embedding results, Mikolov et al. [20]
use translation matrices to convert embeddings in English into

embeddings in Spanish. Peng et al. [14] redefine nodes of hierar-
chical structure (in the word2vec model it is Huffman tree), where
each node shares the data from global corpus and target corpus.
Their model retrains the hierarchical tree and produces final word
vectors. But a disadvantage is that their model needs to be trained
on both global corpus and target corpus. Garten et al. [9] test the
sum and concatenation of the two vectors for a given word, for
combining multiple embedding results. This method shows an
improvement but it is too simple and their obtained results do not
learn from the target corpus. Their model loses the distribution in-
formation of the target corpus. Yin et al. [24] compare five ensem-
ble methods to combine multiple embedding results. They em-
ploy concatenation-based, singular value decomposition-based
methods, and 1 to N, 1 to N+ strategies to build ensemble models.
They also propose mutual learning to extend these four models.

In our method, we intend to combine pre-trained embedding
results to generate a new embedding result over the target corpus.
So the essential difference between our method and Garten’s and
Yin’s models is such that what their method trains is an ensem-
ble model rather than an embedding model, while our method
trains an embedding model over the target corpus. Peng’s model
is also training a new embedding, but their method needs a global
dataset, and their method must build a new large hierarchical tree.
Compared with this model, our proposing method only needs a
target corpus and a pre-trained embedding result, not requiring a
large global corpus.

3. Proposed Method

3.1 Overview of Proposed Method
In this paper, we mainly investigate solutions for the following

two target tasks:
Task 1 (Mergeable articles): Given a target Wikipedia article,
find articles which are mergeable with the target article. If there is
no mergeable article in the candidate set, a null result (no merge-
able articles) is returned.
Task 2 (Merged articles): Given a target Wikipedia article, find
articles that should be merged with the target article.

Since one article can be quite long, we divide one article into
segments, where a segment is any logical component of articles,
and in this paper we choose paragraphs as segments. We measure
similarities between two articles by both the article level (whole
article) and segment level (every pair of their segments).

The flow diagram of our method is shown in Fig. 4.
For Tasks 1 and 2, we consider returning a confidence score of

a given article pair being mergeable or merged. We also investi-
gate an optimum threshold on the confidence score, for predicting
whether or not article pairs are mergeable/merged.

To solve these two problems, we propose combination of a
variety of features, where one feature is based on multiple em-
beddings for evaluating the semantic relatedness of article pairs.
Also, another feature is based on Jaccard distance over both the
article level and the segment level to evaluate the word overlap
between two articles. Segment similarity distribution character-
izes distribution of similarity values between all the segment pairs
within two articles. To incorporate relatedness by the link struc-
ture of Wikipedia, we consider common link-to article counts as

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 4 Flow diagram of proposed model.

a feature. Then we utilize Random Forest [4] to generate a clas-
sifier for determining mergeable article pairs in candidate pairs,
as well as for producing a confidence score on each classification
result for ranking.

For Task 2 on merged article pairs, we adopt the same proposed
features as Task 1, but a Random Forest classifier is trained over a
different set of article pairs which are labeled with either merged
or not.

In real situations, mergeable article pairs can be eventually
merged after a period of discussion. But in our evaluation, we
can collect a reference dataset from edit histories only at a collec-
tion time point, where future merges are unknown. Therefore, in
our evaluation we assume that merged and mergeable articles are
limited to those recorded in the edit histories.

From the Wikipedia guideline, we can expect that merged arti-
cles share similar topics, common words, and/or common links.
Thus we design our algorithm based on these three properties. We
measure semantic similarity by using embedding-based methods.
For segment-level similarity, we introduce segment-level Jaccard
similarity to evaluate common words. We also utilize common
link-to articles, which are articles co-cited by article pairs, for
measuring relatedness by the link structure. Next, we describe
our method in detail.

3.2 Linear Combination of Word Embeddings
Word embeddings are compact vector representation of words,

becoming the most effective way to measure semantic similarity
between words [18], [19]. Word2vec assumes two language mod-
els, Continuous Bag of Words (CBOW) [3] and Skip-gram [18].
The CBOW model assumes that context words’ vectors should
predict the target word, while the Skip-gram model assumes that
the target word should predict the context words. Based on these
assumptions, objective functions are defined as products of all
target words’ predicted probabilities, as follows:

Objective =
∑
w∈C log P(w | context(w)) – CBOW

Objective =
∑
w∈C log P(context(w) | w) – Skip-gram

To perform scalable training over large datasets, word2vec uti-
lizes Huffman trees for maximizing the objective function. After
training, we can obtain distributed word vector representations,
which will be used to compute similarities between article pairs.

Our goal needs to deal with a small training dataset of merge-
able articles. To combine pre-trained embedding results, we uti-
lize transfer matrices to integrate multiple embedding results. We
also define the sum of all the embedding results multiplied by

Fig. 5 Proposed object function.

transfer matrices as the final embedding result, defined as:

E f =
∑n

i=1
EiMi (1)

Here, Ei, i = 1, . . . , n, is a pre-trained embedding result and Mi,
i = 1, . . . , n, is a transfer matrix, and E f is the final embedding
result.

To fit for the target dataset, we define a new loss function. As
the original word2vec model assumes, we also suppose that con-
text words can predict a target word. In the embedding space,
this assumption can be regarded as the average of context words
should be the closest to the target word and the average of context
words should be far away from the other words.

Based on this assumption, we define the objective function as
follows:

Objective =
∑
w∈C Dis(context(w), w) (2)

Here function Dis is the distance between the sum of context word
vectors and target word vector and C is the corpus. Here the dis-
tance function can be any reasonable distance such as Manhattan
distance, Euclidean distance, cosine similarity, etc. In our case,
we use Euclidean distance for the Dis function. The difference be-
tween our objective function and CBOW is that we use Euclidean
distance as our Dis function. There are two advantages of us-
ing Euclidean distance. One is that for small datasets, we do not
need to build a complex hierarchal softmax layer (in the word2vec
model that is a Huffman tree) to compute the probabilities. The
other is that to measure the similarity of vectors, compared with
cosine similarity which just measures the angle between vectors,
Euclidean distance measure the absolute distance. In Mikolov’s
research [20], the authors also utilized the Euclidean distance as
the loss function. So we directly compute the Euclidean distance
between a context word vector and target word vector.

