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Abstract: Energy-aware task allocation of embedded systems is one of the most important issues in recent decades.
A classical solution to solve the issue is Integer Linear Programming (ILP). However, given the considerable time
consumption, it is effective only to the extent that the scale of the problem is small. How to use ILP to solve large al-
location problems on heterogeneous multiprocessor systems to minimize energy consumption is still a challenge. This
paper proposes two ILP formulations to deal with it. One complete ILP(1) is used to derive a feasible allocation, and
the other simplified ILP(2) is for calculating the desired minimum energy. Then the desired minimum energy can be
used as a reference to evaluate the intermediate solution of ILP(1) and decide its timeout. Besides, to find out the best-
suited platform for a given workload, a flexible design which presents flexibilities and choices in core assignment, is
considered for further energy saving. For example, the optimal core number design and core type design are generated
as two independent ILP formulations, denoted as ILP(3) and ILP(4). The experimental results on randomly generated
task sets demonstrate that, compared with the fixed platform, automatically synthesizing a flexible core assignment
saves more energy.

Keywords: energy-aware task allocation, heterogeneous multiprocessor systems, ILP formulations, flexible platform
design

1. Introduction

With the increasing demands for computing and communi-
cation, power management and energy reduction are becoming
more and more important in embedded systems. Multiproces-
sor system-on-chip (MPSoC) which uses multiple processors, has
been widely used for embedded applications. It can be clas-
sified into two categories: homogeneous system and heteroge-
neous system. Modern real-time systems generally consist of
heterogeneous multiprocessors, as the designers can take ad-
vantage of the processing properties for particular applications.
For example, high-performance processors for heavy workloads,
and power-efficiency processors for light workloads on ARM
big.LITTLE architecture [1]. Compared with homogeneous sys-
tems, heterogeneous processing units are more flexible to trade
off performance and energy consumption. Furthermore, single-
instruction set architecture (ISA) heterogeneous multiprocessor
systems have attracted much attention as a solution for energy
minimization while improving performance. In this architecture,
all the processors share the same instruction set but differ with
power and performance behaviors [2]. Therefore, we consider a
real-time embedded system that consists of heterogeneous multi-
processors with single-ISA architecture in this paper.
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A critical issue in real-time embedded systems, especially
battery-driven systems, is energy-efficient scheduling. The most
widely used technique for reducing energy consumption dur-
ing processing is Dynamic Voltage Frequency Scaling (DVFS),
which is based on the convex relation between voltage/frequency
and power consumption [3], [4]. The DVFS approach reduces the
energy by decreasing the operational frequency and voltage at
its maximum extent with the time constraints guaranteed. Even
though some processors are capable of an almost continuous volt-
age/frequency scaling, most of them are supporting DVFS with
discrete voltage/frequency scaling in practical applications. In
this work, we assume that each processor core is equipped with
discrete DVFS technology on a heterogeneous multiprocessor.

Without loss of generality, the scheduling method can be clas-
sified as partitioned scheduling and global scheduling [5]. Given
the high overhead of task migration and cache coherence in global
scheduling, we consider partitioned scheduling in this paper. The
appropriate energy-aware scheduling should not only minimize
the overall energy consumption, but also meet functional and tim-
ing requirements. This work aims at exploring the most energy-
efficient allocation of a set of independent periodic tasks on a real-
time heterogeneous system with all the deadlines guaranteed. Af-
ter the assignment, tasks can be scheduled to execute by dynamic
scheduling policy Earliest Deadline First (EDF), which has been
proven to be the optimal scheduling policy for independent real-
time tasks with dynamic priorities [6].

In Ref. [7], Baruah et al. proposed that the preemptive schedul-
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ing of independent, periodic real-time tasks on a heterogeneous
multiprocessor is an NP-hard problem in the strong sense. The
objective of minimizing energy consumption further complicates
the problem with no doubt [8]. A classical solution to solve the
scheduling problem is integer linear programming. However,
several problems still remain unresolved. Firstly, existing ILP
formulations for solving task allocation problems are all based
on zero idle power assumption. In practice, idle power consump-
tion is non-negligible for increasing static energy. Meisner et al.
referred that one of the major causes contributing to energy inef-
ficiency is idle power waste [9]. Failure to take idle power con-
sumption into consideration leads to a large difference between
predicted and actual measured power consumption [10]. This
raises the need for modeling a new linear programming formu-
lation that takes the idle power consumption into consideration.
Secondly, previous ILP optimizations are usually regarded as in-
effective in solving large-scale allocation problems for the chal-
lenge of time consumption. Even though the intermediate solu-
tion can be calculated, for example, the solution derived within a
limited time, the optimality of the solution is unknown, and it can-
not be used with confidence instead of the optimal one. Thirdly,
the energy-efficient scheduling problem is mostly discussed on a
preset platform. In fact, the problem has been researched a lot
for decades. How to incorporate the platform design into the task
allocation, e.g., the core number and core type, to save energy is
still a new issue in this field.

To the best of our knowledge, this is the first work that consid-
ers all the issues in energy-aware scheduling. In this paper, we
study the problem under two different target platforms: a fixed
platform, and a flexible platform. The contributions of the work
are summarized as follows:

(1) We formulate the energy-aware task allocation problem as
ILP formulation with consideration of idle power consumption.

(2) For a fixed platform, we propose two ILP formulations to
deal with large-scale allocation problems. One is used to derive
an intermediate solution, the other is used to evaluate the solution.
After that, a complete algorithm (Fast Terminate) is proposed to
combine the two ILP formulations to achieve a reliable solution
within a specified error.

(3) For a flexible platform, we propose ILP formulations to
solve the optimal core assignment, where the best decisions of
core number and core type are investigated as two independent
cases. Simulation results show that compared with the fixed plat-
form, more energy savings can be achieved through a flexible de-
sign.

The rest of the paper is organized as follows: Section 2 reviews
some related work. Section 3 discusses the system models used
in this work. Section 4 generates mathematical formulations on a
fixed platform. Section 5 investigates the mathematical formula-
tions on a flexible platform. Section 6 verifies the proposed ILP
formulations by experiments. Section 7 makes a conclusion of
our work.

2. Related Work

Energy-aware scheduling of real-time embedded systems has
been researched for decades. In this section, we give a brief

introduction of related work mainly focusing on heterogeneous
processing systems. The work is classified into two categories.
Firstly, we summarize the research of real-time scheduling on a
fixed platform. Then, the recently proposed approaches based on
a flexible design are surveyed.

