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Abstract: Data in many fields such as e-commerce, social networks, and web data can be modeled as bipartite graphs,
where a node represents a person and/or an object and a link represents the relationship between people and/or objects.
Since the relationships change with time, data mining techniques for time series graphs have been actively studied.
In this paper, we study the problem of predicting links in the future graph from historical graphs. Although various
studies have been carried out on link prediction, the prediction accuracy of existing methods is still low because it is
difficult to capture continuous change with time. Therefore, we propose a new method that combines non-negative
matrix factorization (NMF) and a time series data forecasting method. NMF extracts the latent features while the fore-
casting method captures and predicts the changes of the features with time. Our method can predict hidden links that
do not appear in historical graphs. Our experiments with real datasets show that our method has a higher prediction
accuracy compared to existing methods.
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1. Introduction

The amount of data in many applications such as e-commerce,
social networks, and the web is increasing rapidly. Extracting
useful information from these big data can improve the qual-
ity of applications or services and can create new profits. Data
from these applications can be modeled as bipartite graphs, where
nodes represent objects and links represent the relationship be-
tween the objects. For example, if a customer purchases an item
from an e-commerce site, we can represent this relationship us-
ing a link between two nodes, those represent a customer and an
item. Graphs can be used in various data mining tasks, such as
detecting hidden groups, detecting missing links, and ranking ob-
jects [8].

Real world data such as product sales is dynamic because their
relationships change with time. Therefore, it is important to take
into consideration the temporal changes in the links so as to pre-
dict the links at a future time. By predicting the future link struc-
ture, we can predict future trends and behaviors. Therefore, e-
commerce sites such as amazon can recommend products which
match customers tastes and increase their sales and customer sat-
isfaction [7], [13], [14], [18], [19]. We formally define our prob-
lem as follows.
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Problem definition: (Time Series Link Prediction). Given a
set of time series bipartite graphs G1 = (V1,V2, E1), · · · ,GT =

(V1,V2, ET ) from time 1 to T , where V1 and V2 represent the sets
of nodes and Et represents the set of weighted links at each time
t, the task is to predict the set of binary links ET+1 in the future
graph GT+1 = (V1,V2, ET+1) at time T + 1.

Various link prediction methods have been proposed, but the
prediction accuracy is still low [13] for time series graphs. In or-
der to improve the prediction accuracy, it is important to model
the features of the graph properly and capture how these fea-
tures change with time. Non-negative matrix factorization (NMF)
method can be used in modelling graph features because it ex-
tracts latent features effectively and therefore helps in understand-
ing the underlying link structure [20]. In addition, data forecast-
ing methods such as Holt-Winters, Vector Auto Regressive (VAR)
and recurrent neural networks are commonly used in time series
data forecasting. Holt-Winters method can capture periodicity or
seasonal fluctuations in time series data [3], [11]. VAR is able
to capture linear relationships among variables in multivariate
time series data [21]. Recurrent neural networks especially Long-
Short Term Memory (LSTM) have recently gained popularity in
time series data forecasting because they can capture non-linear
relationships in sequential data, as well as their capability to re-
member past information and take this past information into con-
sideration while predicting future values [15], [25].

In this paper, we propose a new time series link prediction
method that combines NMF and time series data forecasting
methods for predicting the links in the future graph from histor-
ical graphs. Our method first applies NMF to extract the latent
features from the matrix representing the structure of each histor-
ical graph at time t (1 ≤ t ≤ T ) and, then applies a forecasting
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method to predict the latent features at time T + 1 from the time
series of the decomposed matrices from time 1 to T . In addition,
we propose an extension to our method so as to improve the pre-
ciseness of the prediction; future prediction by ensemble learning.
By employing ensemble learning, multiple models can be created
by changing the parameters and they are combined to improve
the prediction accuracy and avoid overfitting [5]. We evaluate our
method by comparing it with other methods using real datasets
and our method showed an improvement in the prediction accu-
racy.

The remainder of this paper is organized as follows. Section 2
overviews the preliminaries of this work. Section 3 describes the
details of our proposed method. Section 4 reviews the results of
our experiments. Section 5 describes related work. Section 6
provides our brief conclusion.