Below we explain how we compute the transfer matrices. As
our objective function uses the Euclidean distance, we can rewrite
the function as:

loss =
∑
w j∈Vocabulary

‖vc j − vw j‖2 (3)

Here w j is the jth word in the vocabulary from the target corpus,
and vw j is the vector of w j. Similarly, vc j is the jth context vector,
where context is the other words in w j’s window.

We represent vc j and vw j by multiple embeddings of Eq. (1):

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

vc j =
∑n

i=1
vTc ji

Mi, vw j =
∑n

i=1
vTw ji

Mi

Here, vw ji
is the jth word vector in the vocabulary from the tar-

get corpus in the ith embedding space, and vc ji
is the jth context

vector in ith embedding space. Then our loss function can be
rewritten as:

loss =
∑

w j∈Vocabulary

∥∥∥∥∥∥∥
n∑
i

vTc ji
Mi −

n∑
i

vTw ji
Mi

∥∥∥∥∥∥∥
2

=
∑
w j∈Vocabulary

∥∥∥∥
∑n

i

(
vTc ji
− vTw ji

)
Mi

∥∥∥∥
2

=
∥∥∥∥
∑n

i
Vci Mi −

∑n

i
Vwi Mi

∥∥∥∥
2

(4)

Here, Vwi is the matrix of all target word vectors in the target
corpus in the ith embedding space. Also Vci is the matrix of all
context vectors in the target corpus in the ith embedding space.

We want to minimize the loss function of Eq. (4) to minimize
the total distance. When we compute one particular transfer ma-
trix Mk, we regard the other transfer matrices as known. Accord-
ing to the Kronecker product identity and Lyapunov equation, we
can convert our aim into linear regression.

Suppose
∥∥∥∥
∑n

i
Vci Mi −

∑n

i
Vwi Mi

∥∥∥∥
2
= 0.

Then we have:

(Vck − Vwk)Mk =

n∑
i�k

(Vci − Vwi)Mi

According to the Kronecker product identity and Lyapunov equa-
tion we obtain:

IT ⊗ (Vck − Vwk) Vec(Mk) = Vec
(∑n

i�k
(Vci − Vwi) · Mi

)
(5)

Here, I is the identity matrix and Vec(X) denotes the vector-
ization of matrix X formed by stacking the columns of X into a
single column vector. We can see that Eq. (5) is a classical linear
regression problem, thus we can utilize stochastic gradient de-
scent (SGD) to compute the transfer matrix Mk. We compute the
other transfer matrices in the same way. After several iterations,
we can obtain an optimal result.

The difference between our method and the original word2vec
model is that we want to minimize this distance objective func-
tion, instead of the product of the predicted probabilities of all the
target words. To minimize the objective function, we use stochas-
tic gradient descent (SGD) in computing the transfer matrix. The
difference between our objective function and the objective func-
tion in Ref. [20] is that our distance is between the target word
and context word, while Mikolov’s objective function measures
the distance between the target word transformed by the matrix
and its translated word. Another difference is that the distance in
Mikolov’s work is used in the target language embedding space.
In our work, the distance is not used in any pre-trained embedding
space, but in the embedding space trained by the target corpus.

The main difference between our method and the 1 to N+
method [22] is also the loss function. The loss function of
Ref. [22] is computed on the global dataset, and the function mea-
sures the variation of the words in the pre-trained embedding

Fig. 6 Neural network configuration.

space and meta-embedding space. This loss function is indepen-
dent from the target corpus. On the other hand, our loss function
measures the word distance in the target corpus like the word2vec
model. Our motivation is to optimize embedding results to per-
form best on the target corpus.

In our experiments, we use TensorFlow [1] to implement the
optimization. We define pre-trained embedding results as the
placeholder, which can assign different pre-trained embeddings
and define transfer matrices as variables. Then we apply a gradi-
ent decent optimizer to minimize the loss function.

3.3 Non-linear Combination
In addition to using transfer matrices, we also try to utilize a

neural network to train a better representation of word vectors
from pre-trained word vectors. The structure of the neural net-
work is depicted in Fig. 6.

The input layer is the word window, on which pre-trained em-
beddings are mapped to produce word vectors.

The combination layer is a neural network which is allocated
with 300 nodes and produces a customized embedding result. We
will use this embedding result to compute new word vectors. Af-
ter computing new word vectors, we apply a loss function that
takes the sum of the context word vectors and chooses the word
closest to the middle word vector. Here, the loss function is the
cosine score between the sum of the context word vectors and the
middle word vector.

loss = − Vcontext · Vmid

‖Vcontext‖ · ‖Vmid‖ = −
∑d

i=1(Vcontexti · Vmidi)√∑d
i=1 Vcontexti

2 ·
√∑d

i=1 Vmidi
2

(6)

Here, Vcontext is a context word vector, Vmid is a mid word vec-
tor, d is the dimension of these word vectors. Suffix i means the
i-th element in a word vector. Notice that, the context word and
mid word here are both from the target corpus.

The i-th element comes from the new embedding layer, where
the value is computed in the combination layer by the follow for-
mula:

Vi = fact

(∑m

j=1
w jP ji + b

)
(7)

Here, Vi is the i-th element in the combined word vector, and m

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

is the count of pre-trained embeddings. Also, Pji is the i-th ele-
ments in j-th pre-trained embedding vector, w j is a weight on Pji,
and b is a bias. Function fact(.) is the sigmoid function is used as
activation.

