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Abstract: The region that includes the register file is a hot spot in high-performance cores that limits the clock fre-
quency. Although multibanking drastically reduces the area and energy consumption of the register files of superscalar
processor cores, it suffers from low IPC due to bank conflicts. This paper proposes a bank-aware instruction scheduler
which selects instructions so that no bank conflict occurs, except for a bank conflict in one instruction. The evaluation
results show that, compared with NORCS, which is the latest research on a register file for area and energy efficiency, a
proposed register file with 24 banks achieves a 20.9% and 56.0% reduction in circuit area and in energy consumption,
while maintaining a relative IPC of 97.0%, and the latency of the instruction scheduler.
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1. Introduction

Recently, 8-issue cores, such as the IBM POWER8, and Intel
Haswell and Skylake, have come onto the market [1], [2], [3], [4].
Such wide cores, however, suffer from increased area and en-
ergy consumption of the register file. Wide cores require a large
number of registers proportional to the number of in-flight in-
structions. Besides, the circuit area of a register file composed
of a RAM is proportional to the square of the number of its
ports [5], [6], [7].

Figure 1 shows a die photograph of the AMD Bulldozer pro-
cessor, which is one of the most documented processors among
recent ones [8]. The integer core of the processor is a moderate-
sized, non-multithreaded 4-issue one. Nevertheless, as shown in
this figure, the 96-entry integer register file with 8-read+4-write
(i.e., 12-port) is comparable with the 16 KB level-1 data cache
(L1D) in area, even though their sizes are different: 16K ÷ (96 ×
8) � 21.3 times. This means that the register file cell is approxi-
mately 20 times larger than the L1D cell.

A register cache is a drastic method of reducing the register
file ports [11], [12], [13], [14]. Compared with the original reg-
ister file, the main register file is smaller because it needs only a
few ports (Section 2.1).

Multibanking is the ultimate method in the sense that it can
reduce the effective number of ports to one. In the Bulldozer
core, the 96-entry register file will be divided, for example, into
16 banks of 6-entry RAMs composed of small cells such as of
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L1D. Because the original register file cell is approximately 20
times larger than the L1D cell, multibanking can reduce the reg-
ister file to ideally 1/20 in area and in energy consumption. In
this case, the hot spot problem will be drastically mitigated.

However, multibanking is a technique typically used for the
main memory of vector processors, and not directly applicable to
the register file of superscalar cores because the IPC will be con-
siderably degraded by bank conflicts. The pipeline disturbance
caused by bank conflicts is much higher than naive intuition, be-
cause the pipeline is disturbed when any of the banks causes a
bank conflict.

This paper shows bank-aware instruction scheduler design
for a multibanked register file, which selects and issues instruc-
tions so that no bank conflict occurs in the multibanked register
file. Although the idea of bank-aware scheduling itself is not new,
no feasible implementation has been presented. Balasubramonian
et al. briefly mentioned the idea of bank-aware scheduling while
presenting their main proposal [15]; however, they did not show
how to implement it. Tseng et al. even rejected bank-aware
scheduling because the latency of the scheduling logic will be
unacceptably increased [16].

Fig. 1 Bulldozer 2-Core Processor (Ref. [8], Fig. 4.5.7). The boxes
and texts for the register files (RF) and the level-1 data caches
(L1DCache) are added by the authors on the basis of the arti-
cles [8], [9], [10].
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Therefore, the main purpose of this paper is to show feasible
design of a bank-aware scheduling logic. The rest of this paper
is organized as follows: Section 2 introduces existing techniques
including a plain multibanked register file. Then, Section 3 de-
tails our design. Sections 4 and 5 evaluate the area and energy
efficiency of these systems. Surprisingly, the results show that
our design overcomes the latest proposal introduced in Section 2.

2. Existing Techniques

This section introduces existing techniques. Section 2.1 intro-
duces a register cache system as the latest proposal on a register
file for area and energy efficiency, which is compared with our
proposal in Sections 4 and 5. Section 2.2 shows a multibanked
register file before going into our proposal in Section 3.