2.1 Real-time Scheduling on a Fixed Platform
For a given task set and platform, the problem of energy-aware

scheduling can be addressed as assigning tasks to right cores and
setting appropriate operating frequencies. Yu et al. first modeled
the problem as an integer linear programming formulation [11].
In their proposed ILP formulation, both the allocation strategies
and frequency settings could be attained for each task. By relax-
ing the model, an LP-heuristic was proposed to solve large alloca-
tion problems. Baruah et al. also discussed the real-time partition-
ing problem among heterogeneous multiprocessors [12]. In their
work, the ILP formulation was generated to achieve the minimum
makespan (the duration of schedule) but not energy. It was proven
in their experiment that the model could be relaxed by appropriate
means to achieve a reliable solution in polynomial time. Recently,
Zhang et al. also followed the model to consider energy-aware
scheduling for heterogeneous platforms [13]. However, accord-
ing to our best knowledge, the solution only considered the task
allocation without frequency setting, which might cause energy
waste for DVFS-capable platforms.

There also existed a number of approximate and heuristic al-
gorithms to solve the equivalent problem. Chen et al. introduced
a polynomial-time approximation algorithm to partition tasks on
the platform consisting of two processing elements [14]. Colin
et al. proposed a heuristic by approximating the desired load dis-
tribution for heterogeneous systems [15]. Recently, Pagani et al.
in Ref. [16] first defined an energy factor to illustrate the energy
relation of asymmetric cores and proposed a fixed-frequency-
configuration method to get the local optimal allocation. Besides,
some intelligence algorithms, such as Ant Colony Optimization
(ACO), Genetic Algorithm (GA), Particle Swarm Optimization
(PSO) were also introduced to solve the energy-aware task allo-
cation on heterogeneous systems [17], [18], [19]. Given the unac-
ceptable time consumption, existing ILP formulations are difficult
to apply to large allocation problems. In this work, we propose
two ILP formulations to solve large allocation problems within a
reasonable computation time. The basic idea of the method was
introduced in Ref. [20]. However, paper [20] did not consider the
allocation problem on a flexible platform.

2.2 Real-time Scheduling on a Flexible Platform
With a specific workload, the configuration of the platform

may have an effect on the optimal task allocation. However, the
research of synthesizing the core assignment to save energy is
considerably less in real-time scheduling. In 2009, Chen et al.
summarized the research based on non-DVFS capable heteroge-
neous platforms [21]. The problem was cataloged into two cases:
MEHEPU and R-MEHEPU by considering if there was limita-
tions on the number of processing cores. Then approximate al-
gorithms were proposed to obtain approximate solutions for each
case. Besides, with limited area constraints, Chen et al. first pro-
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Table 1 Notations and definitions used in this work.

Notation Definition
Π Target platform: Π = {PU1, PU2, ..., PUM}
NumK Number of processor cores in PUK

NUM Number of processor cores in platform Π
Type num Maximum allowed core types to build a platform
WCETi,k Worst-Case-Execution-Time of task τi on core k
Ti Period time of task τi

L Hyper-period time, the minimum repeating interval of all
tasks

ui,k Utilization of task τi at the maximum frequency on core k
Uk Sum of utilization at the maximum frequency on core k
Pidle,k Idle power of core k
E(Uk , fk) Energy consumption with utilization Uk at frequency fk
u′i, j Relative utilization of task τi at frequency j on core k,

u′i, j = ui,k fk,MAX/ f j

U j,k Sum of relative utilization at frequency level j on core k
Fk Number of frequency levels provided by core k
m Number of frequency levels provided by system,

m =
∑NUM

k=1 Fk

n Number of tasks for a given task set
FLG(k) A set of frequency levels provided by core k
F′K Number of frequency levels provided by one single core in

PUK

m̂ Number of frequency levels provided by M different cores,
m̂ =

∑M
K=1 F′K

xi, j Decision variable, which represents allocation result of task
τi at frequency level j

posed a heuristic to find the proper processor allocation together
with the task mapping, such that the target workload’s execution
time was optimized [22]. In contrast to previous work, we as-
sume flexibilities in both core number and core type in this work.
Moreover, the study of energy-aware scheduling considering plat-
form design was related to executive components, e.g., memory
behaviors [23]. However, the problem would become quite com-
plex when considering the core assignment and memory design
at the same time. In this work, when we refer to platform design,
we mean the best decisions of core assignment.

3. System Models

In this section, we present a multi-core platform model that
consists of heterogeneous processing units, a task model that de-
notes real-time applications, as well as an energy model for calcu-
lating energy consumption. Then the problem of energy-efficient
task allocation is discussed. The used notations and their defini-
tions are given in Table 1.

A Fixed Platform Model: We consider a multi-core hetero-
geneous system Π that consists of M types of processing units,
Π = {PU1, PU2, ..., PUM}, as Ref. [21]. Each type of PU dif-
fers by their power and performance characteristics. Suppose that
type PUK consists of NumK identical cores, the total core number
of system Π can be calculated by NUM =

∑M
K=1 NumK .

A Flexible Platform Model: If the core assignment, i.e., core
number and core type, can be adjusted for designers to build
their own platform, we denote the platform as a flexible plat-
form. For flexible core number design, assume that the number
of cores in each PU is unknown, while the sum is restricted to
NUM. Additionally, for flexible core type design, suppose that
only Type num from M different types of cores are selectable to
build a platform. Also, the sum of processor cores is limited to

NUM. Note that all the restrictions are generated for practical
consideration.

Task Model: We model a real-time task set Γ that consists of
n periodic real-time tasks: Γ = {τ1, τ2, ..., τn}. Each task is mod-
eled from a real-time application and there is no data dependency
among tasks, i.e., we consider independent tasks. Task τi is char-
acterized by a 3-tuple {WCETi,k, Ti,Di}, where WCETi,k denotes
the Worst-Case-Execution-Time of task τi executing on processor
core k at the maximum frequency, Ti denotes the period time, and
Di denotes the relative deadline, which is assumed to be equal to
Ti, i.e., Di = Ti. The utilization of task τi executing at the max-
imum frequency of core k is defined as: ui,k = WCETi,k/Ti, and
the sum of utilization is: Uk =

∑
τi∈Γk

ui,k, where Γk is a subset of
tasks assigned to core k.

Power and Energy Model: Generally, each processor core is
supposed to have three power modes, i.e., run, idle and inactive.
Among the three modes, assume that the tasks can only be exe-
cuted in the run mode. In other words, if a core has no task to
execute before the next task releases, OS puts the core in the idle
mode, which consumes less energy than run mode [24]. In this
work, the idle power consumption is considered as a constant for
a given core k, denoted as Pidle,k. Both run mode and idle mode
are regarded as the active mode because static power is consumed.
Contrarily, if no task is assigned to a core, the core is in the inac-
tive mode and consumes zero power. The power consumption of
processor core k in the run mode is given by (1):

Pk( f ) = αk f βk + sk (1)

where the first term is frequency-dependent power consumption
and the second term is frequency-independent power consump-
tion. All α, β and s are technology-based parameters, which have
the same meanings with k, α, β in Ref. [15] respectively.