The most important difference between our non-linear combi-
nation and the CBOW model [3] is that our objective function
is trained on the target corpus. Pre-trained embedding results
are based on general datasets, such as Wikipedia and Google
News, which can have disagreements in vocabularies and distri-
butions from the target dataset. While global embedding results
were trained based on the objective function over global datasets
(e.g., Wikipedia, Google News), our final embedding results were
trained over our target dataset. So it is expected that the cus-
tomized embedding result can fit the target dataset better than
pre-trained embedding results.

After we obtain the final target word vectors, we construct a
document vector as the sum of all the word vectors in the docu-
ment. We compute the cosine similarity between each article pair
as its semantic similarity by the formula as below:

VD =
∑
w in D

Vw

Semantic simlarity(A, B) = cos(VDA ,VDB)

Here VD is the document vector and Vw is the word vector for
each word in D. VDA and VDB , respectively, are the document
vectors of articles A and B, respectively.

3.4 Word Overlap between Article Pair
Common words in two articles are the most convincing evi-

dence of strong relationship between the two articles. We also
utilizing word overlap between article pairs as a feature in our
model. We define word overlap between articles A and B as:

word overlap(A, B) = |WSA ∩WSB|

Here, WSA and WSB are word sets in article A and article B,
respectively, where stopwords are removed.

3.5 Jaccard Similarity Coefficient at Article Level and Seg-
ment Level

In combination with the word embedding models, we utilize
Jaccard similarity coefficient to quantify word overlaps between
two articles. The Jaccard similarity coefficient between two arti-
cles A and B is defined as below.

Jaccard similarity (A, B) =
|WSA ∩WSB|
|WSA ∪WSB|

Here, WSA and WSB are word sets in article A and article B, re-
spectively, where stopwords are removed. We do not apply square
root to the denominator to reflect overlap sizes. Rather we adopt
the above normalized Jaccard similarity. We call this feature as
Jaccard similarity (article level).

Although our goal is to determine whether two articles should
be merged or not, we also evaluate Jaccard similarity on every
pair of segments of two articles. In this paper, segments corre-
spond to paragraphs of articles. We argue that, when human ed-
itors check content overlap of two articles, they closely compare

small text fragments, rather than the whole articles. We also ex-
pect that the similarity between segments in two articles can be
an effective feature for predicting mergeable articles. We com-
pute the Jaccard similarity between every segment pair in two
articles, as segment similarities. Then for each article pair, we
adopt the similarity coefficient of the most similar segment pair
as a feature, called Jaccard similarity (segment level), which is
compute by:

Jaccard similarity (segment level)

= max
i∈I, j∈J

(Jaccard similarity (Ai, Bj)),

where Ai and Bj, respectively, are segments in articles A and B,
respectively.

3.6 Segment Similarity Distribution
In addition to the most similar segment pair, the whole seg-

ments in one article pair can be related to mergeability of article
pairs. Content overlaps can be either concentrating on particular
segment pairs, or distributed in most of segment pairs of the two
articles. In our previous research [22], the distribution of segment
similarities is effective for link scope prediction. Thus, we utilize
the following statistical features to characterize the distribution of
segment similarities: mean, variance, standard deviation, and co-

efficient of deviation, where similarities are measured by Jaccard
similarity over all segment pair.

3.7 Common Link-to Article Count
Features from Sections 3.2 to 3.6 for predicting merge-

able/merged article pairs are all regarding textual features. A hy-
per link, or simply a link from one article to another leads readers
to related or more detailed information regarding the link origin.
Two articles of a pair can share multiple link-to articles. Such
commonly linked articles are likely to share common informa-
tion of the article pair. Thus, we count the number of commonly
linked articles from both articles of the pair as a feature named
common link-to article count, which is expected to indicate re-
latedness even when word overlaps or semantic similarities are
scarce.

3.8 Multimodal Similarity-based Merge Prediction (MS-
BMP)

Our proposed features consist of: 1. Multiple word embeddings
combined by transfer matrix. 2. Jaccard similarity (article level).
3. Jaccard similarity (segment level). 4. Segment similarity dis-
tribution, that is a collection of statistical features on segment
similarities, consisting of mean, variance, standard deviation and
coefficient of deviation. 5. Common link-to article count. 6. Word
overlap between article pairs. We utilize Random Forest as our
classifier by two reasons: 1) Our features show no obvious linear
relationship, where tree-based classifier is expected to perform
better. 2) Our datasets are imbalanced in the way that mergeable
article and merged article pairs are much less than non-mergeable
article pairs, while Random Forest is proved to perform better
than other popular classifiers over imbalanced datasets, as shown
in Refs. [10], [21]. So, we choose Random Forest as our classi-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

fier. We call our method as Multimodal Similarity- Based Merge

Prediction (MSBMP).

3.9 Task 1 Prediction (Mergeable Pairs)
Task 1 is finding articles which are mergeable with a given tar-

get Wikipedia article. Our algorithm evaluates candidate articles
by confidence score, which is the probability of article pairs being
mergeable, estimated by the trained Random Forest classifier. To
handle the case where the target article has no mergeable articles,
we give a threshold on minimum confidence score to be judged
as mergeable. Our algorithm reports articles having confidence
score above the threshold as mergeable with the target article.
Otherwise, no article is reported as mergeable.

We also rank the candidate articles by the scoring function,
and examine the ranking quality by Precision@K, Recall@K, and
mean reciprocal rank (MRR). Random Forest classifiers output
the probability of each decision, and we use this probability to
rank candidate articles.

3.10 Task 2 Prediction (Merged Pairs)
Task 2 is to predict whether a given article pair should be

merged or not. Our proposed method produces confidence score
on each article pair. In Task 2, the features and classifier are the
same as Task 1, but the training dataset is sampled from merged
article pairs. Also, we set a tighter threshold on the confidence
score than mergeable articles.