2.1 NORCS [12], [13]
A register cache can also reduce the register file area and en-

ergy consumption by reducing the number of ports [12]. Com-
pared with the original register file, the register cache is smaller
because it has only 4 to 8 entries; the main register file is smaller
because it has fewer ports.

However, conventional register cache systems suffer from low
IPC due to register cache misses. The backend pipeline is stalled
when any of the register accesses in a cycle causes a register cache
miss. If the register cache miss rate per access is 5% and the num-
ber of accesses per cycle is 3, the stall probability is as high as
1 − (1 − 0.05)3 = 1 − 0.857 = 14.3%.

To reduce this probability, Shioya et al. proposed the non-
latency-oriented register cache system (NORCS) [12], which is
the latest proposal on the register file for area and energy effi-
ciency, and researchers in NVIDIA adopted this idea for their
GPUs [13].

As shown in Fig. 2 (middle), NORCS has almost the same
structure as conventional register cache systems. The main dif-
ference is their pipelined behavior as below.

The pipeline of a conventional register cache system does not
have a stage for reading the main register file, in the same man-
ner that usual pipelines have stages to read L1D but not the main
memory. Conversely, the NORCS pipeline provides dedicated
stages to read the main register file, and all the instructions pass
through these stages whether they hit or miss the register cache.

The NORCS pipeline is disturbed when register cache misses
in a single cycle exceed the main register file read ports. With the
same number of accesses of 3 and register cache miss rate of 5%,
the pipeline with a 2-read-port main register file is disturbed if all

the 3 accesses miss the register cache, and the stall probability is
reduced from 14.3% to 0.053 = 0.0125%.

2.2 Multibanked Register File
Multibanking is a technique typically used for the main mem-

ory of vector processors; however, there is no standard imple-
mentation of a multibanked register file. Therefore, this subsec-
tion shows a typical plain multibanked register file before going
into our proposal in Section 3.

Figure 2 (lower) shows the datapath of a multibanked register
file. Figure 3 adds the control to the left half.

Fig. 2 Datapaths of full-port, register cache, and multibanked systems.

A multibanked register file has read and write switches for any-
to-any routing between the execution units and banks. As de-
scribed in Section 1, the banks are sufficiently smaller than the
original full-port register file in area.

These switches are also sufficiently small. We give an intuitive
explanation on the circuit size of the switches before quantitative
evaluation in Section 5.

The circuit size of these switches can be estimated via a 64-bit
r-read+w-write memory with only 1-entry. This 1-entry memory
works as a 64-bit any-to-any switch by writing a 64-bit word to
any of the w write ports, and reading it from any of the r read
ports. This 1-entry r-read+w-write memory is two orders of mag-
nitude smaller than an r-read+w-write register file with a hundred
entries.

The read and write switches are a few times larger than this
memory because they are not r-read+w-write, but r-read+b-write
and b-read+w-write, respectively, where b is the number of banks
and b > r = 2w. Finally, these switches are more than an order of
magnitude smaller than the r-read+w-write register file.

The any-to-any routing and memory functions are integrated
in a full-port, while distributed into the switches and banks in a
multibanked register file. It is safe to say that a multibanked reg-
ister file is smaller because of this function distribution at the risk
of bank conflicts.

The physical register number from the instruction issue port
is used as the concatenation of the bank number and intra-bank
number fields, which are 4- to 5-bit wide.
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Fig. 3 Control and datapath of multibanked systems.

The system consists of the arbiters and the intra-bank number
routing switches. The bank number field of the register number is
decoded and distributed to the arbiters. Then, the intra-bank num-
ber field is routed to the bank through the switches controlled by
the arbitration result.

The arbiters and the register number switches are even smaller
than the 64-bit datapath described above.