Note that the tasks may have different periods, thus the energy
consumption should be calculated based on the minimum repeat-
ing interval, the hyper-period time as follows: L = LCM({Ti :
τi ∈ Γ}), where LCM is lowest common multiple. The energy
consumption of core k during one interval L can be expressed as
follows [15], [16]:

E(Uk, fk) = L

(
Uk fk,MAX

fk
Pk( fk) +

(
1 − Uk fk,MAX

fk

)
Pidle,k

)

(2)

where fk is operating frequency and fk,MAX is the maximum al-
lowed frequency. The operating frequency of core k should be set
as: fk ≥ Uk ∗ fk,MAX , so that the total utilization after frequency
scaling will not be larger than 1 and the tasks can be scheduled
by EDF without missing the deadline.

Per-Core DVFS Capability: DVFS scaling is one of the most
widely used technologies for energy saving. A general DVFS
technique is VFI (voltage/frequency island), which supports dif-
ferent voltage supplies and frequencies for different clusters while
the same voltage and frequency setting in one cluster [25]. In
other words, the cores in one cluster have to share identical volt-
age/frequency configurations, denoted as Per-Cluster DVFS. An-
other DVFS technology is Per-Core DVFS, where each processor
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core operates at an individual voltage/frequency level indepen-
dently [26]. For example, according to the statement of ARM’s
DynamIQ technology, Per-Core DVFS technology is capable in
the DynamIQ big.LITTLE architecture [27]. Compared with Per-
Cluster DVFS, Per-Core DVFS allows more flexibilities in con-
trolling power and performance. In this work, we assume that
each processor core k is equipped with Per-Core DVFS capa-
bility. Moreover, given an almost linear relation between volt-
age and frequency, DVFS usually scales voltage and frequency
simultaneously. Therefore, we use the scaling of discrete fre-
quencies to refer to the changes of voltage and frequency, as
Refs. [15], [16], [28].

Static DVFS Scaling: In terms of the scaling algorithm, DVFS
can be classified as static and dynamic schemes. The static
DVFS is applied to determine the voltage/frequency settings of-
fline, while the dynamic technology controls the configurations
online by detecting workload changes. Since the dynamic DVFS
may impair the real-time performance, we consider the static
scheme in this work. Generally, DVFS scaling brings proces-
sor core unavailable time from 10 μs to 650 μs and the overhead
is too large to be ignored [29]. Besides, even for the static DVFS,
adjusting frequency for each task may cause unanticipated over-
head. As a result, we use single-frequency scheme with respect
to DVFS, which chooses a single frequency for every execution
core throughout the hyper-period. More precisely, the lowest exe-
cution frequency will be set to achieve the minimum energy con-
sumption with all the time constraints guaranteed. Even though
the single-frequency scheme is not the optimal strategy for en-
ergy minimization, it significantly reduces the overhead of DVFS
scheduling.

Problem Definition: In this paper, we aim at finding the most
energy-efficient task allocation on heterogeneous multiprocessor
systems. If the target platform is known in advance, we abbrevi-
ate it as Energy-Aware Scheduling on Heterogeneous Multi-core
(EASHM). The objective of the work is to partition an input task
set Γ onto right cores and set appropriate frequencies with dead-
lines guaranteed, such that the energy consumption during one
hyper-period L is minimized. Otherwise, if the platform is un-
known, i.e., core type and core number can be adjusted, we denote
it as Flexible Design and Energy-Aware Scheduling on Hetero-
geneous Multi-Core (FD-EASHM), and the main work includes
platform design and task allocation. Briefly, for a given task set,
we first compute the best-suited platform, then the problem is
equivalent to EASHM, and the task allocation can be decided in
the same way.

4. ILP Formulations on a Fixed Platform

In this section, we explore the energy-aware task allocation on
a fixed platform. Firstly, the EASHM problem is formulated as
ILP(1). Considering the huge time consumption, a relaxed ILP(2)
is proposed to calculate the desired minimum energy. After that,
a combination of two ILP formulations is generalized to find a
reliable allocation within a specified error.

4.1 ILP(1): Allocation Problem of EASHM
In the first section, we begin our ILP formulation under an ide-

alized assumption that the core consumes zero power in the idle
mode. The allocation problem can be generated as mapping tasks
onto processing cores, along with setting execution frequencies
with reference to previous work [11]. Suppose that the number
of discrete frequencies provided by processor core k is Fk, the
frequency levels in the system consisting of NUM cores can be
calculated as: m =

∑NUM
k=1 Fk. For example, the m′-th frequency

level of core k′ is labeled as j =
∑k′−1

k=1 Fk + m′. Note that j is
not only an index of frequency setting but also a decision of core
allocation. As long as j is decided for a task, both the allocated
core and operational frequency can be derived.

An index of ei, j is made in advance to represent the energy con-
sumption for executing task τi at frequency level j in the run mode
during a hyper-period L. For example, let FLG(k) denote a set of
frequency levels provided by core k, the relative utilization of task
τi executing at frequency j is calculated as: u′i, j = ui,k fk,MAX/ f j,
where j is one of the frequency configurations from core k, de-
noted as j ∈ FLG(k). Then we compute ei, j as: ei, j = Lu′i, jPk( f j).
For each task τi in {τ1, τ2, ..., τn}, a binary variable xi, j is set as 1
if task τi is assigned to frequency level j; otherwise, xi, j is set as
0. Therefore, the objective function without considering the idle
power consumption can be formulated as follows:

Min E =
m∑

j=1

n∑
i=1

ei, j xi, j (3)

where n is the number of tasks, and m is the number of frequency
levels. However, Eq.(3) is based on zero idle power assumption.
As explained in Section 1, the idle power consumption is non-
negligible with the increasing static energy. According to the en-
ergy model presented in Eq. (2), the objective function that takes
the idle power into consideration can be formulated as:

Min E =
m∑

j=1

n∑
i=1

ei, j xi, j+L
NUM∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎝1 −
∑

j∈FLG(k)

U j,k

⎞⎟⎟⎟⎟⎟⎟⎠ Pidle,k (4)

where the first component is the energy consumed in the run
mode, and the second is that consumed in the idle mode. The
section of

∑
j∈FLG(k) U j,k denotes the sum of utilization on core k.