2. Preliminaries

In this section, we introduce the background of the methods
proposed in this paper.

2.1 Time Series Graph
Let G = (V1,V2, E) be a bipartite graph, where V1 and V2 are

sets of nodes and E ∈ V1×V2 is a set of weighted links. The num-
bers of nodes in V1 and V2 are denoted by N and M, respectively.
The bipartite graph G is represented in a form of two-dimensional
adjacency matrix X of size M × N. If there exists a link between
nodes i and j, the (i, j) component of the matrix is assigned the
weights of the links and zero if there is no link. The graph struc-
ture over a period of time is considered. We denote X(t) as an
adjacency matrix at each time t. We call the set of graphs over
time range time series graph.

2.2 NMF: Non-negative Matrix Factorization
NMF decomposes a matrix of non-negative values to two ma-

trices of low dimensions such that they do not include negative
values [16]. This restriction enables NMF to provide different
decomposition results compared to other matrix decomposition
methods such as singular value decomposition (SVD) or princi-
pal component analysis (PCA). NMF results are easy to interpret,
especially in tasks where the underlying features are interpreted
as non-negative.

In NMF, a non-negative value matrix X of size M × N is de-
composed into two non-negative matrices, U and V of size M×K

and K × N respectively, such that X ≈ UV. K is the base number
of NMF and is an arbitrary parameter. In this paper, we use the
multiplicative update rules for NMF where matrices U and V are
initialized with random non-negative values. We use an iterative
method to update matrices U and V such that the divergence be-
tween the original matrix X and UV is minimized. The datasets in
our experiments are expected to follow the Poisson distribution,
therefore we use the Kullback- Leibler (KL) divergence. The up-
date rules based on KL divergence are defined by the Eqs. (1), (2)
below as discussed by Ref. [17].

uik ← uik

∑
j

xi jvk j

∑
k

uikvk j

∑
j
vk j
, (1)

vk j ← vk j

∑
i

xikuik

∑
k

uikvk j

∑
i

uik
. (2)

The obtained decomposed matrices can be regarded as matrices
in which the features of the original matrix are reduced into a low
dimension, that is, the features of each axis of the original matrix
are reduced into groups with K number of components.

2.3 Forecasting Approach
Various time series data forecasting methods have been stud-

ied [22]. Prediction of how a link changes between certain nodes
is a univariate time series prediction task, and therefore future
links can be predicted by solving all the node combinations.

Exponential smoothing is a simple univariate time series pre-
diction method. In the first-order exponential smoothing method,
prediction is performed on the observations y1, · · · , yt such that
the most recent observation is given more weight.

Pt+1 = αyt + (1 − α)Pt, (3)

where α is a learning coefficient which takes values 0 ≤ α ≤ 1 and
Pt+1 is the predicted value for one time period ahead. However,
the first-order exponential smoothing prediction formula does not
capture change in trends such as increasing and decreasing trends
effectively. In the second-order exponential smoothing method,
prediction is performed with the addition of the term bt which
captures the trend such that

Pt+1 = αyt + (1 − α)Pt + bt and (4)

bt = β(Pt − Pt−1) + (1 − β)bt−1, (5)

where β is the trend coefficient.
Holt-Winters is a forecasting method suitable for time series

data that has seasonality and trend [3], [11]. Seasonality means
that the time series data has trends that repeat every m cycles.
There are two variations of the Holt-Winters forecasting tech-
nique; additive and multiplicative methods. These variations dif-
fer in the seasonality component. The additive method is suitable
when the seasonal variations in the series are roughly constant.
On the other hand, the multiplicative method is suitable when the
seasonal variations change proportionally to the level (average
value) of the series. In this paper we choose the additive method
because the change in our datasets is fairly constant. The additive
Holt-Winters method consists of three smoothing equations and
a forecasting equation as shown below.

lt = α(yt − st−m) + (1 − α)(lt−1 + bt−1). (6)

bt = β(lt − lt−1) + (1 − β)bt−1. (7)

st = γ(yt − lt−1 − bt−1) + (1 − γ)st−m. (8)

yt+h = lt + hbt + st−m+h. (9)

y1, y2, · · · , yt are the observed values and m is the seasonality pa-
rameter which represents the length of the seasonal cycle, for ex-
ample, m = 3 for quarterly data, and m = 12 for monthly data.
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α, β, γ are smoothing parameters. lt is the smoothed estimate of
the level at time t, bt is the smoothed estimate of the change in
the trend at time t and st is the smoothed estimate of the seasonal
component at time t. The smoothing Eqs. (6)–(8) minimize the
squared error and the forecast, (yt+h) at h time periods ahead is
calculated as shown in Eq. (9).