The arbiter is equivalent to a select logic of an instruction
scheduler that selects one out of the same number of instructions
as the register file banks with fixed priority. Thus, its latency is a
fraction of a half-cycle time usually allocated to the select logic
that selects two or more out of 64 or more instructions. Note that
the arbiters work in parallel with one another.

The intra-bank register number is 4-bit wide, and the register
number routing switches are approximately 4/64 of the read/write
switches for 64-bit data.

As shown by the pipeline registers in the middle of Fig. 3, one
cycle is assigned to the arbitration and register number routing.

3. Bank-aware Scheduler

This section details our bank-aware scheduler design. As
mentioned in Section 1, prior studies briefly mentioned the idea
of bank-aware scheduling, or even rejected it because of the in-
creased latency [15], [16]. However, our detailed design clarifies
that the latency of the logic is not practically increased.

We found the following three points:
( 1 ) Accesses that obtain their operands from the bypass network

can be excluded from the bank arbitration.
( 2 ) The two accesses to the two operands of an instruction can

cause a bank conflict, and this type of a bank conflict requires
an additional cycle to be solved.

( 3 ) However, some of them are caused by the two accesses to
the same register value to calculate the square or double of
the value, and can be excluded.

3.1 Structure
Figure 4 shows the proposed select logic that selects three in-

structions to a 24-bank register file.
Issue Port Arbiters

The upper half of the figure represents conventional select logic
composed of cascaded three arbiters, each of them selects at most
one from at most W requests, where W is the instruction window
size [5]. These arbiters work in series by withdrawing the re-
quests to the next arbiter when granted. They produce gp[i][p] for

Fig. 4 Proposed select logic (3 insts to 24 banks).

the i-th instruction to be issued from the p-th issuing port.
Read Arbiters

The lower half is comprised of the read arbiters for the 24
banks added for the proposed logic. The physical register num-
bers allocated to the source operands are stored in the src0/src1

registers, which are parts of the instruction window entries. The
bank numbers of these registers are decoded, bit-wise ORed, and
distributed to the arbiters, which are identical to those in the con-
ventional select logic stated above. When all of the read requests
for i-th instruction, if any, is granted, gr[i] is asserted. We should
note that, unlike the conventional select logic stated above, these
24 arbiters work in parallel.

In typical instruction windows, src0/src1 are fields of the rows
of the wakeup CAM [5]. It is unrealistic to add read ports to the
CAM for reading the bank numbers of all of the ready instruc-
tions for arbitration. Thus, the point of the proposed logic is to
change these fields into discrete registers so that the bank num-
bers can be provided to the arbiters without adding read ports to
the CAM.

Because the scheduler has the bank numbers as its fields, there
are several design options to reuse these fields also for the ar-
biters. In the evaluation in Section 5, we added dedicated regis-
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ters for the arbiters to evaluate our proposal independently with
the scheduler design.
Write Arbiters

Though not shown in the figure, the write arbiters exist that
produce gw[i] in almost the same way as the read arbiters except
that an instruction has only one destination operand.

More precisely, an instruction requests not the register file
banks but the timeslots of the banks, i.e., the banks in the cycles
when the instruction reads and writes the target banks. Thus, the
logic has the separate read and write arbiters in order to request
the banks in different cycles between read and write.

As shown in the figure, the read arbiters are disabled by the
busy signals when the bank is used for the write of an instruction
issued several cycles before.
Three Types of Arbiters

Finally, the i-th instruction is selected to be issued from the
p-th port when

gp[i][p] && (gr[i] && gw[i]) == 1. (1)

3.2 Size and Latency
The read/write arbiters are about (24/w) times larger than the

conventional select logic, where w is the issue width and is 3 in
Fig. 4. However, the latencies of the read/write arbiters are con-
siderably shorter than that of the conventional logic. As stated
before, the w arbiters work in series, while the 24 read/write ar-
biters work in parallel. Thus, the latencies of the read/write ar-
biters are basically 1/w of the conventional logic, and the critical
path of the entire logic resides in the conventional logic. There-
fore, the entire latency of the proposed select logic is longer than
the conventional select logic by the latency of the 2-input AND
gates that correspond to the first && operator in Eq. (1).