As assumed in Section 3, if core k is not chosen to assign tasks,
it is set in the inactive mode and consumes zero power. However,
the energy consumption of core k calculated by function (4) is:
Ek = LPidle,k � 0, which violates the assumption of our inactive
power mode. To deal with the excessive calculated energy con-
sumption, an intuitive method is to define a function y(k) to reflect
the core’s running states. When core k has no tasks assigned to,
it is set in the inactive mode and y(k) is defined as 0; otherwise,
core k is set in the active mode and y(k) is 1, as Eq.(5).

y(k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if
∑

j∈FLG(k)

U j,k = 0

1, if
∑

j∈FLG(k)

U j,k � 0
(5)

By observing formulas (4) and (5), it is not difficult to see that
the section of

∑
j∈FLG(k) U j,k exists in both equations, and it is re-

lated to the allocation decisions. In other words, it is impossible
to multiply the objective function Eq. (4) by Eq. (5) directly, as
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the linear model will be transformed to non-linear thus the so-
lution will be further complicated. In this work, we propose to
modify the objective function as Eq. (6) and reformulate function
(5) in terms of constraints (9), (10). Together with constraints
(7), (8) and (11), the task allocation problem can be formulated
as ILP(1) as follows:

Min E =
m∑

j=1

n∑
i=1

ei, j xi, j + L
NUM∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎝y(k) −
∑

j∈FLG(k)

U j,k

⎞⎟⎟⎟⎟⎟⎟⎠ Pidle,k

(6)

Subject to:∑
j∈FLG(k)

U j,k ≤ 1 (k = 1, 2, ...,NUM) (7)

where U j,k =
∑n

i=1 u′i, j xi, j.

m∑
j=1

xi, j = 1 (i = 1, 2, ..., n) (8)

where xi, j ∈ {0, 1}.
y(k) −

∑
j∈FLG(k)

U j,k < 1 (k = 1, 2, ...,NUM) (9)

y(k) −
∑

j∈FLG(k)

U j,k ≥ 0 (k = 1, 2, ...,NUM) (10)

where y(k) ∈ {0, 1}.
xi, j + Ub ≤ 1 (i = 1, 2, ..., n; k = 1, 2, ...,NUM) (11)

where j, b ∈ FLG(k) and b � j.
Note that in ILP(1), m, n, L, NUM, Pidle,k are preset parameters

for a given platform and task set, while xi, j is the decision variable
that reflects the final allocation result. In formula (7), U j,k denotes
the sum of utilization at frequency level j. This constraint guar-
antees that the utilization of implicit deadline tasks executed on
a core is less than 100% to be scheduled by EDF. Constraint (8)
ensures that for each task i from {τ1, τ2, ..., τn}, it is executed on
one frequency level j without migration or decomposition, where
a frequency level corresponds to a decision of core allocation and
frequency setting. Constraints (9), (10) are linear expressions of
function (5) for calculating right idle power consumption under
the assumption of three power modes. In addition, constraint (11)
is for the purpose of single-frequency scheme. It ensures that the
frequency selection from a processor core is less than or at least
equal to 1. For example, if the decision variable xi, j is set as
1, which represents that task i is allocated to frequency level j,
constraint (11) guarantees the utilization assigned to any other
frequency level Ub is 0, where b � j and j, b ∈ FLG(k). Since
b and j are from the same core k, Ub = 0 ensures that no task is
assigned to other frequency levels except for j.

Taken together, as long as ILP(1) has a feasible solution, all
tasks in {τ1, τ2, ..., τn} are assigned to right cores with appropri-
ate frequency settings accordingly. A proper task allocation of
EASHM problem can be calculated with guaranteed deadlines
for all real-time tasks. Additionally, if the problem of EASHM
has a feasible schedule, it is obvious that all the constraints are
satisfied and ILP(1) finds a feasible solution. Therefore, the
EASHM problem is equivalent to the linear programming for-
mulation ILP(1).

4.2 ILP(2): Desired Minimum Energy Consumption
By observing the linear programming formulation ILP(1), it

not only calculates the minimum energy consumption, but also
derives the optimal allocation strategy. However, ILP(1) may
suffer from an exponential increase of execution time with the
growing size of allocation problems, e.g., longer than 24 hours.
For this reason, we propose a relaxed model to calculate the de-
sired minimum energy consumption within a reasonable compu-
tation time. The desired minimum energy consumption then can
be used as a reference to evaluate the optimality of the intermedi-
ate solution of ILP(1).

Assume that each task i has a decision of core type in-
stead of specific core. For example, we choose to assign all
the tasks to particular processing units from the target platform
{PU1, PU2, ..., PUM}. Let F′K represent the frequency levels con-
figured by one single core in PUK , then the frequency levels of M

different single cores can be computed as m̂ =
∑M

K=1 F′K . There-
fore, the scale of the decision variables can be reduced greatly,
from m to m̂ to be more specific. For the reminder, m denotes the
sum of frequency levels provided by NUM cores.

For example, a platform has two types of processing units PU1

and PU2, and each PU consists of four identical cores. Each core
in PU1 has 9 independent frequency configurations, while each
core in PU2 has 13. In that case, the selections of frequency lev-
els in ILP(1) include (9∗4+13∗4) = 88. Note that, one selection
of frequency level corresponds to an affirmative allocation for one
task. However, if we only consider assigning the tasks to two pro-
cessing units, the searching space of frequency level is reduced to
(9+13) = 22, which is a quarter of the original. Therefore, the de-
sired minimum energy consumption is expected to be calculated
in a much shorter time. The integer linear programming problem
of the relaxed allocation problem is defined as ILP(2):

Min E =
m̂∑

j=1

n∑
i=1

ei, j xi, j + L
M∑

K=1

∑
j∈FLG(K)

(
Nj,K − U j,K

)
Pidle,K

(12)

Subject to:

U j,K ≤ Nj,K ( j = 1, 2, ..., m̂) (13)

where U j,K =
∑n

i=1 u′i, j xi, j, and Nj,K is integer.
∑

j∈FLG(K)

Nj,K ≤ NumK (K = 1, 2, ...,M) (14)

m̂∑
j=1

xi, j = 1 (i = 1, 2, ..., n) (15)

where xi, j ∈ {0, 1}.
In this relaxed formulation, the decision variables include xi, j

and Nj,K , where Nj,K denotes the number of minimum execution
cores at frequency level j. For the reminder, j is a frequency
level configured by one single core in PUK . For example, when
the relative utilization U j,K is calculated as 2.5, constraint (13)
limits that at least three cores in PUK should be chosen to pro-
vide the computing capacity. Since the energy consumption of
Eq. (12) is positively correlated to Nj,K , ILP(2) computes the min-
imum decision of Nj,K , where Nj,K = 3. Besides, constraint (14)
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ensures that the execution cores in PUK is restricted to NumK .
Unlike ILP(1), when we restrict the computing capacity as 100%
for each core in ILP(1), we limit the maximum allowed capac-
ity as NumK ∗ 100% for each PUK . However, the constraint of∑

j∈FLG(K) U j,K ≤ NumK ∗100% cannot be used directly, as the as-
sumption of the single-frequency scheme is not satisfied. There-
fore, constraints (13), (14) are proposed instead. Given that the
number of execution cores is equal to selectable frequency lev-
els in each PU, the restriction of core number also ensures the
assumption of single-frequency scheme.

