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Abstract: In this paper, we present the design and implementation of a framework for updatable views in relational
databases. Our framework allows developers to use Datalog, a declarative language, for programming update strate-
gies in order to make relational views updatable. We firstly implement an algorithm for automatically verifying the
correctness of the user-written update strategy. Secondly, the verified strategy is translated into SQL trigger procedures
that are automatically invoked in response to view update requests. We have successfully integrated our framework
with PostgreSQL as the backend database system.
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1. Introduction
The view concept plays an important role in relational databases.

Since a view is defined by a query over source tables, it can be
read as a normal table but cannot be updated. To be updatable,
updated data in the view must be propagated to the source. How-
ever, in many cases, it is impossible to automatically propagate
updates on the view to the source because there are multiple ways
for each view update [1]. Although this view update problem has
a long history in database literature [1], [2], [3], [4], [5], there is
no standard solution yet. Commercial database systems such as
PostgreSQL [6] provide very limited support for developers to
create updatable views.

An alternative way to make a view updatable is to allow database
administrators to decide and implement a strategy that specifies
how view updates are propagated to the source. Trigger is a well-
known mechanism for developers to implement such a view update
strategy in a trigger procedure. This procedure is automatically
invoked in response to update requests on the view [7]. By this
way, the trigger procedure can be implemented for calculating
the corresponding updates on base tables for each modification
on the view and then applying these updates to the base tables
by INSERT, DELETE and UPDATE SQL statements. Although
existing RDBMSs provides SQL procedural languages such as
PL/pgSQL [8] (in PostgreSQL) for implementing trigger proce-
dures, it is still difficult for programmers to define all the necessary
triggers and associated actions for updatable views. Moreover,
there is no support tool to verify the correctness of programmers’
update strategies in the sense that the updatable view and its base
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nation KEY NAME DESCRIPTION

1 Japan none
2 China none
3 Vietnam none

customer KEY NAME ADDRESS PHONE NATIONKEY

1 A Tokyo 1234 1
2 B Hanoi 3241 3
3 C Beijing 5345 2

jcustomer KEY NAME ADDRESS

1 A Tokyo

Fig. 1 Base tables (nation and customer) and view (jcustomer)

tables are consistent for any view updates.
In this paper, we aim to design and implement a framework,

which frees programmers from the burden of manually creating
triggers and trigger procedures on updatable views. By this frame-
work, programmers can declaratively specify their view update
strategies in Datalog. The Datalog-based update strategies are then
verified before compiled to SQL scripts for creating a real updat-
able view in relational database management systems (RDBMSs).
We have integrated our framework with PostgreSQL as the back-
end database system. The prototype implementation of our frame-
work is available at [9] and is used to implement the running
example in this paper.

2. Running Example
As our running example, consider a database of two tables,

nation and customer, and a view jcustomer as shown in Fig-
ure 1. The view jcustomer, which contains all customers having
Japanese citizenship, is defined by a Datalog query [10] over the
two base tables as the following:

jcustomer(K, N, A) :- customer(K, N, A, P, NK), nation(NK,

NATION, D), NATION=’Japan’.

That is a join over the tables customer and nation on the at-
tribute NATIONKEY with a condition that the nationality is Japan.
We keep only three attributes KEY, NAME and ADDRESS from the
table customer in the view. This defining query of jcustomer
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1 % Constraint on the source:

2 ⊥ :- not nation(_, ’Japan’, _).
3
4 % Update strategy

5 -customer(K, N, A, P, NK) :- customer(K, N, A, P, NK),

nation(NK, NATION, _), NATION =’Japan’, not
jcustomer(K, N, A).

6
7 tmp(K, N, A) :- customer(K, N, A, _, NK), nation(NK, ’

Japan’, _).

8 +customer(K, N, A, P, NK) :- jcustomer(K, N, A), not
tmp(K, N, A), nation(NK, ’Japan’, _), customer(K,

_, _, P, _).

9 +customer(K, N, A, P, NK) :- jcustomer(K, N, A), not
tmp(K, N, A), nation(NK, ’Japan’, _), not
customer(K, _, _, _, _), P = ’unknown’.

