Electronic Preprint for Journal of Information Processing Vol.26

Research Paper

Promotion Condition Optimization based on Application
Features in Generational GC of Android Application
Runtime

RyUSUKE Mori!

Masaro OGucHI?

SANEYASU YAMAGUCHI!+®

Received: September 30, 2017, Accepted: February 14, 2018

Abstract: Android Runtime (ART), which is the standard application runtime environment, has a garbage collection
(GC) function. ART have an implementation of generational GC. The GC clusters objects into two groups, which are
the young and old generations. An object in the young generation is promoted into an old object after passing several
times of GC executions. In this paper, we propose to adjust the promoting condition based on the object feature, which
is the size of each object. We then evaluate our proposed method and demonstrate that our method based on the feature
can reduce the memory consumption of applications with smaller performance decline than the method without feature

consideration.

Keywords: garbage collection, generational GC, Android, ART

1. Introduction

The Android operating system has become one of the most
popular operating systems in mobile devices with a market share
of 85.0% in Q1 2017[1]. The Android operating system has
a process terminating function, which is called Low Memory
Killer. The function automatically terminates application pro-
cesses when the size of available memory becomes small [2].
This function enables a user to invoke applications without man-
ual termination of processes. However, re-use of an application
that is terminated requires process re-creation. This takes longer
time than that of non-terminated application. Thus, decreasing
the number of process terminations by Low Memory Killer is de-
sired. For relieving memory shortage, reducing the size of mem-
ory consumed by applications is effective.

In the Android operating system, application memory size is
controlled by GC. In order to decrease the number of process
termination, decreasing the sizes of the memories consumed by
processes is important. Recent Android operating systems uti-
lize Android Runtime (ART) as the standard application runtime
environment. ART has a GC function. The function is invoked
when the size of the available memory is small. It then searches
the heap area for unused memories and releases them. ART has
a generational GC [3] implementation, which is called Genera-
tional Semi space (GSS). Generational GCs, including GSS, sep-
arate objects into two groups, which are young and old objects.
The GCs assume that young objects will probably die soon and
old objects will not do. The GCs actively check young objects for
achieving good throughput, which is the total size of the released

1
2

Kogakuin University, Shinjuku, Tokyo 163-8677, Japan
Ochanomizu University, Bunkyo, Tokyo 112-8610, Japan
¥ sane@cc.kogakuin.ac.jp

© 2018 Information Processing Society of Japan

objects per second. For covering the whole objects, these GCs
sometimes check all the objects, including both of the young and
old objects. In the Android GSS, every object is promoted into an
old object after passing two times of GC executions independent
to its feature, such as its size or class name. In addition, the exist-
ing works [4], [5] showed the possibility of that the performance
of the GSS GC could be improved by optimizing the promoting
condition.

In this paper, we focus on the GSS GC and propose new meth-
ods, which are a naive method and a size-aware method, for im-
proving its heap size and Stop The World (STW) time by optimiz-
ing its promotion condition. In this GC, the memory size and the
STW time are in a trade-off relationship. The STW time has an
effect on the application performance. STW will be explained in
Section 2.1. Our method that considers an object feature, which
is the size of each object, reduces the sizes of application mem-
ory and relieves the performance decline. We then evaluate the
proposed methods with our implementations of the proposed GC.
This paper is based on the previous works of Refs. [2], [4], [6].

2. GC Algorithms

In this section, we explain GCs, their algorithms, and their im-
plementation. In this paper, we focus on the generational GC
algorithm in Section 2.5 and its implementation in Section 2.6.
The implementation and algorithm are based on the algorithms in
Sections 2.2, 2.3, and 2.4.

2.1 Garbage Collection

GC is a function that finds garbage objects and releases their
memories. It is invoked when the size of the available memory is
small. Without GC, such as programming C language, program-
mers have to manage memory usage manually. They consider

Electronic Preprint for Journal of Information Processing Vol.26

Heap

00000000

0000 @ ©

’ O non-garbage Object O . garbage Object ‘

Fig.1 Garbage collection.

object lifetimes, and then explicitly allocate and release memory
of used and unused objects. These are sometimes difficult for
programmers and cause memory leaks. With GC, programmers
are remarkably relieved from these bugs and hard management.
In the following subsections, we introduce three basic GC algo-
rithms and one advanced algorithm.