Auto Regressive (AR) models are also widely used in time se-
ries data forecasting [26], [28]. The AR model is used in various
research fields, for example, in social economics, Simultaneous
Auto Regressive (SAR) model is commonly used in the analysis
of spatial data since it incorporates spatial auto-correlations into
regression models [1].

The Vector Auto Regressive (VAR) model is popular in pre-
diction of future observations in multivariate time series data. It
extends the AR model to the multivariate setting by modelling
linear interdependencies between multiple features in time series
data [21]. Let yt ∈ Rn denote a multivariate time series with time
lag set L and weights Al ∈ Rn×n, VAR approximates yt as,

yt =
∑

l∈L

Alyt−l + εt, (10)

where εt is Gaussian noise and l is the lag of the model which
determines the extent to which current time period data relies
on data from previous time periods. VAR has also been used in
space-time prediction problems of sensor data by combining AR
model with tensor decomposition [26].

Recently, Recurrent Neural Networks (RNN) especially Long-
Short Term Memory (LSTM) have also been studied for time se-
ries data forecasting [15]. This is because of their potential to
capture long term dependencies in sequential data. The standard
LSTM model takes a sequence of vectors y1, y2, · · · , yt ∈ Rn as
input and produces a single output vector ŷt+1 ∈ Rn, where ŷt+1 is
the predicted value for one time period ahead. The key concept
of the LSTM model is a hidden state known as the cell state and
three gates; input, forget and output gates. The cell state acts as a
memory and transfers relevant information through the network.
The input gate decides whether or not to accept new input, the
forget gate decides what information to keep or delete and the
output gate decides the output of the current time period. LSTM
has the ability to remove old information or add new information
to the cell state through the gates. In addition, the gates have a
sigmoid activation which gives outputs values between 0 and 1.
These values determine how the model updates or forgets infor-
mation.

At time t, an LSTM cell receives the output of the previous
block ht−1, and the current input yt. Then it calculates the value
of the forget gate as,

ft = σ(w f [ht−1, yt] + b f ), (11)

where w f , b f are weight and bias parameters respectively, σ is a
sigmoid function and ft is the gate output. The output of the for-
get gate determines what to ignore from the previous cell state.
The input gate determines what parts of the current input should
be added to the cell state as shown below.

it = σ(wi[ht−1, yt] + bi), (12)

ĉt = tanh(wc[ht−1, yt] + bc), (13)

where wi, bi are the input gate weight and bias parameters respec-
tively and it is the input gate output. wc, bc are weight and bias
parameters for selecting candidate state ĉt. The input gate, forget
gate and candidate state determine the current state cell ct as,

ct = ft ∗ ct−1 + it ∗ ĉt. (14)

The last step which is the output gate determines the current cell
state output

ot = σ(wo[ht−1, yt] + bo), (15)

ht = ot ∗ tanh(ct), (16)

where wo, bo are weight and bias parameters and ot is used to de-
termine the output ht. ht can be used as the final predicted output
yt.
∗ denotes element wise vector multiplication and tanh is an ac-

tivation function which predicts what part should appear as output
of current LSTM unit at time t.

3. Proposed Method

In our proposed method, we use NMF to extract the underly-
ing latent features and a time series data forecasting method to
capture the change of the extracted latent features and predict fu-
ture actions. In this paper we use Holt-Winters, VAR and LSTM
forecasting methods discussed in Section 5 as the time series data
forecasting methods.