Fig. 2 An update strategy for jcustomer

can be considered as a forward transformation get that takes as
input the source database, which is the pair of tables customer
and nation, to produce the view jcustomer:

jcustomer = get(〈nation, customer〉)

To illustrate the ambiguity of propagating updates on the
view jcustomer, let’s consider a state of the base tables and
the view as in Figure 1 and a simple request to delete tuple
〈1, A, Tokyo〉 from the view jcustomer. Obviously, there are
three options for propagating this deletion to the source database.
The first option is to delete from the table customer the tuple
〈1, A, Tokyo, 1234, 1〉. The second is to delete from the ta-
ble nation the tuple 〈1, Japan, none〉. The third is to perform
both deletions in the first and the second options.

Because of the ambiguity issue, to make jcustomer updatable,
we need to explicitly specify a strategy for propagating all up-
dated data on the view to the source tables. The update strategy
can be formulated as a putback transformation put that maps the
updated view jcustomer’ back to an updated source database
〈nation’, customer’〉 as the following:

〈nation’, customer’〉 =

put(〈nation, customer〉, jcustomer’)

In addition to the updated view, we also need the original source
tables as the input for put in order to recover all information of
the source tables, which is discarded in the view.

Interestingly, it is still possible to use Datalog to specify such a
putback transformation put. The idea is to use delta predicates to
describe how to update data in the source tables by using the origi-
nal source tables and the updated view. Figure 2 show an update
strategy for the view jcustomer, where the predicate customer
preceded by a symbol +/- corresponds to the set of tuples being
inserted into/deleted from the source table customer.

We briefly describe our update strategy in the Datalog pro-
gram of Figure 2. We assume that in the source table nation
there exists a tuple having the attribute NATION equal to ‘Japan’:
∃x, y, nation(x, ‘Japan′, y). We express this constraint by a spe-
cial Datalog rule with a truth constant ⊥ in the head as in line 2
of Figure 2. The meaning of this rule is a first-order logic sen-
tence (¬∃x, y, nation(x, ‘Japan′, y))→ ⊥, which is equivalent to
∃x, y, nation(x, ‘Japan′, y). Given an updated view jcustomer,
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Fig. 3 System architecture

our update strategy is to keep the table nation unchanged, and
update the table customer to reflect the view updates as follows.
First, if there is a Japanese customer, who does not appear in the
view, we choose the option of deleting this customer from the
source table customer (line 5 in Figure 2) that is more reason-
able than deleting the tuple 〈1, ‘Japan′〉 from the table nation.
Second, if there is a customer in the view jcustomer but there is
no Japanese customer in the source tables having the same values
for KEY, NAME, ADDRESS, then we insert a new customer to the
table customer (lines 7, 8 and 9 in Figure 2). More concretely,
to fill in the attribute NATIONKEY, we find a key from the table
nation where the nationality is ‘Japan’. Due to the constraint
on nation presented before, we can always find such a key. To
fill in the attribute PHONE, we search for the existing one in the old
table customer. If it is not found, we fill in the attribute PHONE
with a default value ‘unknown’.

To guarantee the consistency between the view and the source
tables, the pair of backward and putback transformations, so-called
a bidirectional transformation [11], [12], must satisfy the follow-
ing properties for any updated view V ′ and any source database
S :

put (S , get(S )) = S (GetPut)

get
(
put

(
S , V ′

))
= V ′ (PutGet)

The GetPut property ensures that if the view is unchanged then
the base tables are unchanged, while the PutGet property ensures
all view updates are completely propagated to the source so that
the updated view can be computed again from the query get over
the updated source.

3. Designing Architecture
The overall architecture of our proposed framework is shown in

Figure 3. The framework consists of two main parts. The upper
part is the frontend, which provides browser-based and command
line interfaces for users to write Datalog programs. Our framework
accepts the standard syntax of Datalog [10] with two symbols +
and - for denoting delta predicates of insertions and deletions,
respectively. We allow users to use Datalog to write view defini-
tions, integrity constraints and view update strategies. Recursion
in Datalog is currently not allowed and is our future work. From
an input Datalog program, we first generate first-order logic (FOL)
sentences corresponding to GetPut and PutGet properties of the
view definition (forward transformation get) and the update strat-
egy (putback transformation put). We then translate the Datalog
program to a SQL script for creating the corresponding updatable
view in RDBMSs.
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The bottom part consists of two backend systems including an
automated theorem prover for validating all the generated first-
order sentences and an RDBMS for executing the generated SQL
script. By integrating with existing tools for the automated theo-
rem prover, our framework assists developers for verifying their
update strategies. The corresponding updatable views with all
the necessary triggers are also automatically created in RDBMS
without more users’ interactions.