Figure 1 illustrates an overview of a GC behavior. There are
objects in a memory space. Objects that are not referred di-
rectly or indirectly by the root objects of the application are called
garbage objects. They cannot be accessed by the application. Ap-
plication runtime environments cannot detect whether an object
is a garbage object or not without GC execution. GC recursively
checks the references from the root objects and finds garbage ob-
jects. In a case of Mark and Sweep GC, which is described in
the next subsection, the GC marks objects that can be accessed
from the root objects recursively. Objects that are not marked are
garbage objects and they are released. During a GC execution,
all the application threads stop. This is called Stop The World
(STW).

Several GC algorithms have been proposed. We introduce
them in the following subsections.

2.2 Mark and Seep

Mark and Sweep (MS) [8] is an algorithm that marks used ob-
ject and releases unmarked objects. This GC algorithm is com-
posed of the Mark phase and the Sweep phase. In the Mark
phase, the GC recursively follows references from the root ob-
jects, which are directly referenced by the interpreter, and marks
them. In the Sweep phase, unmarked objects are released. The
unmarked objects are not referred directly or indirectly by the in-
terpreter and no longer used. Its overview is shown in Fig. 2. The
released memory can be used again. The advantages of this algo-
rithm are as follows. Its overhead during non-GC time is small,
unlike the reference counting algorithm. It can release objects
with reference loops. The disadvantage is time to complete the
GC process is relatively long because of following all the refer-
ences.

2.3 Reference Counting

Reference counting [9] is an algorithm that counts the number
of in-references of each object. It determines an object without
incoming references as a garbage object and releases that. Its ad-
vantage is that this can release an object immediately at detection
of no reference without following many references like MS GC.
The disadvantages are that the GC requires updating the number

© 2018 Information Processing Society of Japan

root

O
O™ 0
O

Q Garbage Object

Q non—garbage Object
Fig. 2 Mark and Sweep.

C@CO@®O

From space
CAOO0@0 | OO0@®

Q
O
O

0 00

To space

From space Q Tospace
Tospace From space
Fig. 3 Copying GC.
Young area Old area
romote

[|

|:| garbage Object]

[IPromote Object I non-garbage Object

Fig.4 Generational GC.

of in-references at each change of references and this cannot re-
lease objects with reference loops.

2.4 Copying GC

The Copying GC [10] separates the heap area into two spaces,
which are From and To spaces. Its overview is shown in Fig. 3.
Memory for new objects is allocated in From space. The GC is
invoked when the From space reaches full. This GC conducts the
process same as MS GC for detecting garbage objects. In order
to release the memories, this GC copies the used objects in From
space to To space. After the copy, the GC releases the entire From
space, and exchanges the From and To spaces. Its advantage is
that the copy causes compaction and fragmentation is automat-
ically solved. Its disadvantage is its ineffective memory usage.
This GC divides the heap into two spaces. Thus, the size of us-
able spaces decreases. Moreover, this GC has to check the entire
heap area.

2.5 Generational GC

Generational GC separates objects into two generations, the
young and old generations, according to their ages like Fig. 4.
The GC expect based on the heuristic hypothesis that young ob-
jects will probably die in the near future. Thus, the GC actively
checks the young generation. Most GC algorithms, such as MS

Electronic Preprint for Journal of Information Processing Vol.26

GC, require a reference following process that covers all the alive
objects. Time to complete this process is short in a case of many
objects die and little objects are alive. Generational GC expects
that a reference following process in young generation finishes
shortly [11]. The GC can be tuned by adjusting the frequencies
of checks for the young and old generations. Generational GC is
not exclusive to and can coexist with other GC algorithms. This is
utilized for improving other existing algorithms such as MS GC.

An object is stored in the young generation area at its creation.
When the young generation area becomes full, a GC for the young
generation is performed. An object that passes some GC exe-
cutions is promoted to the old object. When the old generation
area becomes full, a GC for the whole area, including both of the
young and old area, is performed.

2.6 Generational GC of ART

ART has a generational GC implementation, called GSS. For
collecting garbage objects among the young objects, a Copying
GC is used. The young generation area is separated into the From
and To spaces.