4. Benchmark Datasets and Evaluation
Schemes

4.1 Reference Dataset Construction
To evaluate our methods for finding mergeable and merged

article pairs, we extracted two reference datasets from Wikipedia.
For the mergeable article pairs, we randomly extracted 5,460
pairs of articles in total which were suggested to be merged
together, from the category page (https://en.wikipedia.org/wiki/
Category: All articles to be merged). These articles in
Wikipedia are labeled as “It has been suggested that this article
be merged into. . . ”. Table 1 shows where these mergeable
articles appear in the ranked result of WikiSearch, in which the
title words of the given article are used as search keywords.

The second reference dataset consists of merged article pairs.
We extracted 5,000 pairs of articles in total which were actu-
ally merged, from the category page (https://en.wikipedia.org/w/
index.php?title=Category: Redirects from merges). One of the
two articles in a merged pair is labeled as “This page is a redirect
from a merge. . . ”. The difference between these two reference
datasets is that the mergeable article pair is currently under dis-
cussion, and in the future the pair may be either merged or re-
jected. On the other hand, the merged article pairs are already
merged at the collection time.

We also need to evaluate the situation such that the given target
article has no mergeable article. We construct a reference dataset
consisting of randomly selected articles which have no mergeable
article, and have no article that was merged with. Our criterion for
non-mergeable articles is that the article’s talk page is not men-
tioning about merger, and not appearing in the merged articles.

Table 1 Distribution of mergeable articles in ranked results of WikiSearch.

We call these article pairs as non-mergeable article pairs.
A merged article pair is stricter than a mergeable article

pair, because a consensus to merge them was actually reached.
Note that merged article pairs are not appearing in the merge-
able dataset, because already merged pairs do not appear in
WikiSearch results.

We collect candidate articles of a target article by WikiSearch,
where the title of the target article is used as query words, and top-
100 articles ranked by WikiSearch are collected. Table 1 shows
distribution of reference mergeable articles in ranges of ranking
by WikiSearch.

We observe that 51 percent of the reference mergeable articles
are ranked below 100 or not retrieved by WikiSearch. There-
fore, to evaluate performance on candidate articles that are out
of WikiSearch top-100, we add more candidate articles through
link neighbors. For each target article, we collect articles linked
within two-hop distance from the target. For example, suppose
that for article A and article B, there are articles C, D and E which
have links to both A and B. In this situation, A and B are two-
hop neighbors. Also, C, D and E are 1-hop neighbors of A and
B. Then we call B has three common link-to articles with A. To
reduce candidates by neighbors, we select top-20 articles ranked
by the number of common link-to articles with the target, namely
articles linked from both the target and a two-hop neighbor.

We call a target article that appears in the mergeable (resp.
merged) article pairs as a mergeable (resp. merged) target, and
a target article that is neither in the mergeable pairs nor in the
merged pairs as a non-mergeable target.

Once an article was merged with the target article, it will
no longer appear in any WikiSearch results. Thus, the correct
merged article has to be added to the candidates of each merged
target.

Since one target may have a quite limited number of true
mergeable/merge articles, such as one or two, we restrict the num-
ber of candidates to be just 120 or 121, as follows. Each merge-
able target has 120 candidate articles (top-100 WikiSearch + top-
20 common link-to articles), but whether it has a correct answer
in the candidates is unknown. But for merged targets, their can-
didates consist of 121 candidate articles (top-100 WikiSearch +
top-20 common link-to articles + correct answer).

As listed in Table 2, we construct four datasets, named as
Mergeable-1, Merged-1, 10, 100, where the number x = 1, 10,
100 indicates that the ratio of mergeable/merged targets to non-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 2 Benchmark datasets.

mergeable targets is 1 to x. We split each dataset into 50 percent
for training and 50 percent for test, and adopt two-fold cross val-
idation in computing scores. Regarding splitting, each of merge-
able/merged, non-mergeable targets and their candidates are di-
vided into halves, so that each half dataset keeps the same ratio
as shown in Table 2. The first half (Part-1) is used for training and
the second half (Part-2) is tested. Next, Part-2 is used for training
and Part-1 is tested. Then the union of the test results of Part-1
and Part-2 is used to calculate scores for the dataset.

Most of experiments are done on Mergeable-1 and Merged-1.
Since non-mergeable candidates do not contain correct answers,
they are omitted in calculation of recall. But for FPR and accu-
racy, the ratio of non-mergeable targets affects the results, thus
we vary the ratio of non-mergeable targets from 1 to 100.

4.2 Evaluation Schemes
To evaluate algorithms, we use Precision@K and Recall@K,

defined as:

Precision@K =
count of correct yes answers in top K

K

Recall@K =
count of correct yes answers in top K

count of real mergeable articles

Note that most of articles in Wikipedia rarely have more than
two mergeable article counter parts, so only one or two correct
‘yes’ answers are likely to exist. So precision and recall are tak-
ing values from limited combinations k′/k, where 0 ≤ k′ ≤ k and
k′ is a small integer such as 1 or 2. However, by taking macro
averages of precision and recall over the whole dataset, we can
reveal performance of each algorithm. For the mergeable and
merged article datasets, we define:

AVGPrecision =
1
n

n∑
i=1

Precisioni

AVGRecall =
1
n

n∑
i=1

Recalli

Here, n is the number of all the target articles of one dataset, and
Precsioni and Recalli are those of the ith target article.

In our datasets, non-mergeable targets do not have correct an-
swers in their candidates. Also, if WikiSearch did not retrieve
correct answers, they are not included in the candidates. In both
cases, we define that the recall for the target is zero. As shown
in Tables 1 and 2, Mergeable-1 has 5,460 mergeable targets, but
2,329 targets among those have no correct answer in their can-
didates. So the upper-bound of AVGRecall of Mergeable-1 is
(5460 − 2329)/(5460 + 5460) = 0.287. On the other hand, in
Merged-1, the candidates of the 5,000 merged targets always con-
tain one correct answer, so the upper-bound of AVGRecall of
Merged-1 is 5000/(5000 + 5000) = 0.5.