3.3 Unified Scheduler
As mentioned above, an instruction requests the timeslots of

the banks. Thus, a unified scheduler, which holds several types of
instructions with different latencies, requires several sets of write
arbiters for the different cycles when the instructions write to the
banks.

Here it should be noted that, in general, instructions issued
from the same issue port are designed to write to the register file
in the same cycles after they have been issued, in order to realize
pipelined behavior without resource conflict, where the execution
resources include the register file read ports, the execution units,
and the register file write ports. For example, if two instructions
that write to the register file in the l-th and (l − 1)-th cycles af-
ter they have been issued are issued in consecutive cycles, they
will cause a conflict on the register file write port. Insertion of a
bubble to avoid this conflict not only requires extra logic but also
degrades the IPC. This is also true for scheduling with level-1
cache hit/miss prediction [17].

Table 1 summarizes the latencies of the instruction types in
this sense for the unified scheduler evaluated in Section 4. This
scheduler requires, (in addition to two sets of read arbiters for
the integer and floating-point register files) two sets of write ar-
biters for the integer register file (1-cycle latency integer, and 4-

Table 1 Latencies of instructions in Sections 4 and 5.

Fig. 5 Scheduling w/(upper) and w/o (lower) delayed request, where the
stages are W: wakeup, S: select, exec: execution, and read/write:
register read/write.

cycle latency load instructions), and one set of write arbiters for
the floating-point register file (4-cycle latency floating-point and
floating-point load instructions).

3.4 Bypass-aware Scheduling
Figure 5 shows the pipelined behavior of two instructions Ip

and Ic. Ic depends on Ip; that is, Ic reads the same physical regis-
ter that Ip writes. In the upper half of the figure, the issue of Ic is
delayed for one cycle. In this case, the value is usually passed
through the operand bypass network. However, if left unhan-
dled, Ic meaninglessly requests the same bank. This request is
not granted because the bank is used by Ip in the cycle C5, and
the issue of Ic is delayed for another cycle, as shown in the lower
half of the figure.

To solve this problem for bank-aware instruction scheduler, the
following logical trick is introduced.

In Fig. 4, the operand ready signals, which are set by the
wakeup signals, are connected to the enable pins of the decoders
for the read arbiters through the FFs shown in the middle. These
FFs delays the requests for the read arbiters for two cycles after
wakeup.

In the case of Fig. 5, Ic does not request the bank in the cy-
cles C2 and C3. This is the same situation as Ic does not have the
source operands. As a result, Ic is selected in C3 as shown in the
upper half of the figure.

3.5 Inter- and Intra-Instruction Conflict
Bank conflicts can be categorized into inter- and intra-

instruction ones. An inter-instruction conflict occurs between
two (or more) source operands of two (or more) different (or
more) instructions, while an intra-instruction conflict occurs be-
tween the two source operands of a single instruction. The bank-
aware scheduling can solve inter- but not intra-instruction con-
flicts. On an intra-instruction conflict, the backend pipeline must
be stalled to make a cycle to read the second operand.

We should note that it is difficult to solve intra-instruction con-
flicts with register renaming. Physical registers have already been
allocated to the destination operands of the dependent instruc-
tions, and this mapping cannot be changed for the convenience of
the source operands of the instruction to be scheduled.
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Table 2 Types of conflicts and solutions.

3.6 Intra-Instruction Conflict for Identical Operand
In addition, intra-instruction conflicts are categorized into two

cases. When the two source operands of a single instruction are
different, an intra-instruction conflict occurs with a probability.
On the contrary, when the two source operands are identical, an
intra-instruction conflict occurs with probability 1.

A single instruction with identical source operands is some-
times used for an optimization technique known as strength re-

duction. For example, we found that gromacs in SPEC 2006 have
a number of floating-point instructions to calculate x+ x = 2x and
x × x = x2.