Let opt Energy denote the energy of the optimal allocation
from ILP(1), and desired Energy denote the minimum energy
calculated by ILP(2). As presented in Section 4.1, ILP(1) is
equivalent to the EASHM problem, thus opt Energy must be the
true optimum. On the contrary, the allocation problem in ILP(2)
is relaxed, since the core decision for each task is not considered.
It can be verified that any basic solution of ILP(1) constitutes a
basic solution to ILP(2), while for some solutions of ILP(2), it
may not form a solution to ILP(1). Therefore, the minimum en-
ergy consumption calculated by ILP(2) must be smaller or at least
equal to the minimum energy of ILP(1):

desired Energy ≤ opt Energy (16)

Clearly, when the solution of ILP(1) is computed without ter-
mination, it must be optimal. But when the scale of the problem
becomes large, it is difficult to use ILP(1) to solve the optimal
solution because of time consumption. Then the desired Energy

of ILP(2) can be calculated to evaluate ILP(1)’s intermediate so-
lution solved within a limited time.

4.3 Algorithm: Fast Terminate
Note that the objectives of ILP(1) and ILP(2) are different.

While ILP(1) is to obtain a feasible task allocation, ILP(2) is to
compute desired Energy. In the previous section, we presented
the calculation method of desired Energy. In this section, we
describe how the two formulations ILP(1) and ILP(2) are com-
bined to find a reliable allocation in a limited computation time
by specifying an error. The pseudocode is in Algorithm 1.

We employ LINGO tool as the ILP solver, which is able to re-
store and report the best solution found so far [30], i.e., the mini-
mum energy of the current best solution of ILP(1). In this section,
we denote the energy as Energy1. The flow of Algorithm 1 can
be concluded as four steps:

(1). For a given large task set, use ILP(2) to calculate
desired Energy, as line 1.

(2). Execute ILP(1) and update the minimum energy Energy1
at all times, as line 2.

(3). If Energy1 is close to desired Energy within a
specified error, computed as: (Energy1 − desired Energy)/
desired Energy ≤ Err, terminate the execution of ILP(1) and
output the best allocation solution found so far, as line 6.

(4). Otherwise, continue the execution of ILP(1) until the error
is acceptable or the given time is out, as lines 3–5.

Algorithm 1 Fast Terminate
Input: task set Γ, platform Π = {PU1, PU2, ..., PUM}, specified error Err, upper

bound of execution time UppTime;
Output: task allocation queue Θ and frequency settings of each core Q;
1: Execute ILP(2) to compute desired Energy
2: Execute ILP(1) and output Energy1
3: while the difference of Energy1 and desired Energy is larger than Err,

and the execution time is within UppTime do
4: continue the execution of ILP(1) and update Energy1
5: end while
6: interrupt ILP(1) and output the current best solution
7: return Θ and Q

5. ILP Formulations on a Flexible Platform

In Section 4, we discussed the energy-efficient scheduling on a
fixed platform. However, it is not difficult to see that designing a
specific platform for executing different workloads results in sig-
nificant energy savings in task allocation. In other words, great
energy savings can be achieved through the task allocation, in-
corporated with the platform design. In this section, flexible core
number design and flexible core type design are discussed as two
independent cases, denoted as ILP(3) and ILP(4).

Since the energy table ei, j in Eq.(6) cannot be calculated with-
out knowing the core assignment, it is impossible to use ILP(1) to
compute the task allocation. To solve this problem, we propose
ILP(3) and ILP(4) to calculate the optimal platform first. The goal
of the formulation is to find the most appropriate core assignment
for a given workload, so that the tasks can be assigned without
deadline missing and the energy can be minimized. Note that, af-
ter the platform is determined, ILP(1) should be applied again to
compute a feasible task allocation.

5.1 ILP(3): Flexible Core Number Design
With the announcement of Arm’s newest DynamIQ

big.LITTLE architecture, a mixing and matching of big and little
CPU cores, with up to eight cores total in a cluster, is allowed
for designers to build their own platform [27]. In summary, the
optimal core number that minimizes the energy consumption can
be theoretically calculated for a given workload.

In the case study of DynamIQ big.LITTLE architecture,
Cortex-A75 and Cortex-55 are combined into a single and fully-
integrated cluster, where Cortex-A75 is regarded as the high-
performance core, and Cortex-A55 is chosen to be the energy-
efficient core. The integrated cluster supports up to eight CPUs,
or combinations thereof, as Fig. 1. Rather than achieving a typical
octa-core design using two clusters, DynamIQ can now achieve
this with one. For example, Num1 = 1, Num2 = 7 means one
Cortex-A75 core and seven Cortex-A55 cores mixed in a cluster.
Compared with conventional big.LITTLE architecture, flexible
CPU design of DynamIQ technology saves more energy.

In this section, we assume that the core types are preset in ad-
vance, while the number of each type is unknown and the sum is
restricted to NUM. In that case, constraint (14) in ILP(2) is no
longer applicable, as NumK is unknown. To figure out the most
energy-efficient core number design, a naive method is to verify
all possible combinations of NumK and find out the best solution.
However, the exhaustive solution would be time-consuming when
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Fig. 1 Flexible core number design announced with DynamIQ technology.

core type M or core number NUM becomes large. Even though
the execution time of each test is very short, the overall execu-
tion time is non-negligible, increasing exponentially with M and
NUM. Therefore, we replace constraint (14) of ILP(2) with (17),
in which the total number of cores does not go higher than NUM.
The new model is denoted as ILP(3).

M∑
K=1

∑
j∈FLG(K)

Nj,K ≤ NUM (17)

As introduced in Section 4.2, Nj,K means the minimum number
of execution cores at frequency level j, thus

∑
j∈FLG(K) Nj,K rep-

resents the number of cores in PUK . The restriction of Eq. (17) is
based on the statement of ARM for practical consideration. If the
restriction is deleted, the optimal solution would always choose
energy-efficient cores, which makes the flexible design meaning-
less. It is noteworthy that the objective of ILP(3) is to compute∑

j∈FLG(K) Nj,K . Once
∑

j∈FLG(K) Nj,K is decided, the optimal com-
bination of processing cores can be derived and the platform can
be determined.

5.2 ILP(4): Flexible Core Type Design
In the previous section, we introduced a model to compute the

optimal core number for a specific workload. However, it is un-
realistic to use ILP(3) if the core types are not known. Since dif-
ferent processors may have various micro-architectures, flexible
core type design has a higher advantage to customize the platform
to achieve more energy savings.

Take ARM big.LITTLE architecture for example. High-
performance processor Cortex-A15 and ultra-high-efficiency pro-
cessor Cortex-A7 can be selected to construct a target platform,
while Cortex-57 and Cortex-A53 may also work together play-
ing big and small CPUs. Theoretically, any two types from the
Cortex-A series supported by ARMv7 architecture, e.g., A5, A7,
A8, A9, A15, A17, and any two from A32, A35, A53, A57,
A72, A73 that are supported by ARMv8, can be selected as a
pair, as Fig. 2. Additionally, with respect to Big.Medium.Little
architecture [31], any three of them can be chosen to build a
Big.Medium.Little platform.