To evaluate algorithms for the non-merged situation, we use
datasets Merged-1, Merged-10, and Merged-100, and compute
Accuracy and False Positive Rate (FPR) to evaluate each method,
defined as:

Accuracy =
count of correct answers

count of total mergeable pairs

FPR =
False Postives

False Postives + True Negatives

=
incorrect ‘yes’

incorrect ‘yes’ + correct ‘no’

To evaluate from the perspective of where the true mergeable
or merged article is ranked in a result ranked by the scoring func-
tion of each method, we utilize AVGRecall@K-curve and Mean
Reciprocal Rank (MRR). MRR is defined as

MRR =
1
n

n∑
i=1

1
ranki

Here, ranki is the rank of the first correct answer in the result
of the i-th article, and n is the number of the articles in the
dataset. If the correct answer is not in the ranked result, we set
1/ranki = 0. Then the upper-bound of MRR for Mergeable-1 is
(5460 − 2329)/(5460 + 5460) = 0.287.

5. Experimental Evaluations and Discussions

We conduct a series of experiments to evaluate our methods.
The first experiment is comparing single features including com-
bination of multiple pre-trained embeddings. The next experi-
ment is comparing our trained classifier with existing baseline
systems. We also discuss optimizing the threshold for the classi-
fier.

5.1 Experiment on Single Methods
In this experiment, we change the ranking parameter K be-

tween 1, 2, 3, 4, 5, 10, 20, 50 and 120, to examine correlation be-
tween scoring functions and prediction performance. In Table 1,
we can see a great majority of mergeable articles are located at
rank 20 or higher in WikiSearch results. When K is 1, the algo-
rithm only selects the top-1 article as a possible answer. As most
of articles have only one mergeable article, AVGRecall@K and
AVGPrecision@K are often close. Hence we just show AVGRe-
call@K. Baseline algorithms by a single method, consisting of
TF-IDF (over the target dataset), Jaccard similarity and simhash,

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 3 Details of pre-trained embeddings.

are also compared on Mergeable-1. For the embedding-based
methods, we evaluate three pre-trained embedding results, sepa-
rately trained by the word2vec model [18] and Glove model [13],
as shown in Table 3.

Here, we also test embeddings directly trained on Mergeable-1.
The similarity of each method is computed as follows:
(1) TF-IDF: TF-IDF vectorization, and cosine similarity.
(2) Jaccard similarity: Binary vectorization, and similarity by

Jaccard coefficient.
(3) Simhash: The Simhash algorithm [7].
(4) Embedding: Vectorization by the sum of word vectors, and

cosine similarity.
(5) Doc2vec: Doc2vec vectorization, and cosine similarity.

Figure 7 shows the results on AVGRecall@K.
In our algorithm settings, selecting top-K is to reduce low-

probability mergeable articles, and the threshold is to give an ex-
act binary answer on each article pair. Here, we draw a curve
with changing K to show how AVGRecall@K grows with K. As
expected, AVGRecall@K is monotonically increasing with grow-
ing K. For Mergeable-1, since 71.3 percent of the target articles
do not have true mergeable articles in their candidates, the upper
bound of AVGRecall@K is 0.287, not 0.5.

WikiSearch top-2 is an important baseline, because
WikiSearch is a readily available tool for editors to find
mergeable articles. We expect WikiSearch top-2 will return the
target article itself and mergeable article(s). But once two articles
were merged, the WikiSearch index is updated, and WikiSearch
returns only the target article, thus failing to retrieve the merged
article. As shown in Fig. 7, WikiSearch top-1 is much worse
than top-2, because WikiSearch returns the target article itself as
top-1, but we regard it as a wrong answer.

For evaluation of combining multiple pre-trained embedding
results, we compare the sum and concatenation combinations by
Garten [9], 1 to N+ combination by Yin [22] and our proposing
methods. The results are shown in Fig. 8.

We can observe that Transfer matrix combination and Neural
network combination perform better than sum and concatenation
combinations. The performance of Transfer matrix combination
and Neural network combination in this experiment are basically
identical. We adopt Transfer matrix combination in the succeed-
ing experiments.

5.2 Experiments on All Features
The combined embedding results above are for comparing se-

mantic similarities. Here, we evaluate Article-level and Segment-

Fig. 7 Results on existing methods (Mergeable-1).

Fig. 8 Results of combining embeddings (Mergeable-1).

Fig. 9 Performance on single features (Mergeable-1).

level Jaccard similarities for measuring overlaps and duplicates,
as well as Segment similarity distribution and Common link-
to article count. Datasets Mergeable-1 and Merged-1 are used.
Random forest classifiers are trained on all the features, and all-
except-one features (ablation test), where a random half of each
dataset is used for training and the other half for testing. Confi-
dence score by each classifier is used for ranking the candidate
articles. The results of the single features are shown in Fig. 9
(Mergeable-1) and Fig. 10 (Merged-1). The results of all features
and all-except-one features are shown in Fig. 11 (Mergeable-1)
and Fig. 12 (Merged-1).

In the single-feature results, Overlap is performing low, but we

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 10 Performance on single features (Merged-1).

Fig. 11 Performance on all features and remove-one-feature (ablation test)
(Mergeable-1).

Fig. 12 Performance on all features and remove-one-feature (ablation test)
(Merged-1).

expect Overlap can contribute to improve the results when com-
bined with other features. The most effective feature is Common
link-to article count and the second one is Segment-level Jaccard
similarity. We argue that Common link-to articles is effective be-
cause Common link-to article count can capture hidden common
topics indicated by links, even when word overlap or semantic
overlap is scarce. Keywords related to such hidden topics may
not explicitly occur in the target article or candidate articles. On
the other hand, links in Wikipedia articles are added by human
authors, which can be regarded as an indicator of existence of
hidden common topics. Segment-level Jaccard similarity is im-
portant because strongly similar text fragments are important clue
for article merge.