Figure 1 shows an outline of the proposed method. Z is a
three-dimensional tensor which consists of the adjacency matri-
ces of the bipartite graphs from time 1 to time T . We consider
matrices X(1), · · · , X(T ) of uniform size at each time t. NMF is ap-
plied to the matrices X(1), · · · , X(T ) to obtain U(1),V(1), · · · ,U(T ),

V(T ). A forecasting method is then applied to the sequence of U(t)

and V(t) (1 ≤ t ≤ T ) to predict the values of U(T+1) and V(T+1) at
time T + 1, respectively. The predicted matrix at time T + 1 is

Fig. 1 Overview of proposed method: Step 1: NMF is applied to the ma-
trices X(1), · · · , X(T ). Step 2: Forecasting method is applied to the
sequence of U(t) and V(t) (1 ≤ t ≤ T ). Step 3: The predicted matrix
at time T + 1 is calculated as X(T+1) = U(T+1)V(T+1).
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Algorithm 1 Calculation of prediction matrix X(T+1)

Input Z = (X(1), X(2), . . . , X(T )), XAve

Output X(T+1)

1: NMF : Uinit ,Vinit ← XAve,Urandom,Vrandom

2: for each X(t) ∈ Z do

3: NMF : U(t),V(t) ← X(t),Uinit ,Vinit

4: Ulist ← U(t)

5: Vlist ← V(t)

6: end for

7: Forecast : U(T+1) ← Ulist

8: Forecast : V(T+1) ← Vlist

9: X(T+1) = U(T+1)V(T+1)

calculated as X(T+1) = U(T+1)V(T+1).
It is intuitive and promising to combine NMF with forecasting

approaches, however, one of the difficulties is that how we can
control the latent features for each time step (X(1), · · · , X(T )) to
be consistent with those in its previous time step. The detail is as
follows. In NMF, the decomposition matrices are initialized with
random non-negative values and then the multiplicative update
rules are applied. The final decomposition matrices depend on
the initial decomposition matrices. Therefore, there is no guaran-
tee that the reduced K features appear in the same order for each
decomposition matrix in U(t) (V(t)) (1 ≤ t ≤ T ).

To solve this problem, we first apply NMF to the average

matrix defined as XAve(i, j) = 1
T

T∑
t=1

X(t)(i, j) to obtain Uinit,Vinit

which we use as the initial matrices at each time t. By using
the same initial decomposition matrix at each time t, we expect
that the order of the features tend to stay the same, that is, same
features are likely to appear in the same position in each decom-
position matrix. This ensures that the latent features are captured
properly over the entire time.

Algorithm 1 shows the detail of the proposed method. The in-
put Z is a list of same size matrices at each time t, and XAve is
the average matrix. The output X(T+1) is the predicted matrix at
time T + 1. NMF is applied to the average matrix with random
initial non-negative value matrices Urandom,Vrandom to obtain the
initial decomposition matrices Uinit,Vinit (line 1). NMF is then
applied to the matrices at each time t, with Uinit,Vinit as the initial
matrices (lines 2 and 3). A list of decomposed matrices Ulist,Vlist

is created to which a forecasting method is applied to forecast the
future values at time T + 1 (lines 7 and 8). The predicted matrix
X(T+1) is obtained by the dot product of U(T+1),V(T+1) (line 9).

3.1 Proposed Method with Ensemble Learning
Ensemble learning technique involves strategically combining

several models so as to improve the stability and predictive per-
formance. Previous studies on ensemble learning show that com-
bining multiple individual models improves prediction accuracy
compared to using a single model [5]. The idea of combining
multiple models assumes that it is difficult for a single model to
understand the underlying structure, but multiple models can cap-
ture different aspects of data. Ensemble learning is helpful when
it is difficult to choose optimum values of parameters, and when
one wants to avoid large errors [4].

The Holt-Winters seasonality parameter, m, and the number of

features, K, for NMF need to be selected manually. It is difficult
to search for optimum values for those parameters which give the
best performance. We employ an ensemble approach, let XKm de-
note the matrix of scores calculated for K = 5, 10, · · · , 100 and
m = 1, 2, · · · , 12, the final matrix of ensemble scores is then cal-
culated as,

X =
∑

K∈(5,10,...,100)

∑

m∈(1,2,...,12)

XKm

‖XKm‖F , (17)

where ‖XKm‖F is the Frobenius norm for XKm.
Similarly, the lag parameter l for VAR needs to be selected

manually. Let XKl denote the matrix of scores calculated for
K = 5, 10, · · · , 100 and l = 1, 2, · · · , 12, the final matrix of en-
semble scores is then calculated as,

X =
∑

K∈(5,10,...,100)

∑

l∈(1,2,...,12)

XKl

‖XKl‖F , (18)

where ‖XKl‖F is the Frobenius norm for XKl.