The GC has two types of GCs, the bps and whole GCs, inside.
The former is only for the young generation. The latter is for
both generations. Young objects are actively checked by the bps
GC. An object that survived two times of GCs is promoted into
an old object. When the total size of objects that promoted after
the last whole GC execution exceeds the PromotedThreshold, the
whole GC is performed. The default value of PromotedThresh-
old is 4 MB. The target of the whole GC is all the objects while
that of the bps GC is only the young objects. Naturally, time to
complete the whole GC is longer than that of the bps GC, and fre-
quent execution of the whole GC should be avoided for achieving
better performance. However, unused objects in the old area are
released only by the whole GC. Thus, execution of the whole GC
is important to decrease the heap sizes of applications.

3. Object Lifetime Trend in Smartphone Ap-
plications

In this section, we introduce the object lifetime trend of practi-
cal Android applications. The surveying results on the object life-
time trend, such as the relationship between object sizes and ob-
ject lifetimes, of practical Android applications were reported in
works [4], [5]. In these, the authors constructed their ART mon-
itoring system and observed object creations and collections by
GC in ART. They surveyed the behaviors of the top applications

Promote Object

Y Youngarea
¢ N Old area
\.____ Fromspace Tospace ...
__——— >~~~ Promote
0000000000 IC |
From space To space
To space From space

Fig.5 Generational semi space (Default).

© 2018 Information Processing Society of Japan

in all categories in Google Play Store on June 12, 2016.

On the relationship between lifetime length and the number of
objects, they reported that the number of objects with the shortest
lifetime was the largest. The number of objects monotonously de-
creased as lifetime length increases. They found that the number
of objects with lifetime-zero, which died in the first GC, was the
largest. These objects accounted for about 80%. In these papers,
lifetime length was defined as the number of GC executions that
the object passed.

On the relationship between size and the number of objects,
the authors showed the number of objects whose size was about
32 bytes was the largest. Focusing on objects larger than 32 bytes,
the number of objects generally decreased as the size of objects
increases.

On the relationship between lifetime length and sizes, they
found that the ratio of lifetime-zero decreased as the size in-
creased. Similarly, the average lifetime length increased as size
increased. Simply writing, small objects tended to die with short
lifetimes.

We can expect that GC performance can be improved by con-
sidering these object lifetime trends.

4. Proposed Methods

In this section, we propose two methods for reducing the heap
size of applications by setting the promoting condition of GSS
harder. One method does not consider the object lifetime trend.
We call this naive promotion restriction. The other considers the
trend. We call this method size-aware promotion restriction. Fig-
ures 5, 6, and 7 illustrate the original GSS, the naive promotion
restriction, and the size-aware promotion restriction. We expect
that these two methods can avoid unsuitable promotion of objects
that will die soon and that the size-aware method can avoid more

uonnoexe
09T ¥y
uonnoexe

09 pu¢ 34}
uoNNJaxe
09 p€ 3y

(0
GSS young young old old
O)

naive /‘\ /‘\
promotion (young oung old old
restriction u u

young old

Bl

©,

’
)

size-aware
promotion

restriction 1-p
(size <= m) \

youn oun old old

©6]0)

€
€

young old

OO0

size-aware youn /OL—M\ /o\—d\ old
promotion U u ’

restriction
(m < size) L | L1 L |

Fig. 6 Proposed methods.

Electronic Preprint for Journal of Information Processing Vol.26

Naive promotion restriction & size-aware promotion restriction (size <= m)

Promate Object

S A Young area --------------- R
; ? ‘oung area . Oldarea
‘... Fromspace ... To space .--------

1-p - —___p
€0 00000 e
| | | |
From space To space

When Promote fails with the probability of 1-p

| @000 || |

From space

To space

Fig.7 Generational semi space (Proposed Methods).

mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
const size_t object_size = obj->SizeOf();
size_t bytes_allocated, dummy;
mirror::Object* forward_address = nullptr;
bool sapr_promote = false;
static int sapr_count = 0;
if (generational_ && reinterpret_cast<uint8_t*>(obj) < last_gc_to_space_end_){
sapr_count++;
}
if ((generational_ && reinterpret_cast<uint8_t*>(obj) <
last_gc_to_space_end_)&&(object_size <= m)){
sapr_count++;
if(sapr_count % P_INVERSE == 0){
sapr_promote = true;