From Figs. 9 and 10, we find that Segment-level Jaccard sim-
ilarity performs better than Article-level Jaccard similarity. It
can be explained as full articles are long, containing more noisy

Fig. 13 AVGRecall@K curves by representative methods (Mergeable-1).

Fig. 14 AVGRecall@K curves on representative methods (Merged-1).

words than the segment level.
We find that the overall best result is the combination of all

the features by Random Forest. Therefore, for our proposing
method, we choose the combination of the embedding features,
Jaccard distance (article level), Overlap, Common link-to article
count, Jaccard distance (segment level), and Segment similarity
distribution, where Random Forest is used as the classifier.

5.3 Comparison with Existing Methods
In Fig. 13, we show the AVGRecall@K curves of repre-

sentative existing methods, consisting of WikiSearch, TFIDF,
Article-level Jaccard similarity, word2vec (Google News), and
our proposing method MSBMP, over Mergeable-1. As K grows,
AVGRecall of each method also grows, toward the upper limit of
0.287 in dataset Mergeable-1. However, our proposing method
rises faster than any other models, closing to upper limit as early
as K = 5, showing the best performance. Also, our method is
significantly better than WikiSearch, meaning that editors can
receive significant merits in finding mergeable articles. Similar
trends are observed on dataset Merged-1 in Fig. 14. As K grows,
MSBMP is closing to the upper-bound of 0.5 for Merged-1 faster
than any other methods. WikiSearch is not compared on Merged-
1, because as explained before, WikiSearch does not find merged
articles.

5.4 Experiments on Confidence Thresholds
Figure 15 shows the receiver operating characteristic curves

(ROC curves) of the representative methods, where the threshold

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 15 ROC curves with varying threshold (Mergeable-1).

Table 4 AUC scores (Mergeable-1).

Table 5 Precision, Recall and F1 scores (Mergeable-1).

on confidence score is changed from 0 to 1. We only select the
target articles having a mergeable article that can be searched by
WikiSearch. This is to allow true positive rate to reach 1.0. We
set the maximum value of K as 120, meaning that if the threshold
is 0 then all the articles will be classified as mergeable. In this
situation, the curve reaches to point (1, 1). If the threshold equals
1, then all the articles will be classified as non-mergeable articles,
and the curve reaches to point (0, 0).

In Fig. 15, we can observe that our method is closer to the up-
per left corner than all the other methods. It means our method is
more likely to rank positive articles higher. The upper left corner
point of our method is around (0.2, 0.8). At this point the thresh-
old is 0.80, which can be regarded as the optimum threshold for
classifying mergeable articles.

Table 4 shows the AUC (area under the ROC curve) score of
each method on Mergeable-1.

The results in Table 4 shows that our proposed method MS-
BMP achieves the highest AUC score, showing the best model
performance aggregated over varying threshold.

From the ROC curves, we find the optimum cut-off point for
each method, and compute the precision, recall, and F1 score for
each method. Table 5 shows that MSBMP shows the highest F1
score.

To compare the methods in terms of ranking ability, we com-
pute the mean reciprocal rank (MRR) of each method, namely
how higher the correct mergeable article is ranked. Table 6 shows
that our proposed method MSBMP’s MRR score is highest, indi-
cating that MSBMP performs better than the other methods in

Table 6 Mean reciprocal rank (MRR) results (Mergeable-1).

Table 7 Accuracy and FPR of MSBMP on merged article pairs.

ranking ability.

5.5 Experiments on Handling Non-mergeable Articles
In this experiment, we apply MSBMP to test accuracy and false

positive rate (FPR). We use datasets Merged-1, −10, and −100,
which are unions of non-mergeable targets with merged targets,
where the ratio of the merged targets to non-merged targets is
controlled from 1 : 1, 1 : 10, to 1 : 100. In this experiment,
we set threshold as 0.8. WikiSearch is not compared in this ex-
periment, because WikiSearch always returns certain articles as
positives. Table 7 shows the accuracy and FPR results of our
proposed method.

From Table 7, we find that as the ratio of non-mergeable arti-
cles increases, both accuracy and FPR decrease. The degradation
of accuracy indicates that our algorithm predicts wrong answers
more on non-mergeable article pairs. But even when the ratio of
non-mergeable pairs reaches 100 times to merged pairs, both ac-
curacy and FPR are still decreasing slowly, indicating that our al-
gorithm has stable performance for prediction even when merged
articles are rare.

5.6 Discussions
From the results, we can find that the results of the word2vec-

based methods are superior to TF-IDF, and simhash-based meth-
ods. The reason is that while our goal is to find mergeable or
merged article pairs, simhash focuses on literal similarity. TF-
IDF is influenced by local datasets, performing worse in our
datasets. WikiSearch is also utilizing an improved TF-IDF algo-
rithm. So WikiSearch results can be seen as TF-IDF results over
the whole Wikipedia. But we find that Article-level Jaccard sim-
ilarity performs better than TF-IDF and simhash, indicating that
measuring overlaps on the whole words is more advantageous
than counting matching words or keywords.

We compared the four single embedding methods. The embed-
ding model directly trained only on the target dataset performs
worst as we predicted, since the target dataset is much smaller
than the other pre-trained models and our combined model. The
single embedding result trained over Wikipedia is not the best in
the single embedding results. It can be explained as Wikipedia
is the smallest corpus in publicly-available pretrained datasets.
The combined embedding methods are mostly better than the sin-
gle embedding results. This is because the combined embedding
supports more cases than the single embedding methods, yielding

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

a high accuracy. Another reason is that combining two different
embeddings can reduce excessive bias on the vector generated for
each word in the target dataset. The last reason is that our objec-
tive function is more adapted to a new particular target dataset,
which is not reflected on the embedding results trained over gen-
eral large corpora.