In this section, we propose a general model to solve the plat-
form design in the case that neither the core number nor the core
type is known. For example, we assume six types of Cortex-A
cores are given (M = 6), while only two of them are allowed to

Fig. 2 Flexible core type design for Cortex-A series.

construct a big.LITTLE architecture (Type num = 2). Also, the
total core number is restricted to 8 (NUM ≤ 8). To calculate
the optimal core assignment, one additional constraint should be
added to restrict the selections of core type. We define a binary
variable TypeK to represent the decision of type K, and the func-
tion is expressed as follows:

TypeK =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if
∑

j∈FLG(K)

Nj,K = 0

1, if
∑

j∈FLG(K)

Nj,K � 0
(18)

For the reminder, the section of
∑

j∈FLG(K) Nj,K denotes the ex-
ecution cores in PUK . If

∑
j∈FLG(K) Nj,K is calculated as 0, PUK

is eliminated and TypeK is set as 0; otherwise, PUK is chosen
and TypeK is set as 1. Thus, the new model by replacing (14) of
ILP(2) with following constraints is denoted as ILP(4).

C ∗ TypeK ≥
∑

j∈FLG(K)

Nj,K (K = 1, 2, ...,M) (19)

where TypeK ∈ {0, 1}.

TypeK ≤
∑

j∈FLG(K)

Nj,K (K = 1, 2, ...,M) (20)

M∑
K=1

TypeK ≤ Type num (21)

M∑
K=1

∑
j∈FLG(K)

Nj,K ≤ NUM (22)

In ILP(4), constraints (19) and (20) are linear expressions of
Eq.(18). C is a user-denoted constant for proper calculation of
TypeK , which should be set larger than NUM. For example,
when the section of

∑
j∈FLG(K) Nj,K is calculated as 2, TypeK can

be derived as 1 according to expression (19). In addition, con-
straints (21) and (22) restrict that at most Type num types of
cores can be selected, and the core number is limited to NUM.
In contrast to ILP(3), only when TypeK and

∑
j∈FLG(K) Nj,K are

calculated at the same time that the platform can be determined.
Theoretically speaking, it happens that the best-suited platform

calculated by ILP(3) and ILP(4) cannot derive a feasible allo-
cation for a given task set, as the problem is relaxed following
ILP(2). In that case, some popular backtracking algorithms could
be considered to solve it. Given its infrequence in practice (not
observed in our experiments), and limited space of the paper, this
part is left for future work.

6. Experiment Results

To verify the effectiveness of proposed ILP method, simulation
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Table 3 Performance comparisons of different allocation methods: average execution time with varying
number of tasks.

Number of tasks 5 10 15 20 25 30 35 40 45 50 55 60 65
Execution time of ILP(1) 1s 10 s 4 min23 s >24 h >24 h >24 h >24 h >24 h >24 h >24 h >24 h >24 h >24 h
Execution time of ILP(2) 1 s 1 s 1 s 1 s 2 s 3 s 3 s 3 s 4 s 4 s 9 s 16 s 22 s
Execution time of Greedy <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s

Execution time of HIT-LTF <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s <0.1 s

Table 2 Power parameters of different core types.

α(mW/Mhz3) β s(mW) Pidle(mJ)
Cortex-A7 1.35 ∗ 10−5 2.27 18.01 17.49
Cortex-A9 1.71 ∗ 10−6 2.53 67.5 28.82
Cortex-A15 3.42 ∗ 10−7 2.88 135.07 57.64
∗1 Pidle is obtained from calculation.

experiments based on the latest DynamIQ big.LITTLE architec-
ture are conducted. The DynamIQ big.LITTLE is a heteroge-
neous architecture that allows for mixing and matching of ‘LIT-
TLE’ cores and ‘big’ cores. All the cores are combined into an
integrated cluster and each core is capable of independent DVFS
scaling [27].

We compare the evaluation results against a classic greedy
algorithm [11], [32], which is commonly used in heterogeneous
task allocation problems, and the latest heuristic algorithm HIT-
LTF [16]. The basic idea of greedy algorithm is to calculate the
best core and frequency decision for each task, thus the system
energy is minimized. Clearly, in the task allocation problem,
there always exists an optimal assignment for each task. Thus the
extension work satisfies the original objective of classic greedy.
The newest heuristic HIT-LTF is initially proposed for clustered
heterogeneous multiprocessors, where the cores from one cluster
share the uniform voltage and frequency setting [16]. However,
the clustered DVFS scaling may cause energy waste compared
with Per-Core DVFS. For a fair comparison, we realize HIT-LTF
algorithm on the platform that supports Per-Core DVFS technol-
ogy.

6.1 Setup
In this work, we consider using processors Cortex-A7 and

Cortex-A15 to simulate the experiments. The power parameters
of Cortex-A7 and Cortex-A15 are obtained from Ref. [15] by fit-
ting on a real board EXYNOS 5422, as Table 2 (the intention
of Cortex-A9 will be explained later). Besides, the performance
variance of two processors caused by internal microarchitecture
and program characteristics are also taken into consideration,
which is changing from x1.9 to x3.0 [33]. Since the most energy-
efficient frequency could be higher than the minimum provided
frequency, we assume that ‘LITTLE’ Cortex-A7 has a range
of frequencies between 600 MHz and 1,400 MHz, while ‘big’
Cortex-A15 scales frequencies from 800 MHz to 2,000 MHz, all
with a minimum step of 100 MHz.

For real-time tasks, we model them from real applications as
the following settings: the minimum utilization umin of a task is
set as 0.05, and the maximum utilization umax is 0.3. The work-
load U is calculated as the total utilization of a given task set.
In the remainder of the following experiments, when we refer to
utilization umin, umax and U, we mean the utilization calculated at

the maximum frequency on little core. Additionally, the period
time T for each task is generated in the interval [10, 1,000] [34].

6.2 Experiment Results on a Fixed Platform
In this section, we compare different allocation algorithms on

a fixed platform. The proposed formulations are implemented
by LINGO Solver [30] on processor Intel(R) Core(TM) i7-3770
CPU (@3.4 GHz) with 8.00 GB installed memory. We randomly
generate 10 task sets for each experiment and the average per-
formance and energy consumption are calculated from 10 groups
of experiments. All the experiment results are listed in Table 3,
Fig. 3 and Fig. 4.