}else if (object_size > m){
sapr_promote = true;
}
if ((generational_ && reinterpret_cast<uint8_t*>(obj) < last_gc_to_space_end_)
&& (sapr_promote == true)){
// If it's allocated before the last GC (older), move
// (pseudo-promote) it to the main free list space (as sortof an old generation.)
forward_address = promo_dest_space_->AllocThreadUnsafe(self_, object_size,
&bytes_allocated, nullptr, &dummy);
if (UNLIKELY(forward_address == nullptr)) {
// If out of space, fall back to the to-space.
forward_address = to_space_->AllocThreadUnsafe(self_, object_size,
&bytes_allocated, nullptr,&dummy);

Fig.8 Implementation of size-aware promotion restriction.

effectively.

4.1 Naive Promotion Restriction

In this subsection, we propose a method for decreasing the
heap size of applications by restraining promotion without con-
sideration of object size.

As described above, an object promotes to an old object at
passing two times of GC executions in the original GSS in ART.
In the proposed method, an object promotes with probability p
and does not promote with 1 — p at passing two GC executions.
If an object is decided to not to promote at a GC execution, the
object can try to promote at the next GC execution.

4.2 Size-aware Promotion Restriction

In this subsection, we propose the size-aware promotion re-
striction. If the size of an object is less than or equals to m bytes,
the method restrains promotion using p and 1 — p similar to the
naive method at passing two GC executions. Otherwise, the ob-
ject invariably promotes like the original GSS. As described in
Section 3, small objects are likely to die in the near future. The

© 2018 Information Processing Society of Japan

restriction of promotion of small objects will avoid a situation
that an object that will die soon promotes to an old object and it
will not be collected for a long time in the old space.

4.3 Implementation

Figure 8 shows a sample implementation of the size-aware
promotion restriction. The method can be achieved by modifying
the function MarkNonForwardedObject() in the source code
file art/runtime/gc/collector/semi_space.cc in the An-
droid operating system. This sample is based on the implemen-
tation of Android 6.0.1. The red bold italic letters were inserted
into the original source code.

5. Evaluation

In this section, we evaluate our proposed methods.

5.1 Experimental Setup

We evaluated the proposed methods with actual Android appli-
cations and an actual Android device. The installed applications
are Google Map and Youtube. m and p of the proposed methods
are 16 bytes and 0.5, respectively. The PromotedThreshold was
1 MB. The used Android device is Nexus 7 (2013). Its operating
system is Android 6.0.1 with our modified GC implementations.
Its CPU is Snapdragon S4 Pro 1.5 GHz. Its memory size is 2 GB.
In the first two experiments in Sections 5.2 and 5.3, we evaluated
the proposed methods without parameter tuning. m was naively
determined by the relationship between the number of objects and
the object sizes in the existing work [4]. Namely, the number of
objects whose sizes are between 17 and 32 bytes is the largest. In
addition, the number of objects whose sizes are equal to or less
than 16 bytes is larger than the number of objects whose sizes are
larger than 32 bytes. Thus, setting m to 16 can separate all the ob-
jects into two groups whose sizes are similar. We chose 16 bytes
as the simplest setting. Similar to m, we chose 0.5 as the simplest
setting for p, which separated into the two same probabilities.
Discussion on optimizations of p and m will be described in Sec-
tions 5.4 and 5.5. PromotedThreshold controls the positiveness
to promotion. The smaller the PromotedThreshold is, the more
aggressively the memory is saved. As the parameter is managed
in MB, 1 MB is the smallest value of GSS implementation.

For evaluation, we implemented our proposed methods, the
naive and size-aware methods. In addition, we modified the GC
implementation in order to output the heap size just after each GC
execution and the STW time, which are managed inside ART.

5.2 Experimental Results: Google Map

We executed the Google Map application and monitored the
GC behavior. We conducted searches in the application. The
inputted words are the names of all the 29 stations of Yaman-
ote line in Tokyo, Japan with the clockwise order from Tokyo.
Namely, we inputted Tokyo, Yurakucho, Shinbashi, and the other
stations to Kanda in Japanese. Each interval between two contin-
uous searches is 5seconds. The inputs of words are performed
automatically by the macro function and our shell script. The
measurements were performed five times.