When the source operands are identical, the bank conflict can
be avoided not by the scheduling or stalling but by duplication,
i.e., the bank is read only once and the read value is duplicated in
the read switch.

Table 2 summarizes the types of conflicts and the solutions for
them.

However, the evaluation results show that the opportunity for
strength reduction is rare and this duplication improves the aver-
aged relative IPC of 29 programs in SPEC 2006 only by 0.35%.

Thus, we did not adopt this duplication in the evaluation in the
next section. In this case, the pipeline is stalled if a bank conflict
occurs in a single instruction regardless of whether the source op-
erands are identical or different.

4. Evaluation of IPC

This section shows evaluation results on IPC with a processor
simulator.

4.1 Evaluation Environment
We used the whole set of the SPEC CPU 2006 benchmark, in-

cluding 29 programs, with the ref data sets [18]. The programs
were compiled with gcc 4.2.2 −O3. We evaluated the 1G instruc-
tions after the first 10G instructions.

We used the Onikiri 2 [19] simulator, which was also used to
evaluate NORCS [12]. This simulator is completely cycle accu-
rate, that is, it reproduces the behavior of instructions in each
stage in the correct cycles. The simulator executes instructions in
the correct execute stages, and verifies the results with those of
an on-line emulator in the commit stage. Thus, the behavior on
mispredictions is also accurately reproduced. The simulator also
reproduces the fact that register renaming actually randomizes the
accessed registers.

4.2 Evaluated Models
Table 3 shows the evaluated models of their default configura-

tions. We chose as the default the minimum configurations with
which Proposal and NORCS show average relative IPC of more
than 0.96.

Table 3 Evaluated models and their default configurations.

Table 4 Configuration of baseline model.

Fig. 6 Averaged relative IPC of models.

The baseline core has a full-port register file composed of a
replicated pair of RAMs. This replication is widely used in re-
cent cores such as the Bulldozer core in Section 1 [8].

Table 4 gives its configuration, which follows modern 8-issue
cores such as the IBM POWER 8, and Intel Haswell and Skylake
processors [2], [4].

As described in Section 2.2, we assumed that the arbitration
and register number routing of Plain model take one cycle (de-
noted as “a/r: 1” in Table 3).

Unfortunately, the register file latency is not documented for
recent cores [17]. We assumed that the latency of the baseline
model is 3 cycles and those of the other models are reduced to 2
or 1 as shown in Table 3. It should be noted that, this difference
of one cycle has less significant effect on the IPC of recent cores
with highly accurate predictors than bank conflicts. In this eval-
uation, the average IPC decreased by 1.4% because of one-cycle
increase in latency.

4.3 Relative IPC
Figure 6 shows the averaged relative IPC of the models with

different configurations averaged for the 29 programs in SPEC
CPU 2006. In this graph, four bars are shown for multibanked
models with different numbers of banks, and for NORCS with
a 8 to 24-entry register cache and a 3-read+3-write main regis-
ter file. Regarding NORCS, we evaluated many other configura-
tions, e.g., a main register file with fewer write ports, and selected
these four as representatives so that they can prove that the default
configuration is the best.
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Fig. 7 Relative IPC of models with default configurations (Table 3) for SPEC CPU 2006.

Fig. 8 Bank conflicts per cycle for 24 banks for SPEC CPU 2006.

Fig. 9 Bank-conflict-induced stalls per cycle for 24 banks for SPEC CPU 2006.

We evaluated the number of banks in multiples of 6 based on
the layout constraint derived in Section 5.2. While Plain cannot
achieve sufficient IPC even with 30 banks, Proposal achieves a
relative IPC of as high as 97.0% with 24 banks.

Figure 7 shows the relative IPC of the models with the default
configurations shown in Table 3 for all the 29 programs in SPEC
CPU 2006. We chose the default configurations so that Proposal

and NORCS show average relative IPC of more than 0.96. How-
ever, most of them show the relative IPC of as low as 0.9.