4. Experiments

In this section, we describe experiments and their results by
comparing our method proposed in Section 3 with existing link
prediction methods using matrix decomposition, summarized in
Section 5; CP, TSVD CT and TSVD CWT [6], [7], [12]. We also
investigate the effectiveness of our variation of ensemble learning
described in Section 3.

According to our problem statement in Section 1, given a set of
nodes V1 and V2 and a set of weighted links E1, · · · , ET , the task
is to predict the set of unweighted binary links ET+1. Assuming
that there is a link of weight n between node i and node j at time t,
we generate a three-dimensional tensor Z(i, j, t) = n. In order to
eliminate the influence of large values in the data, we normalize
the data according to Eq. (19) which was proposed by Ref. [7].

Z(i, j, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + log(n) n > 0

0 n = 0.
(19)

Since the objective of our study is to predict whether there is a
link or not between nodes i and j, the link information is repre-
sented as,

Y(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 n > 0

0 n = 0.
(20)

Our proposed method combines NMF and a time series data
forecasting method, we consider three popular time series data
forecasting methods; Holt-Winters, VAR and LSTM discussed
in Section 2. We carry out experiments by combining NMF with
each of the time series forecasting methods and evaluate their per-
formance on our datasets. We use the average of previous time
periods as the baseline method. The Holt-Winters smoothing pa-
rameters α, γ, β and seasonality component need to be decided
before-hand. We use the approach discussed in [3] to establish
the values for the smoothing parameters which minimize the sum
of squared errors for one time step ahead forecast. The VAR lag
parameter also needs to be decided before-hand; we search for a
value which achieves the best performance. For LSTM, we adopt
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Table 1 Dataset summary.

Dataset Training Test Hidden Links
Density Density Density

POS 7.48% 6.65% 0.25%
DBLP 3.52% 1.17% 0.65%

a sliding time window approach which uses multi-step lag obser-
vations as input. For example, for current time period t and a time
window of 2, we use previous time steps t−1 and t−2 as the input
values. We use one hidden layer and a dense layer for the output.
In addition, a dropout of 0.2 is used to avoid over-fitting. In the
case of TSVD, CP and NMF decomposition, instead of using a
fixed value of K, we use an ensemble approach as shown below.

X =
∑

K∈(5,10,...,100)

XK

‖XK‖F , (21)

where XK is the matrix of scores calculated for K =

5, 10, · · · , 100, X is the final matrix of ensemble scores and
‖XK‖F is the Frobenius norm for XK .

We construct the receiver operating characteristic (ROC) curve
and the area under the curve (AUC) measures the discrimination,
that is, the ability to predict true positives and true negatives cor-
rectly. The AUC value therefore shows how well a model pre-
dicts.

We compare the performance of the methods in predicting all
links and hidden links. In all link prediction, we compare how
the different methods perform in predicting the links in the test
dataset. On the other hand, the prediction of the hidden links ad-
dresses a difficult task, that is, how the different methods predict
links that do not previously exist in the training dataset.

4.1 Data
We use two real datasets; a point-of-sales (POS) dataset and

DBLP dataset. The point-of-sales dataset consists of supermar-
ket sales data for a period of 24 months from July 2013 to June
2015. Supermarket data is periodic because some products such
as vegetables are seasonal and special products are promoted dur-
ing special events such as Christmas and Valentines. This dataset
contains 25,668 customers and 113,688 items. From this dataset
we extract the top 1,000 frequent customers and top 500 items
with the highest number of sales. We transform the data to adja-
cency matrices of the bipartite graphs, and use data for the first
23 months as training set and data for the last month as the test
set. The density of the training and test sets is shown in Table 1.