4. Implementation
We have implemented our framework in Ocaml and integrate

the framework with Lean theorem prover [13] and PostgreSQL
database [6] as the backend systems. In this section, we present
the two main aspects of the implementation of our framework:
FOL generator for transforming GetPut and PutGet properties
of the input Datalog program to first-order logic sentences; and
SQL generator for generating SQL script that creates the specified
updatable view in RDBMSs.

4.1 From Datalog to First-Order Logic
It is well known that the expressiveness of non-recursive Dat-

alog is equivalent to relational calculus [14], which is a form of
first-order (FO) formulas. Given a non-recursive Datalog program,
there is a transformation from each output relation to an FO for-
mula. We implement this transformation by a function, named
fol-of-query. For example, the FO formula for the predicate
-customer of the Datalog program put in our running example is
the following:

fol-of-query (put, -customer) = ∃ NATION, customer(K,N,A,P,
NK) ∧ (∃ D, nation(NK,NATION,D)) ∧ NATION=‘Japan’ ∧

¬ jcustomer(K, N, A)

Data integrity constraints specified in the Datalog program
can be also transformed to FO sentences by using the function
fol-of-query if we consider ⊥ as a special output relation that
must be empty. In this way, the FO transformation for constraints
is implemented by a function, named fol-of-constraints, as
follows:

fol-of-constraints (put) = (fol-of-query (put, ⊥)) → ⊥

The GetPut property requires that if the view is unchanged,
meaning that the view is computed by the query get, there is
no update to the source. This means all delta relations resulted
by the Datalog program put, where the view is computed by
get, must be empty. For this composition of put after get, we
can simply construct an equivalent Datalog program, denoted by
getput, by merging all rules in put and get. For each delta rela-
tion, let ϕi be the corresponding FO formula, this delta relation
is empty if there is no tuple ~Xi such that ϕi(~Xi) is true, i.e., the
sentence ∃~Xi, ϕi(~Xi) does not hold. Therefore, we take a conjunc-
tion Φ =

∧
i(¬∃~Xi, ϕi(~Xi)) that does not hold if, and only if, the

GetPut property holds. In this way checking the GetPut property
is reduced to checking the validity of the FO sentence Φ. We
implement a function getput-sentence for generating this FO
sentence of the GetPut property. For example, this sentence for
the Datalog program in our running example is the following:

getput-sentence (get, put) =

(¬ ∃ K,N,A,P,NK, fol-of-query (getput, +customer)) ∧ (
¬ ∃ K,N,A,P,NK, fol-of-query (getput, -customer))

The PutGet property says that given an updated view V ′, af-
ter updating the source by the put, V ′ must be exactly the same
as the result of the defining query get over the updated source:
V ′ = get(put(S ,V ′)). In other words, every tuple ~X in V ′ must
be in the result of get(put(S ,V ′)), and vice versa. Let putget be
the query get(put(S ,V ′)) and ϕputget be the FO formula equiva-
lent to putget. The PutGet property holds if, and only if, the
sentence Ψ = ∀~X, ϕputget(~X)↔ V(~X) holds. Therefore, checking
the PutGet property is reduced to checking the validity of Ψ. We
implement a function putget-sentence for generating this FO
sentence. For example, this sentence for the Datalog program in
our running example is the following:

putget-sentence (get, put) = ∀ K,N,A, fol-of-query (putget,
jcustomer) ↔ jcustomer(K, N, A)

To check the validity of the FO sentences of GetPut and Put-
Get properties, we feed these sentences to Lean theorem prover. It
is remarkable that the Datalog program for a view update strategy
may contain integrity constraints. These constraints should be
used as hypothesises for validating FO sentences of GetPut and
PutGet properties. In this way, we finally generate a proof script
in Lean theorem prover for checking the validity of FO sentences.
The proof script performs several tactics for automatically search-
ing a proof that proves the FO sentences are valid. For example,
the proof script for the FO sentence of GetPut property in our
running example is the following:

theorem getput {customer:int → string → string → string

→ int → Prop} {nation: int → string → string →

Prop}: (fol-of-constraints (put)) → (getput-sentence
(get, put)):=

begin

intro h,

rw[imp_false] at *,

simp at *,

revert h,

z3_smt,

end

4.2 From Datalog to SQL
In fact, for every non-recursive Datalog query, there exists

an equivalent SQL query [14]. We implement the transforma-
tion from Datalog queries to SQL queries by a function, named
sql-of-query. By this transformation, the view definition in
Datalog is translated into a SQL statement of creating the view.
For example, the following is for creating the view jcustomer