Performance Comparisons of Different Methods: In the first
experiment, we compare the average execution time of ILP(1),
ILP(2) and two representative heuristics. We fix the maximum
task number n as 65 for each task set because when n is increased
to 65, the compared heuristics may cause allocation failures of
some tasks. The average execution time of different n varying
from 5 to 65 is listed in Table 3. In this work, as long as the
solution cannot be computed within an acceptable time, e.g., 24
hours, we consider the problem as a large-scale allocation prob-
lem. As seen in Table 3, when the task number is increased to
large enough, i.e., n = 20, the average execution time of ILP(1)
exceeds 24 hours and we regard it as a large task allocation prob-
lem. It is also easy to observe that ILP(1) always performs the
worst and the optimal solution is difficult to be derived in 24 hours
when n is increased to 20. On the contrary, ILP(2) solves the
desired Energy in a very short time, which proves the efficiency
of ILP(2). Additionally, the Greedy and HIT-LTF obtain the al-
location results in the shortest execution time which also reflects
the high performance of heuristic method.

The Effectiveness of Intermediate Solution: As described
above, the optimal solution may not be computed by ILP(1)
within 24 hours for large-scale allocation problems. Moreover,
the optimality of the intermediate solution, i.e., the solution cal-
culated in a limited time, cannot be evaluated. Therefore, we
propose to use ILP(2) to calculate the desired Energy first. Then
the desired Energy can be taken as a reference to evaluate the
intermediate solution of ILP(1). Also, the classic greedy and
heuristic HIT-LTF are tested for the same allocation problems.
The comparisons among ILP(1) (executed in 1 hour), classic
greedy and HIT-LTF heuristic are drawn in Fig. 3. It is easy
to see, ILP(1) executed in 1 hour achieves very close results to
desired Energy, as seen in Fig. 3, the blue bars are roughly near
1. On the contrary, the two heuristic methods contribute to sig-
nificant deviations. Experimental results show that ILP(1) exe-
cuted in 1 hour achieves 1.005 over the desired Energy in aver-
age, while classic greedy achieves 1.32 over the desired Energy,
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Table 4 Flexible core number design compared with fixed 4L+4B design.

Number of tasks 5 10 15 20 25 30 35 40 45
Workload U 0.93 2.04 2.99 3.91 4.8 5.64 6.57 7.55 8.64

ILP(3) Design 2L 5L 7L 8L 7L+1B 7L+1B 6L+2B 5L+3B 4L+4B
Saved Energy 0 7.7% 15% 15.1% 10.3% 8.2% 4.2% 1.4% 0%

Number of tasks 50 55 60 65 70 75 80 85 90
Workload U 9.72 10.46 11.21 12.17 13.06 13.98 14.83 15.67 16.59

ILP(3) Design 3L+5B 2L+6B 1L+7B 8B 8B 8B 8B 8B 8B
Saved Energy 1.6% 3.7% 6.2% 10.2% 13.9% 17.1% 19.8% 22.1% 24.9%

and HIT-LTF achieves 1.19 over the desired Energy. In sum-
mary, the intermediate solution of ILP(1) performs better than
two other heuristics. Besides, given that the energy of intermedi-
ate solution must be larger than the real optimum opt Energy, we
have: opt Energy/desired Energy < 1.005. In other words, the
desired Energy can be very close to opt Energy, which implies
that using desired Energy instead of the opt Energy is reason-
able and efficient.

The Effectiveness of Fast Terminate: Even though the inter-
mediate solution of ILP(1) achieves better allocation results than
two heuristics, it is difficult to evaluate its optimality and decide
the timeout. In this experiment, we evaluate the effectiveness of
algorithm Fast Terminate. The average execution time to achieve
specific percentage error, e.g., 5% off desired Energy, 3% off
desired Energy and 1% off desired Energy is drawn in Fig. 4.
We find that when the maximum allowable error is given, the
execution time of ILP(1) to obtain a feasible solution can be re-
duced. For existing LP solvers, the current best solution is getting
closer to the optimal solution with the calculation of solver. As
a result, we conclude that the larger error we set, the faster the
acceptable solution can be calculated. As seen in Fig. 4, the blue
bars (5% off desired Energy) are always below the red bars (3%
off desired Energy), meanwhile the red bars are lower than the
green bars (1% off desired Energy). Furthermore, the execution
time is also related to the scale of the task allocation. When the
scale becomes larger, for example, the task number is increased
from 10 to 65, the execution time to reach the specified error be-
comes longer. Some exceptions happen because the parameters
of a task set may affect the execution time of ILP(1). For some
cases, it also exists that a feasible solution with a specific error
is not able to be obtained within a limited time. Therefore, an
upper bound of execution time should be set, e.g., 1 hour. When
the timeout is exceeded, the solver is terminated. The number
of interruptions caused by the timeout in 10 experiments is listed
above the bars. It is noteworthy that the calculation of average
execution time does not take these terminations into account.

6.3 Experiment Results on a Flexible Platform
In the previous section, we evaluated the ILP formulations un-

der a fixed platform assumption. In this section, we assume the
core assignment is unknown for a target platform. Simulation
experiments based on flexible core number design and core type
design are evaluated as two study cases individually. All the ex-
periment results are listed in Table 4, Table 5, Fig. 5, Fig. 6, Fig. 7
and Fig. 8. As different workloads may contribute to different op-
timal platform designs, a random task set is generated to make
illustrations.

Fig. 3 The effectiveness of intermediate solution: ratio over
desired Energy of different allocation methods.

Fig. 4 The effectiveness of Fast Terminate: average execution time to
achieve specific percentage error.

The Effectiveness of Flexible Core Number Design: In this
experiment, we evaluate the effectiveness of flexible core number
design under one restriction, i.e., up to eight cores for the com-
bination of Cortex-A7 and Cortex-A15. With a given task set,
we follow two steps to determine the platform design and alloca-
tion strategy. Firstly, we execute ILP(3) to find the most energy-
efficient core number design, which is the optimal combination
of Cortex-A7 and Cortex-A15 in this experiment. After that, we
apply ILP(1) to compute a feasible task allocation. The same as
above, we set the timeout of ILP(1) as 1 hour. If the optimal solu-
tion is unable to be calculated in 1 hour, an intermediate solution
is used instead. The optimal design of ILP(3) is shown in Table 4,
where “L” denotes Cortex-A7, and “B” denotes Cortex-A15. The
energy comparison with fixed “4L+4B” design for the same task
set is seen in Fig. 5. Since the energy consumption is calculated
over a constant duration, which is the hyper-period L in this work,
we calculate the average power within one hyper-period to reflect
the energy difference.
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Table 5 Flexible core type design compared with fixed 4L+4B design.