The DBLP dataset consists of publications for a period of 17
years from 1991 to 2007. The data consists of author and con-
ference relations, when an author’s paper is presented at a con-
ference, a link is made between the author and the conference.
Similar to the POS dataset, we select the top 1000 authors and
500 conferences with the highest number of publications. We use
the data for the first 16 years as training set and data for the last
year as the test set. The density of the training and test sets is
shown in Table 1.

4.2 Results
We compare the performance of the methods in terms of AUC

values. We use prop.LSTM, prop.HW and prop.VAR to denote

Fig. 2 ROC curves for POS dataset comparison with existing methods.

the proposed method of NMF with LSTM, Holt-Winters and VAR
time series data forecasting methods, respectively.
4.2.1 Comparison with Existing Methods

Figure 2 shows the performance of the methods for the POS
dataset. The proposed method achieves the highest AUC for both
all link prediction and hidden link predictions. As expected the
AUC values for hidden link prediction are low compared to all
link prediction. This is because hidden link prediction is a chal-
lenging task which involves predicting links which do not previ-
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ously exist in the training set. The proposed method with LSTM
forecasting achieves the best performance. This implies that
LSTM’s ability to capture long-term time dependencies in time
series data improves link prediction. LSTM is capable of identi-
fying complex patterns from time series data since its able to keep
useful information and discard what is not useful. Note that the
proposed method with Holt-Winters forecasting performed better
than the proposed method with VAR forecasting. Holt-Winters
forecasting method performs well with data that has seasonality
and supermarket sales data is periodic because some products are
seasonal and special products are promoted during special events.
Further, the baseline method also performs well in all link pre-
diction for this dataset. This is because we considered the most
frequent customers and items, and in sales data it is expected that
the frequent items are purchased at each time step. On the other
hand, the baseline method cannot capture data patterns and there-
fore it cannot predict any hidden links. Also, for multiple-step
ahead forecasting and infrequent items, the performance of the
baseline method reduces significantly.

Figure 3 shows the results for the DBLP dataset. Similar to the
POS dataset, our proposed method achieves the best performance
in all link prediction and hidden link prediction in the DBLP
dataset. The proposed method with LSTM forecasting achieves
the highest performance. Note that for this dataset the proposed
method with VAR forecasting performs better than the proposed
method with Holt-Winters forecasting. VAR forecasting method
performs well for stationary data, and the DBLP dataset does not
have strong seasonality and is fairly stationary.

In order to evaluate the effect of NMF in extracting latent fea-
tures from time series graphs, we carried out experiments us-
ing only the data forecasting methods; LSTM, Holt-Winters and
VAR, without the NMF method. Figure 2 (b) and Fig. 3 (b) show
the results for the forecasting methods without NMF for the POS
and DBLP datasets respectively. The methods did not outperform
the proposed method. In addition, the forecasting methods only
predict values for existing links and cannot predict hidden links
at all. This is because they make predictions by focusing only on
one feature at each time period, and cannot capture hidden latent
features, hence they cannot predict hidden links. This shows that
the proposed method with NMF works well in extracting hidden
latent features by analyzing the underlying graph structure. By
extracting latent features from historical graphs NMF is able to
capture nodes with common features, even if those nodes have
not been linked in the past, and hence predict hidden links from
past graph structure.
4.2.2 Effect of Ensemble Learning

In Section 3.1 we described an extension to our proposed
method by applying ensemble learning. Here we evaluate the
effect of ensemble learning to the proposed method of NMF
with Holt-Winters and VAR forecasting methods as shown by
Eqs. (17) and (18) described in Section 3.1. We use prop.VAR
w/ensemble, prop.HW w/ensemble to denote the proposed
method of NMF with VAR and Holt-Winters forecasting meth-
ods with ensemble learning, respectively. Prop.VAR w/o ensem-
ble and prop.HW w/o ensemble denotes the proposed method of
NMF with VAR and Holt-Winters forecasting methods without

Fig. 3 ROC curves for DBLP dataset comparison with existing methods.

ensemble learning, respectively.
Figure 4 shows the results for method of ensemble learning for

the POS dataset. We observe that ensemble learning method led
to an increase in the prediction accuracy of the proposed methods
with Holt-Winters and VAR forecasting, especially in hidden link
prediction. The AUC values for all link prediction increased by
0.38% and the AUC values for hidden link prediction increased
by 1.46% for the proposed method with VAR forecasting. On the
other hand, the AUC values for all link prediction increased by
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Fig. 4 ROC curves for POS dataset method of ensemble learning.