CREATE VIEW jcustomer AS sql-of-query (get, jcustomer);

The view update strategy put is transformed into SQL state-
ments to create triggers and associated procedures on the view.
When there are view update requests, these trigger procedures are
automatically invoked to perform the following steps:

Step 1: Based on each INSERT/DELETE/UPDATE statement in
the view update requests, derive the set of tuples to be insert-
ed/deleted to/from the view ∆+

V / ∆−V . This step is performed by the
following trigger procedure, which is associated with an INSTEAD
OF trigger on the view.

CREATE OR REPLACE FUNCTION public.v_update()
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RETURNS TRIGGER
LANGUAGE plpgsql

BEGIN

IF TG_OP = ’INSERT’ THEN
DELETE FROM ∆−V WHERE ROW(V) = NEW;
INSERT INTO ∆+

V SELECT (NEW).*;
ELSIF TG_OP = ’UPDATE’ THEN

DELETE FROM ∆+
V WHERE ROW(V) = OLD;

INSERT INTO ∆−V SELECT (OLD).*;
DELETE FROM ∆−V WHERE ROW(V) = NEW;
INSERT INTO ∆+

V SELECT (NEW).*;
ELSIF TG_OP = ’DELETE’ THEN

DELETE FROM ∆+
V WHERE ROW(V) = OLD;

INSERT INTO ∆−V SELECT (OLD).*;
END IF;

END;

The updated view is obtained by applying these changes, ∆+
V and

∆−V , on a materialization of the view.
Step 2: Checking integrity constraints: recall that a constraint

has the form ⊥ ← L1, . . . , Ln. By considering ⊥ as a special out-
put relation, which must be empty in the Datalog program, we can
also use the function sql-of-query to generate the correspond-
ing SQL query of ⊥ that must be empty. In this way, we create
a boolean SQL expression of the form EXISTS (sql-of-query
(get, ⊥)). If this expression returns a true value, update on the
view is rejected:

IF EXISTS (sql-of-query (get, ⊥))
THEN RAISE check_violation USING MESSAGE =’Invalid
update on view’;

END IF;

Step 3: Calculate all insertions and deletions on the source: in
order to calculate all the insertions and deletions to the source, we
translate each delta predicate +R/−R in the Datalog program to
an equivalent SQL query that results in a set of tuple need to be
inserted/deleted into/from the corresponding table R.

CREATE TEMPORARY TABLE ∆+
R1
WITH OIDS ON COMMIT DROP AS

SELECT * FROM sql-of-query(put, +R1);

CREATE TEMPORARY TABLE ∆−R1
WITH OIDS ON COMMIT DROP AS

SELECT * FROM sql-of-query(put, −R1);

. . .
CREATE TEMPORARY TABLE ∆+

Rn
WITH OIDS ON COMMIT DROP AS

SELECT * FROM sql-of-query(put, +Rn);

CREATE TEMPORARY TABLE ∆−Rn
WITH OIDS ON COMMIT DROP AS

SELECT * FROM sql-of-query(put, −Rn);

Step 4: We apply each set of insertions (∆−R ) and deletions (∆+
R)

calculated in Step 3 to the corresponding source table R. The
application operation is to remove all the tuples in ∆−Rfrom R and
then add all tuples in ∆+

R to R. This is performed by INSERT and
DELETE SQL statements as follows:

DELETE FROM R1 WHERE ROW (R) IN (SELECT * FROM ∆−R1
);

INSERT INTO R1 SELECT * FROM ∆+
R1
;

. . .
DELETE FROM Rn WHERE ROW (R) IN (SELECT * FROM ∆−Rn

);

INSERT INTO Rn SELECT * FROM ∆+
Rn
;

5. Conclusion
In this paper, we have presented the design and implementa-

tion of our proposed framework for updatable views in relational
databases. Our framework lets database administrators declara-
tively implement their update strategies for making views updat-
able. The framework brings advantage to users by automatically

verifying user-written update strategies and generating all the SQL
code to create updatable views in RDBMSs.
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