4.4 Bank Conflicts
Figure 8 shows the number of potential bank conflicts per cy-

cle for 24 banks for all the 29 programs in SPEC CPU 2006. This
data was retrieved with the baseline model with full-port register
files. Though the model is actually free from bank conflicts, we
counted potential bank conflicts observing the fields correspond-
ing to the bank number in the accessed register numbers.

The bank conflicts are categorized into inter- and intra-
instruction ones as shown in Table 2. For the average of 29 pro-
grams, the number of inter-, intra- (different operands) and intra-
(identical operands) instruction bank conflicts per cycle are 0.267,

0.015 and 0.002, respectively.
Among the three types of bank conflicts, the inter-instruction

conflicts (0.267) and the intra-instruction conflicts with the iden-
tical operands (0.002) can be eliminated by the bank-aware
scheduling and the operand duplication, respectively; however,
the latter is considerably rare.

4.5 Pipeline Stalls Caused by Bank Conflicts
In contrast to Fig. 8, Fig. 9 shows the number of actual pipe-

line stalls caused by bank conflicts per cycle for 24 banks for all
the 29 programs in SPEC CPU 2006. Unlike Fig. 8, this data was
retrieved with the Plain and Proposal models.

The average number of stalls per cycle is reduced from 0.267
(Plain) to 0.019 (Proposal). The difference between them shows
strong correlation with the average number of inter-instruction
bank conflicts per cycle (0.267) shown in Fig. 8, which is elimi-
nated by bank-aware scheduling.

Figure 9 also shows the effect of the identical operand dupli-
cation. The difference in the average number of stalls per cy-
cle between without (Proposal) and with the duplication (Pro-

posal+Dup) is only 0.003. Thus, we do not recommend the du-
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plication of identical operands as described in Section 3.6.

5. Evaluation of Area and Energy

This section shows evaluation results on the area and energy
based using a process design kit.

5.1 Evaluation Methodology
We used FreePDK15, a predictive process design kit for 15 nm

FinFET technology [20], and NanGate Open Cell Library [21].
Because this library does not include RAMs or switches, we

used CACTI [6], [7], [22] with minor modifications to evaluate
them. CACTI calculates the RAM area from the numbers of
vertical and horizontal wires, and the RAM energy from the ca-
pacitance of the transistors and wires charged and discharged in
read and write operation. We adjusted the scale of the RAMs and
switches using the formula of CACTI, and the standard cells of
FreePDK15, by their minimum pitch of wires.

Because the areas of small cells strongly depend on the de-
signers’ efforts, we investigated recent researches on small-port
memory cells [23], [24], and verified that the values are quite con-
sistent.

We described the entire systems of Plain and Proposal in Sys-
tem Verilog. Then, we synthesized, and placed-and-routed the
description with Cadence Encounter v10.13 including RTL Com-
piler v10.10 with the standard cells in the FreePDK15 library.
The RAMs and switches are treated as large cells which have pa-
rameters estimated with CACTI.

5.2 Layout
Figure 10 shows the place-and-route results of the Plain and

Proposal integer register files and the bank arbiters of Proposal.
This figure also shows the shapes of the datapaths of the baseline
and NORCS integer register files for reference.

Because each of the banks requires a decoder and a buffer, we
adopted an 8-bit-slice design for the multibanked models to re-
duce the overhead to 1/8.

In this 8-bit-slice, 6 register file banks are arranged. This is the
reason why the number of banks of the multibanked models is the
multiple of 6. We cannot freely adjust the width and height of the
RAM cell because they are almost completely determined by the
number of bit- and word-lines.

The heights (the horizontal direction in these figures) of the

Fig. 10 Layout of integer register files of each model.

switches are determined by the number of routing control lines
which run vertically through the eight 8-bit slices. Thus, the read
and write switches cannot overlap with each other in the horizon-
tal direction. The height of the layout is thus determined by the
sum of the heights of 4 banks, and a read and a write switch.