0.35% and the AUC values for hidden link prediction increased
by 1.02% for the proposed method with Holt-Winters forecasting.

Figure 5 shows the results for the DBLP dataset. Ensemble
learning method led to an increase in the prediction accuracy of
the proposed methods with Holt-Winters and VAR forecasting.
The AUC values for all link prediction increased by 0.96% and
the AUC values for hidden link prediction increased by 0.83% for
the proposed method with VAR forecasting. On the other hand,
the AUC values for all link prediction increased by 0.53% and the
AUC values for hidden link prediction increased by 1.33% for the
proposed method with Holt-Winters forecasting.

Proposed method with LSTM forecasting achieved the best
performance for all our datasets as shown in Fig. 2 and Fig. 3. The
proposed method with Holt-Winters forecasting performed better
than proposed method with VAR forecasting for the POS dataset.
And, the proposed method with VAR forecasting performed bet-
ter than proposed method with Holt-Winters forecasting method
for the DBLP dataset. Previous research shows that the perfor-
mance of the time series forecasting methods vary greatly across
different datasets [9], [15]. Therefore, it is important to analyze
the characteristics of the dataset and choose the method which
achieves the best performance.
4.2.3 Analysis of Features Extracted by NMF

In this section we show examples of the latent features ex-
tracted by NMF method. Figure 6 and Fig. 7 contain examples

Fig. 5 ROC curves for DBLP dataset method of ensemble learning.

of features extracted for three consecutive time steps from our
datasets. Figure 6 shows the values of the customers features
(Uk) and items features (Vk) for k = 50 for three consecutive
time steps, t = 1, · · · , 3 for the POS dataset. Figure 7 shows the
values of the author features (Uk) and conference features (Vk)
for k = 30 for three consecutive time steps, t = 3, · · · , 5 for the
DBLP dataset. Top conferences are Interspeech, ICIP, IJCAI, and
ICASSP. Some of the top authors are Kang G. Shin, Randy H.
Katz, Geoffrey C. Fox, and others listed in the caption.

5. Related Work

In this section, we describe existing methods for the link pre-
diction problem using matrix decomposition techniques.

Truncated singular value decomposition (TSVD) is a low-rank
matrix approximation technique which can used for time series
link prediction [6]. TSVD decomposes a matrix X of size M × N

into three matrices. The best K rank approximation of the original
matrix is given by

X ≈ UKΣKVK , (22)

where UK and VK are orthogonal matrices of size M×K and K×N

respectively, and ΣK is a K × K diagonal matrix.
A three dimensional tensor can be reduced to a two dimen-

sional matrix using the collapsed tensor (CT) and collapsed
weighted tensor (CWT) techniques proposed in Ref. [7]. CT
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(a) Factors from feature 50 at time t = 1

(b) Factors from feature 50 at time t = 2

(c) Factors from feature 50 at time t = 3

Fig. 6 Examples of features from NMF model for three consecutive months
for POS data.

method removes the time series information of a three dimen-
sional tensor by taking the sum in the time direction as shown
below.

X =
T∑

t=1

Zt, (23)

where Zt is the matrix at time t and X is the sum of all matrices
from time 1 to time T . CWT method on the other hand assigns
temporal weights to the elements and reduces a three-dimensional
matrix to a two-dimensional matrix while maintaining the time

(a) Factors from feature 30 at time t = 3: Top authors are Randy H. Katz,
Geoffrey C. Fox and Hans-Peter Kriegel. Top conferences are Interspeech,
IJCAI and ISCAS.

(b) Factors from feature 30 at time t = 4: Top authors are Stephan Olari and
Philip S. Y and Akinori Yonezawa. Top conferences are Interspeech, ICIP
and ICASSP.

(c) Factors from feature 30 at time t = 5: Top authors are Kang G. Shin,
Guang R. G and Mike P. Papazogl. Top conferences are Interspeech, ICASSP
and ICIP.