Figure 9 shows the average heap sizes with the default GC,

Electronic Preprint for Journal of Information Processing

m Default m Naive promotion restriction M Size-aware promotion restriction

120

100

Heap size [MB]
D
o

Fig. 9 Average of heap size (Google Map).

0 III

m Default ® Naive promotion restriction M Size-aware promotion restriction

Fig. 10 Total STW time (Google Map).

STW time [s]
[= N N w w B
o =1 o 1 © »”n ©

(%]

the naive promotion restriction, and the size-aware promotion re-
striction. The numbers of GC executions with the default GC, the
naive promotion restriction, and the size-aware promotion restric-
tion are 120, 120, and 121, respectively. We monitored the heap
size of the application just after every GC execution and the fig-
ure depicts the average of all the monitored sizes. The results in
the figure demonstrate that both of the proposed methods reduced
the application heap sizes comparing the default method.

Figure 10 depicts the average of the total STW times of all the
GC executions of five times measurements. The results in the fig-
ure show that both of the proposed methods increased the STW
times. Comparing both methods, we can see that the increase of
the size-aware method is smaller.

Figures 9 and 10 show that the application heap size can be
reduced with an increase of STW time by optimizing GC. In ad-
dition, these show that consideration of object size achieved the
same size of heap reduction with the smaller increase of the STW
time.

5.3 Experimental Results: Youtube

In this subsection, we evaluate our methods with the Youtube
application. We conducted video searches in the application and
monitored the GC behaviors. For searching, we inputted single
letters, which are a, b, c, and other letters to g, one by one to its
search box. This experiment also was performed automatically.
The measurements were performed five times.

Figure 11 shows the average heap sizes. The numbers of GC
executions with the default GC, the naive promotion restriction,
and the size-aware promotion restriction are 66, 64, and 63, re-
spectively. Similar to the results in the previous subsection, the
results in this figure show that both of our proposed methods

© 2018 Information Processing Society of Japan

Vol.26

120

100

80
40
20

0

m Default ® Naive promotion restriction M Size-aware promotion restriction

Heap size [MB]
(2]
o

Fig. 11 Average of heap size (Youtube).

0 III

m Default ® Naive promotion restriction M Size-aware promotion restriction

Fig. 12 Total of STW time (Youtube).

STW time [s]
R N WP 1O N 0 VO

could reduce the heap size of the application comparing the de-
fault method. Figure 12 shows the average of the total STW
times of all the GC executions of these methods of five times mea-
surements. The results in the figure indicate that the size-aware
method could achieve the heap size reduction with less STW time
increase.

5.4 Experimental Results: Device Dependency

In this subsection, we evaluate our proposed methods with an-
other Android device for discussing device dependency. We per-
formed the same experiment with Nexus 5. Its operating sys-
tem is Android 6.0.1 with our modified GC implementations. Its
CPU is Qualcomm Snapdragon 800 2.26 GHz. Its memory size
is 2 GB. The other settings are the same as those of Section 5.1.
Figures 13 and 14 show the average heap size and total STW time
with the Google Map application. Figures 15 and 16 show those
of the Youtube application. These figures indicate the results
similar to those with Nexus 7. Namely, the size-aware method
could save the same size of heap memories with the less increase
of STW time. As a result, we can conclude that the size-aware
method was effective independent of devices.

5.5 Sensitivity of Promotion Probability Parameter

This subsection presents a discussion on the sensitivity of the
parameters p of the proposed methods. We measured the heap
sizes and the STW times of the Google Map and Youtube appli-
cations with p = 0.33, 0.5, and 0.66. Figures 17 and 18 show
the heap sizes and the STW times of the Google Map applica-
tion, respectively. Figures 19 and 20 show those of the Youtube
application.

Electronic Preprint for Journal of Information Processing Vol.26

Heap size [MB]

total STW time [s]

—

MB

—_—

Heap size

STW time [s]
O R N W bH U O N

Figures 17 and 18 imply that the size-aware method can pro-
vide the heap size and the STW time better than those of the de-
fault method independent on the parameter p. On the centrally,
the naive method has a slight dependency on the parameter.