Number of tasks 5 10 15 20 25 30 35 40 45
Workload U 0.93 2.04 2.99 3.91 4.8 5.64 6.57 7.55 8.64

ILP(4) Design 2L 5L 7L 7L+1M 7L+1B 7L+1B 6L+2B 5L+3B 4L+4B
Saved Energy 0 7.7% 15% 16.8% 10.4% 8.2% 4.2% 1.4% 0%

Number of tasks 50 55 60 65 70 75 80 85 90
Workload U 9.72 10.46 11.21 12.17 13.06 13.98 14.83 15.67 16.59

ILP(4) Design 3M+5B 4M+4B 2M+6B 1M+7B 1M+7B 1M+7B 1M+7B 1M+7B 1M+7B
Saved Energy 2% 7.5% 8% 12% 15% 18% 20.3% 22.3% 25.2%

Fig. 5 The effectiveness of core number design: the tendency of energy sav-
ing with varying workload.

From the experiments, it is easy to see that the optimal solution
of the core number is always changing with different workloads.
Besides, compared with fixed “4L+4B” design, more energy can
be saved through the flexible design. Since the formulation is ex-
tended from ILP(2), the execution time of ILP(3) to achieve the
optimal design is very short, maximum to 40 s according to the
experimental results. In respect of energy saving, the conclusions
can be summarized as follows:

(1) With the increase of workload, more and more big cores
are selected for the platform construction. The reason is that for
the same task, the big core shows larger computing capacity com-
pared with the little core. As a result, to guarantee the time con-
straints of the tasks, more big cores should be chosen to perform
the heavy workload.

(2) When the optimal design is 8L, the curve of energy saving
first reaches the peak. After that, it shows a decreasing tendency
until 4L+4B. If we assume the performance difference between
Cortex-A7 and Cortex-A15 is not changing with workload, the
energy relation can be drawn as Fig. 6 (calculated by Eq.(2)).
As can be seen, when the workload is less than U′, little core
Cortex-A7 consumes less energy. Therefore, choosing little core
has more advantage for energy saving. When the number of little
core reaches eight, it achieves the most energy saving at the first
time. Afterwards big core Cortex-A15 has to be chosen to pro-
vide higher computing capacity, thus the curve of energy saving
shows a decreasing tendency.

(3) When the optimal design is 4L+4B, it achieves the mini-
mum energy saving, 0% to be more precise. After that, the saved
energy increases again. As seen in Fig. 6, when the workload U

increases to U′, big core Cortex-A15 turns to be more energy-
efficient, and the heavier the workload is, the greater the differ-

Fig. 6 The energy relation of big and little cores with varying workload.

ence becomes. In conclusion, after the workload increases to the
turning point A in Fig. 6, replacing small cores with big cores
saves more energy.

The Effectiveness of Flexible Core Type Design: In this ex-
periment, we consider evaluating the effectiveness of flexible core
type design. Suppose that three different types of cores are given:
Cortex-7, Cortex-9 and Cortex-A15. Since no real platform is
composed of the three processors, it is difficult to obtain precise
power parameters of Cortex-A9. For the above reason, we as-
sume its parameters based on the energy relation of Cortex-A15
and Cortex-A9, as Table 2. Besides, we assume that Cortex-A9
scales the same frequencies as Cortex-A15 and the performance
difference is between x1.5 and x2.6 [35]. Even though three dif-
ferent processors are prepared, only two of them are permitted
to build a big.LITTLE architecture. Besides, the sum of the core
number is restricted to eight. The optimal solution of ILP(4) is
listed in Table 5, where “L” denotes Cortex-A7, “M” denotes
Cortex-A9, and “B” denotes Cortex-A15. Also, it is observed
that the execution time of ILP(4) is very short, maximum to 50 s
according to the experimental results. After the platform design,
ILP(1) with the timeout of 1 hour is used to calculate a feasible
allocation. The energy saving is drawn in Fig. 7. It can be seen
that compared with fixed “4L+4B” design and flexible core num-
ber design, flexible core type design consumes the least energy.
Besides, the tendency of energy saving is the same as the flexible
core number design.

The Experiment on Big.Medium.Little Architecture: Be-
sides the big.LITTLE architecture, our method is also applica-
ble to other heterogeneous multiprocessor systems. To demon-
strate the validity and generality of platform design, we conduct
experiments on a Big.Medium.Little architecture. Assume that
five different types of cores are prepared in advance: Cortex-A7,
Cortex-A9, Cortex-A15, in-order type A and out-of-order type
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Fig. 7 The effectiveness of core type design: the tendency of energy saving
with varying workload.

Fig. 8 A supplementary experiment on Big.Medium.Little architecture.

B. Type A is the most energy-efficient core, and type B has
the highest performance. The parameters of type A and type B
are generated according to the above requirements. A typical
Big.Medium.Little architecture consists of three different types,
with up to ten cores [31]. For comparison, we choose four Cortex-
A7 cores, four Cortex-A9 cores and two Cortex-A15 cores to con-
struct a typical and fixed Big.Medium.Little architecture. In con-
trast, ILP(3) and ILP(4) are applied to calculate the optimal num-
ber and types of cores. After designing the platform, ILP(1) with
the termination of 1 hour is applied to find a feasible allocation.
The comparisons of the average power consumption with differ-
ent platform designs are drawn in Fig. 8. From the figure, it is
observed that the fixed “4L+4M+2B” design consumes the most
energy, while ILP(4) consumes the least. Besides, we find that
compared with Fig. 7, larger freedom of design in terms of selec-
tive core type and permitted maximum core number saves more
energy through the flexible platform design. The experimental re-
sults show that ILP(3) achieves maximum to 30.9% energy saving
than the fixed design, while ILP(4) saves 33.9%. Meanwhile, the
execution time of ILP(3) and ILP(4) is reasonable. In the ran-
domly generated experiment, the best-suited platform is able to
be computed within six minutes.

7. Conclusion

This work explores the energy-aware allocation for periodic
real-time tasks on heterogeneous multiprocessors. After consid-

ering the power consumption in both run and idle modes, a gen-
eral optimization formulation ILP(1) is proposed. The solution
derived from ILP(1) not only maps tasks to optimal cores, but also
decides operating frequencies. If the optimal solution is unable to
be calculated in a reasonable time, a simplified ILP(2) is proposed
to calculate the desired minimum energy. By referring to the de-
sired minimum energy, the intermediate solution of ILP(1) can be
evaluated, and a reliable solution within a specified error can be
derived. In contrast to previous work, our method makes it possi-
ble to use integer linear programming to solve large-scale alloca-
tion problems for energy optimization within a limited time. Fur-
thermore, a flexible platform design is also considered to incorpo-
rate with the task allocation for more energy savings. We gener-
ate ILP(3) to solve the flexible core number design, and propose
ILP(4) to deal with the flexible core type design. After deciding
the best-suited platform for a given workload, ILP(1) is used to
find a feasible allocation. Experiment results show that compared
with a fixed design, flexible core assignment achieves more en-
ergy savings. For future work, extension experiments based on a
real board will be considered to evaluate our proposed models.
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