From Figs. 9 and 10, we can find that Common link-to article
count is quite effective. We consider the reason is that links are
added by human authors, indicating hidden common topics which
are hard to be extracted by word overlaps or semantic similarities.
In our experiment, we find Common link-to article count per-
forms especially better in the situation where one article is short
(Wikipedia Guidelines 3 and 4).

We show an example on the above case. The articles “Al-
most Real” and “The Bridges of Madison Country (musical)”
are judged to be merged together by editors. But the two arti-
cles’ Jaccard similarity is only 0.007, and the cosine similarity of
these two articles in the embedding space is about 0.5. But within
two-hop neighbors, they have three common link-to articles “Ja-
son Robert Brown,” “Kelli O’Hara,” and “Winterset Iowa,” con-
trasted with other candidates “South Pacific (musical)” and “The
Bridges of Madison Country,” both have two common link-to ar-
ticles. This example shows Common link-to article count is find-
ing implicit relatedness that is hard to be found by word overlaps
and semantic similarities.

6. Evaluating Impact of Overlap Size and Ar-
ticle Length

To further test our method on various overlaps of article pairs,
we test our method on low, middle and high overlaps in arti-
cle pairs. The low overlap is the pairs that have less than 20
co-occurring words. The middle overlap is the pairs that have
between 21 and 60 co-occurring words, and the high overlap is
the pairs having more than 60 co-occurring words. In this ex-
periment, we intend to investigate how overlaps affect predic-
tion of each method, through evaluating how well true positives
(mergeable targets) are ranked. So in this experiment, we se-
lect the 5,460 mergeable target articles and their candidates from
Mergeable-1. We call this dataset as Mergeable-1-positive. The
overlap distribution of Mergeable-1-positive is shown in Fig. 16.
The average recall@1 results of the compared methods over the
three subsets are shown in Table 8.

From the results shown in Table 8, we observe that the over-
lap size greatly affects the accuracy results of all the considered
methods. From Table 8, we find that Jaccard distance performs
better in the low overlap size, and the embedding-based methods
perform better in high overlap size.

Now let us consider the relationship between article length and
overlap size. In contrast to article pairs that are both short, arti-
cle pairs that are both long are more likely to have high overlap.
For the same reason, article pairs that are both short tend to have
low overlap. So our principle is that for article pairs that are both
long, we will give larger weights on embedding-based methods,
and for article pairs that are both short, we will give larger weights
on Jaccard distance. But for pairs where one article is short and
the other is long, the expected overlap size is not simply propor-

Fig. 16 Distribution of word overlapping (Mergeable-1-positive).

Table 8 AVGRecall@1 results over overlap sizes (Mergeable-1-positive).

tional to the total article length. So we prefer to put more weight
on semantic relatedness.

In Table 8, we find that the Jaccard distance performs best in
the low overlap pairs, while the embedding-based methods per-
form better in the high overlap pairs. That can be explained as the
article pairs with low overlap are relatively short, so Jaccard dis-
tance is more effective. The embedding-based methods perform
better on pairs having high overlap, because these article pairs are
likely to be longer, so semantic similarities of non-overlapping
parts give more information.

We also try to determine the optimum weight between Jaccard
distance and semantic relatedness, by the overlap size and arti-
cle length. But the results are not improved. It appears that this
parameter optimization requires further studies. We design an
experiment to see how they perform on article groups of different
relatedness. We collect three groups as follows:

a. Merge group consists of 100 pairs of mergeable articles.
b. Related group consists of 100 pairs of related articles, where

related articles are such that we search articles by an article title
on WikiSearch, and the article of the title and one of the search
results is given as a related article pair.

c. Random group consists of 100 pairs of random articles.
We compute Jaccard distance of each article pair, on the segment
and article levels. For the article level, we choose the shortest
Jaccard distance between all the segment pairs of one article pair.
Then we rank the pairs by the descending order of Jaccard dis-
tance. Figures 17 and 18, respectively, show the trends of Jaccard
distance on the article level and segment level, respectively.

Figure 17 shows that the curves of the three groups are totally

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 17 Jaccard similarity on article level (Mergeable-1).

Fig. 18 Jaccard similarity on segment level (Mergeable-1).

separated from each other. In Fig. 17, the curves of related pairs
and random pairs interweave with each other, but the curve of
merged pairs is distinctively higher than the other two curves.
This indicates that the Jaccard distance on the segment level is
separating mergeable pairs better than the article level, in this
classification problem.

7. Conclusion

In this paper, we proposed Multimodal Similarity-Based
Merge Prediction (MSBMP) for detection of mergeable and
merged article pairs. MSBMP integrates textual and semantic
similarities as well as link-structural similarities, to deal with a
variety of situations where article merge is necessary. Regard-
ing linear and non-linear combination methods of multiple em-
bedding results for semantic similarities, we discussed the differ-
ences between pre-trained large datasets and target dataset, and
introduced a new objective function. This objective function can
train a model more fitted to a particular target dataset.

In addition to semantic similarities, we also considered features
on word overlap and semantic similarity between article pairs.
We further discussed combining embedding methods and Jaccard
similarity to cope with both semantic similarity and word over-
laps. Rigorous evaluations on real mergeable and merged datasets
shows that combination of features on embeddings, Jaccard sim-
ilarity (article- and segment- levels), word overlap, Common
link-to article count, and Segment similarity distribution achieves
around 5 percent improvement on Recall@1 over WikiSearch.
We showed Jaccard similarity (segment level) and Segment sim-
ilarity distribution are indispensable features. We also found
that Common link-to article count is a particularly strong fea-
ture when one article is short, and Jaccard similarity is especially
effective on highly similar segments.

Acknowledgments This work was in part supported by JSPS

KAKENHI Grant Number 19K11983. The authors are grateful
for the helpful and constructive comments by the reviewers and
editor.

References

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M. and Kudlur, M.: TensorFlow:
A System for Large-Scale Machine Learning, OSDI, Vol.16, pp.265–
283 (2016).