120
100
80
60
40
20
0 g Default
H Naive promotion restriction
M Size-aware promotion restriction
Fig. 13 Average of heap size (Nexus 5, Google Map).
12
10
8
6
4
2
0 H Default
H Naive promotion restriction
M Size-aware promotion restriction
Fig. 14 Total of STW time (Nexus 5, Google Map).
160
140

120
100
80
60
40
20
0

M Default
B Naive promotion restriction
M Size-aware promotion restriction

Fig. 15 Average of heap size (Nexus 5, Youtube).

H Default

B Naive promotion restriction
B Size-aware promotion restriction
Fig. 16 Total of STW time (Nexus 5, Youtube).

© 2018 Information Processing Society of Japan

120
100 ¢ — °
o
s 80
2 60
Q.
g 40
T —e—Default
20 —o— Naive promotion restriction
—eo—Size-aware promotion restriction
0
0.33 0.43 0.53 0.63
p
Fig. 17 Average of heap size (Google Map).
50
40 0\.\‘
o 30 T —e
£
E 20
—o— Default
10 —e—Naive promotion restriction
—ae—Size-aware promotion restriction
0
0.33 0.43 0.53 0.63
p
Fig. 18 Total STW time (Google Map).
120
100 o ®
_ 6= — —C
S %0
260
wv
Q
3 40
T —o— Default
20 —o— Naive promotion restriction
0 —0— Size-aware promotion restriction
0.33 0.43 0.53 0.63
p
Fig. 19 Average of heap size (Youtube).
10
8 ° 5
o— - ——°
= e e -
w6
£
E 4
(%]
5 —e— Default
—o— Naive promotion restriction
0 —o—Size-aware promotion restriction
0.33 0.43 0.53 0.63

p
Fig. 20 Total STW time (Youtube).

Figure 19 shows that the heap size is not dependent on p. Fig-
ure 20 shows that the STW time of the size-aware method is not
dependent on the parameter. As a result, we can say that the size-
aware was not sensitive to the parameter p and could achieve the
reduction of the heap size and small performance decline without
tuning the parameter p. The naive method was slightly dependent

Electronic Preprint for Journal of Information Processing Vol.26

~+—probability of lifetime=0 ~+—probability of lifetime=1
probability of lifetime=3 —+—probability of lifetime=4
-=—probability of lifetime>5 -e-average lifetime

90.00 4.5

~+-probability of lifetime=2
~»-probability of lifetime=5

80.00 4

70.00 3.5

@
o
8
w

50.00

N
«n

probability [%]
8
8

average lifetime

30.00 15
20.00

10.00

0.00

R

© © & o ©
LR L N R RN @9"&@%&5{\613@ Sit o

b
N
Pcigliat

object size [bytes]

Fig. 21 Sizes of objects and their lifetimes.

100
20
80
70
60
50
40
30
20
10

0

Heap size [MB]

o size-aware method m (size=<16)
w size-aware method m (9=size<16)
size-aware method m (9=size<16 & 65=size<256)

Fig. 22 Average of heap size (parameter m changing).

on the parameter.

From these results, we can conclude that the size-aware method
can reduce the heap size with small performance decline indepen-
dent of the parameter. In other words, a simple setting such as
p = 0.5 is also suitable.

5.6 Tuning of Object Size Parameter

In this subsection, we discuss tuning of the parameter m. This
parameter was determined based on the information of popular
applications [5] in Section 5.1. However, this is desired to be
determined according to the relationship between the sizes of ob-
jects and their lifetimes in the target application.

We observed object creations and GC behaviors using ART
monitor [4] in the Google map application and revealed the
relationship between the sizes of objects and their lifetimes.
Figure 21 depicts the relationship. The label “probability of
lifetime=N"" shows the probability that the object’s lifetime is
N. The results in the figure indicate that the lifetimes of objects
whose sizes are in 9—16 or 65-256 are short. From these result,
we can expect that objects whose sizes are in these ranges should
not be promoted because they probably die soon.