The most part of the control circuit is pipeline latches and
switches in Proposal. In contrast, the control circuit of Plain also
contains the arbiters of the banks. Proposal has these arbiters
in its instruction scheduler instead. The arbiters of Proposal is
larger than that of Plain, because the number of requests of the
bank arbiters is 64 and 15 for Proposal and Plain, respectively.
The number of requests of Proposal equals the size of the in-
struction window, and that of Plain equals the 10-read+5-write of
register file.

5.3 Area and Energy Consumption
Figure 11 shows the relative area and energy consumption of

the integer and floating-point register files. The Plain and Pro-

posal areas include dead spaces produced by layout constraint.
The energy is calculated using the access count produced by the
simulation in Section 4.
Area

The areas of the multibanked models are considerably smaller
than those of the other models with the default configurations. As

Fig. 11 Relative area (upper) and energy consumption (lower).
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the register file bank areas are reduced, those of the switches and
control logic become relatively large. In particular, the switch
areas increase with the square of the number of banks.

As the number of registers increases, the register file areas be-
come dominant. Thus, Proposal with 1-read/write cells is more
advantageous in heavily-multithread cores with several times
more registers.
Energy Consumption

As shown in Fig. 11, the result of energy consumption is basi-
cally proportional to that of the area, except that the energy of the
register file banks is reduced in inverse proportion to the number
of banks; because only accessed banks consume dynamic energy.
On the contrary, the energy of switches increases with the square
of the number of banks.
Read/Write Arbiters

As shown in Fig. 10, Proposal has the read/write arbiters in
its instruction scheduler. In Proposal with 24 banks, 52.5%
and 32.9% of the area and energy consumption come from the
read/write arbiters, respectively.

In this area and energy consumption, only 0.543% and 1.31%
come from the additional bank number registers described in Sec-
tion 3.1. The latter percentage is larger than the former mainly
because the switching rate of the registers is higher than that of
the logic.

5.4 Scheduler Latency
We evaluated the critical path of the instruction scheduler. We

applied 250 ps as a constraint of logic synthesis for 2 GHz opera-
tion. Because wakeup and select should be performed in a single
cycle, half cycle is assigned for select logic. As a result of the
logic synthesis, the latencies of the conventional scheduler and
the bank arbiter of our proposal were 216 ps and 202 ps, respec-
tively. Thus, the bank arbiter of our proposal is not the critical
path of the scheduler.

5.5 Area and Energy Efficiency
The graphs in Fig. 12 show the relative IPC with respect to

the relative area and energy consumption. The graphs are simply

Fig. 12 Relative IPC vs. relative area (upper) and energy consumption
(lower).

derived from the graphs in Figs. 6 and 11 to show the trade-off be-
tween IPC and area, and between IPC and energy consumption.
For techniques to reduce area and energy while keeping IPC, it is
important to plot one point within the region close to the top of
the graphs as close to the y-axis as possible.

In each of the graphs, the points for Proposal and NORCS

with their default configurations (denoted by circles) are located
within the region where the average relative IPC is more than
0.96, from left to right in this order, which proves that Proposal

reduces more area and energy than NORCS while keeping the
same level of IPC. Compared with NORCS, Proposal achieves
a 20.9% and 56.0% reduction in area and energy consumption,
respectively.

6. Conclusion

The region including the register file is a hot spot of a processor
core that limits the clock frequency and the scale of the core. Al-
though a multibanked register file drastically reduces its area and
energy consumption to mitigate the hot spot problem, conven-
tional implementations suffer from low IPC because of bank con-
flicts. Bank-aware scheduler schedules instructions not to cause
bank conflicts.

Although the prior studies considered that the bank-aware
scheduling is unrealistic because of increased latency, our design
showed that it is not true. The evaluation results show that, from
NORCS [12], which is the latest architecture to reduce the area
and energy consumption of a register file, the proposed system
achieves a 20.9% and 56.0% reduction in area and energy con-
sumption, respectively.
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