[2] Alonso, O., Fetterly, D. and Manasse, M: Duplicate news story de-
tection revisited, Asia Information Retrieval Symposium, pp.203–214,
Springer, Berlin, Heidelberg (2013).

[3] Bengio, Y., Ducharme, R., Vincent, P. and Jauvin, C.: A neural
probabilistic language model, Journal of Machine Learning Research,
Vol.3, pp.1137–1155 (2003).

[4] Breiman, L.: Random forests, Machine Learning, Vol.45, No.1, pp.5–
32 (2001).

[5] Broder, A.Z.: On the resemblance and containment of documents,
Proc. Compression and Complexity of Sequences 1997, pp.21–29,
IEEE (1997).

[6] Broder, A.Z., Glassman, S.C., Manasse, M.S. and Zweig, G.: Syn-
tactic clustering of the web, Computer Networks and ISDN Systems,
Vol.29, No.8-13, pp.1157–1166 (1997).

[7] Charikar, M.S.: Similarity estimation techniques from rounding al-
gorithms, Proc. 34th ACM Symp. Theory of Computing, pp.380–388
(2002).

[8] Ferrero, J., Agnes, F., Besacier, L. and Schwab, D.: Using Word Em-
bedding for Cross-Language Plagiarism Detection, EACL 2017, p.415
(2017).

[9] Garten, J., Sagae, K., Ustun, V. and Dehghani, M.: Combining dis-
tributed vector representations for words, Proc. 1st Workshop on Vec-
tor Space Modeling for Natural Language Processing, pp.95–101
(2015).

[10] Hong, X., Chen, S. and Harris, C.J.: A kernel-based two-class clas-
sifier for imbalanced data sets, IEEE Trans. Neural Networks, Vol.18,
No.1, pp.28–41 (2007).

[11] Ng, A.: Sparse autoencoder, CS294A Lecture Notes, Vol.72, pp.1–19
(2011).

[12] Pan, S.J. and Yang, Q.: A survey on transfer learning, IEEE Trans.
Knowledge and Data Engineering, Vol.22, No.10, pp.1345–1359
(2010).

[13] Pennington, J., Socher, R. and Manning, C.: Glove: Global vectors for
word representation, Proc. 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp.1532–1543 (2014).

[14] Peng, H., Li, J., Song, Y. and Liu, Y.: Incrementally Learning the
Hierarchical Softmax Function for Neural Language Models, AAAI
pp.3267–3273 (2017).

[15] Pertile, S.D.L., Moreira, V.P. and Rosso, P.: Comparing and combin-
ing Content-and Citation-based approaches for plagiarism detection,
Journal of the Association for Information Science and Technology,
Vol.67, No.10, pp.2511–2526 (2016).

[16] Schleimer, S., Wilkerson, D.S. and Aiken, A.: Winnowing: Local al-
gorithms for document fingerprinting, Proc. 2003 ACM SIGMOD Int.
Conf. Management of Data, pp.76–85 (2003).

[17] Schofield, A., Thompson, L. and Mimno, D.: Quantifying the effects
of text duplication on semantic models, Proc. 2017 Conference on
Empirical Methods in Natural Language Processing, pp.2737—2747
(2017).

[18] Mikolov, T., Ilya, S., Kai, C., Greg, C. and Jeffrey, D.: Distributed
Representations of Words and Phrases and their Compositionality,
NIPS ’13, pp.3111–3119 (2013).

[19] Mikolov, T., Kai, C., Greg, C. and Jeffrey, D.: Efficient Estimation of
Word Representations in Vector Space, ICLR ’13 Proc. Workshop at
International Conference on Learning Representations (2013).

[20] Mikolov, T., Le, Q.V. and Sutskever, H.: Exploiting similarities among
languages for machine translation, arXiv preprint arXiv:1309.4168
(2013).

[21] Sun, Y., Wong, A.K. and Kamel, M.S.: Classification of imbalanced
data: A review, International Journal of Pattern Recognition and Ar-
tificial Intelligence, Vol.23, No.4, pp.687–719 (2009).

[22] Wang, R. and Iwaihara, M.: Estimating Reference Scopes of
Wikipedia Article Inner-links, IPSJ Trans. Databases, Vol.11, No.2,
pp.1–9 (2018).

[23] Weissman, S., Ayhan, S., Bradley, J. and Lin, J.: Identifying duplicate
and contradictory information in wikipedia, Proc. 15th ACM/IEEE-CS
Joint Conference on Digital Libraries, pp.57–60, ACM (2015).

[24] Yin, W. and Schütze, H.: Learning meta-embeddings, ACL 2016,
pp.1351–1360 (2016).

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

[25] Zhang, Y., Roller, S. and Wallace, B.C.: MGNC-CNN: A Simple Ap-
proach to Exploiting Multiple Word Embeddings for Sentence Classi-
fication, Proc. NAACL-HLT, pp.1522–1527 (2016).

[26] Wikipedia:Merging, available from 〈https://en.wikipedia.org/wiki/
Wikipedia:Merging#Reasons for merger〉.

Renzhi Wang received his B.S. degree in
Computer Science and Technology from
Sichuan University in 2013. He received
his M.Eng. degree from Waseda Univer-
sity in 2014. He is now a Ph.D. candidate
in Waseda University.

Mizuho Iwaihara received his B.Eng.,
M.Eng. and D.Eng. degrees all from
Kyushu University, in 1988, 1990, and
1993 respectively. He was a research as-
sociate and then an associate professor in
Kyushu University, from 1993 to 2001.
From 2001 to 2009, he was an associate
professor at Department of Social Infor-

matics, Kyoto University. Since 2009, he is a professor at Gradu-
ate School of IPS, Waseda University. He is a member of IEICE,
IPSJ, ACM and IEEE CS.

(Editor in Charge: Sumio Fujita)

c© 2020 Information Processing Society of Japan