We evaluated the performance with this condition. Namely, an

© 2018 Information Processing Society of Japan

STW time [s]
= N N w
[%,] o wv o

=
o

5

0

o size-aware method m (size=16)
w size-aware method m (9=size=<16)
size-aware method m (9=size <16 & 65=size <256)

Fig. 23 Total of STW time (parameter m changing).

object is promoted with the probability p if its size is in 9-16
or 65-256. The averages of heap sizes of five times measure-
ments without and with the tuning based on the monitoring are
depicted in Fig.22. Their average STW times are depicted in
Fig. 23. These figures show that increase of the STW time can be
saved more with the similar decrease of the heap size by optimiz-
ing m based on monitoring.

From the results without and with the tuning of m, we can con-
clude as follows. The size-aware method can save the increase of
the STW time without tuning. The method can save the size more
effectively by the tuning of m based on monitoring.

6. Discussion

6.1 Increase of STW

Our evaluations in the previous section have shown that the
proposed methods have increased the STW time in some cases.
The size-aware method restricts the promotion based on the trend
that the probability of lifetime zero of a small object is high.
However, not all of the small objects die in the next GC execu-
tion. We expect that the increase of STW time is small if many
objects die until the next GC execution. If some objects survive,
the objects cause the marks and copies of them in the next GC
execution. Naturally, these increase the load of the GC and the
STW time.

We argue that improvement of the accuracy of the estimation
of object lifetime relieves increase of STW time. Figure 9 also
supports this hypothesis. Namely, the naive method, whose accu-
racy is comparatively low, increased the STW more. The works
of Refs. [4], [5] showed the trends between life and other fea-
tures. The work of [21] showed the relationship between the time
of creation and lifetime. We expect improving accuracy by taking
account of these trends can reduce STW time.

6.2 Tuning GC Algorithm

In this subsection, we present a discussion on tuning GC algo-
rithm. Some Android devices have a small size of memory. In ad-
dition, some applications consume large size of memory. In such
cases, invoking many applications results in frequent process ter-
minations by Low Memory Killer. This causes severe decline of
user experience as described.

We think tuning GC based on the relationship between STW
times and increases of memory sizes can improve user experi-

Electronic Preprint for Journal of Information Processing Vol.26

ences. In a case of an application that consumes large memory
and is not interactive, a GC that actively saves memory size is
suitable. In a case of an application that requires high interac-
tivity, a GC that gives higher priority to STW time is suitable.
For example, a web browser is an application of the former case.
Entertainment application, such as games and video players, are
applications of the latter case.

7. Related Work

In this section, we introduce works related to GC and memory
management in the Android operating system.

For improving real-time processing in Java virtual machine, an
incremental GC [12], a GC supporting snapshot [13], and several
works [14], [15], [16] were published. For concurrent GC pro-
cessing, works of Refs. [17], [18], [19], [20] were proposed.

The following works are on GC of Dalvik virtual machine
of Android. The work of Ref.[21] investigated the relationship
among the number of objects, the frequency of modification of
references, and the application performance. That demonstrated
that increases in the number of objects and the frequency of mod-
ifications of references increased the STW time. The work of [22]
proposed to give the real-time priority to the target applications
in CPU scheduling in order to apply the Android operating sys-
tem in embedded systems. However, GC cannot avoid having an
effect on performance even with this method. These works im-
proved GC performances and real-time processing, but these do
not consider the trend on object lifetime.

The following works are on performance improvement of
Dalvik VM [23], [24]. Kawamura et al. showed that the recur-
sively marking objects takes a long time and the reason is mark-
ing the already marked objects repeatedly. They then proposed
to create a table that manages marked objects and check this ta-
ble at following references to reduce redundant mark time. In
the work of Ref. [24], a method for reducing STW time of GC in
cases of an application with frequent reference updates was pro-
posed. The concurrent mark and sweep (CMS) GC concurrently
executes marks without stopping the threads of applications. Af-
ter this concurrent mark, the GC checks the modified references
during the mark and executes mark again, called re-mark, with
stopping all the threads. This concurrent processing remarkably
decreases the STW time because the time to mark only the mod-
ified objects is much less than that for all the objects. However,
the STW time is still large in cases of the application heavily up-
dates references. The method proposed in the work executes also
the re-mark without stopping and adds a re-re-mark phase for ad-
dressing the inconsistent caused by the concurrent re-mark. The
approaches of these works and this work are fundamentally differ-
ent. In addition, these methods are not exclusive. Thus, we think
that applying these methods to complete each other is desirable.