Fig. 7 Examples of features from NMF model for three consecutive years
for DBLP data.

series information of the three-dimensional tensor as shown be-
low.

X =
T∑

t=1

(1 − Θ)T−t Zt, (24)
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where Zt is the matrix at time t, X is the final matrix after sum-
ming all the matrices from time 1 to time T , and Θ ∈ (0, 1) is
a parameter that is chosen by the user depending on the experi-
ments on the training data. As shown by Eq. (24), CWT assigns
more weight to the most recent links. TSVD matrix decompo-
sition method can be used with the matrices resulting from CT
and CWT, in this paper we refer to them as TSVD CT and TSVD
CWT, respectively.

In addition, Canonical Polyadic (CP) decomposition is a com-
mon tensor matrix decomposition method which decomposes a
three dimensional matrix to three rank-one tensors, just like SVD
decomposes a matrix to three rank-one matrices [7], [12]. How-
ever unlike SVD, the resultant tensors from CP decomposition
are not orthogonal, but they are unique and hence they can be
used for forecasting. The CP decomposition of a tensor X of size
M × N × T is defined as follows:

X ≈
K∑

k=1

λkak ◦ bk ◦ ck, (25)

where K is the number of components and the symbol ◦ repre-
sents the outer product*1. ak and bk extract the column and row
features respectively, while ck extracts the temporal components.
The size of ak, bk and ck is M × K, K × N and K × T respec-
tively. The three matrices correspond to the axes of the original
three-dimensional tensor.

Non-negative matrix factorization (NMF) is commonly used
in extracting latent features from non-negative data [16], [23].
Given a non-negative matrix X of size M × N, NMF decomposes
the matrix into two matrices, U and V of low dimensions such that
they do not include negative values, such that X ≈ UV. The size
of U and V is M ×K and K ×N respectively. Many extensions of
NMF have been proposed [2], [10], [24], [27]. Reference [2] pro-
posed an online NMF to deal with continuously incoming data,
where rows are added at each time step. They added a new reg-
ularization constraint to the original NMF optimization problem
so as to consider previously extracted features. Suppose a row
vector X(t) is observed at each time step t, online NMF decom-
poses the concatenation of X(t) and V(t−1) to obtain U(t) and V(t)

for the current time step. Reference [10] proposed a streaming
algorithm of NMF for temporally evolving data matrices. Sim-
ilar to online NMF, streaming NMF accommodates incremental
updates of NMF parameters. Streaming NMF captures emerg-
ing features and simultaneously eliminates the irrelevant features.
Reference [24] proposed a dynamic NMF approach for capturing
trending topics (features) from social media data. They consid-
ered the situation where at each time step a new matrix is ob-
served and defined a new objective function with temporal regu-
larization and squared error. They used doubly-regularized NMF
to allow the rank of the NMF model to change over time as new
topics emerge, and at the same time maintain consistency of the
established trends. Reference [27] proposed a collective time-
based matrix factorization technique to detect and track how in-
put changes over time. They introduced a mapping factor M(t) to
capture the temporal dependencies, that is, how much the data at

*1 Three-way outer product is defined as: X = a ◦ b ◦ c.

the current time step t is related to the data at the previous time
step t − 1. The approximation of the matrix for current time step
is given by

X ≈ U(t) M(t)V(t−1), (26)

where M(t) ≥ 0.

6. Conclusion

In this paper we addressed the time series link prediction prob-
lem. We proposed a method of extracting latent features from
time series data and modelling the features by combining NMF
and time series data forecasting methods. We also proposed an
extension to the proposed method, through applying ensemble
learning to improve the prediction accuracy. We compared the
performance of our methods with existing link prediction meth-
ods in predicting existing links and hidden links. As a result of the
experiments with real datasets, we confirmed that the proposed
methods perform well, especially in predicting hidden links.

There are several directions which can be considered for future
work. First, our proposed method does not use attribute informa-
tion, therefore attribute-based prediction is important to further
improve the accuracy of our methods. Second, more complex
deep learning methods such as bidirectional recurrent neural net-
works [25] will be investigated.
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