Hamanaka et al. proposed to choose a GC algorithm in ART
based on the application state [25]. The authors evaluated the
performances of CMS GC and SS GC in ART and explained
their cons and pros. That is, CMS and SS are more suitable in
aspects of application performance and memory saving, respec-
tively. They then proposed to choose CMS and SS in cases of
the application is in the foreground and background states, re-

© 2018 Information Processing Society of Japan

spectively. They argued that the proposed method could reduce
application memory size without performance decline. In addi-
tion, they stated that the reduction resulted in a decrease in the
number of process terminations by the Low Memory Killer.

In the work of Ref. [26], a method for choosing a process to
terminate by Low Memory Killer was proposed. The method
monitors the invocation of applications and avoids terminating
processes that will be probably reused again in the near future
based on LRU [26]. Their evaluation using the practical appli-
cation invocation history of actual users demonstrated that their
method could improve the user experience. However, unlike our
method in this paper, their method does not reduce the memory
consumption.

In works of Refs. [2], [6], we discussed methods for improving
generational GC in ART and this paper is based on these works.
However, the discussion in the work of Ref. [6] did not consider
the relationship between objects sizes and lifetimes. The discus-
sion in the work of Ref.[2] considered the relationship, but the
method was not evaluated profoundly. That was evaluated only
with an application. In addition, no discussion on the parameter
was presented, unlike this paper.

8. Conclusion

In this paper, we have proposed methods for improving a gen-
erational GC algorithm, which is called GSS, in ART. The pro-
posed method that is aware of the lifetime trend, takes the fea-
ture of smartphone applications into account. Our evaluation
has demonstrated that the feature aware method has been able to
reduce the memory consumption with less performance decline
than the naive method that does not take the feature account.

For future work, we plan to evaluate our methods with a variety
of applications and discuss a method for reducing the STW time.

Acknowledgments This work was supported by JST CREST
Grant Number JPMJCR1503, Japan. This work was supported
by JSPS KAKENHI Grant Numbers 26730040, 15H02696,
17K00109.

References

[1] Smartphone OS Market Share, 2017 Q1, available from
(https://www.idc.com/promo/smartphone-market-share/os).

[2] Mori, R., Oguchi, M. and Yamaguchi, S.: Memory Consumption Sav-
ing by Optimization of Promotion Condition of Generational GC in
Android, Proc. 2017 IEEE 6th Global Conference on Consumer Elec-
tronics (GCCE) (2017).

[3] Appel, A.W.: Simple generational garbage collection and fast alloca-
tion, Softw. Pract. Exper., Vol.19, No.2, pp.171-183,

DOI: http://dx.doi.org/10.1002/spe.4380190206 (1989).

[4] Hamanaka, S., Kurihara, S., Fukuda, S., Oguchi, M. and Yamaguchi,
S.: A Study on Object Lifetime in GC of Android Applications, Proc.
CANDAR 2016 (2016).

[5] Hamanaka, S., Kurihara, S., Fukuda, S., Mori, R., Oguchi, M. and
Yamaguchi, S.: Object Lifetime Trend of Modern Android Appli-
cations for GC Performance Improvement, Proc. 11th International
Conference on Ubiquitous Information Management and Communi-
cation (IMCOM ’17), ACM, Article 85, DOI: https://doi.org/10.1145/
3022227.3022311 (2017).

[6] Mori, R., Hamanaka, S., Oguchi, M. and Yamaguchi, S.: A study on
promotion of generational GC in ART, 2017 IEEE International Con-
ference on Consumer Electronics - Taiwan (ICCE-TW), pp.377-378,
DOI: 10.1109/ICCE-China.2017.7991153 (2017).

[71 Blackburn, S.M., Cheng, P. and McKinley, K.S.: Myth and realities:
The performance impact of garbage collection, SIGMETRICS ’04/Per-
Sformance "04 Proc. Joint International Conference on Measurement

Electronic Preprint for Journal of Information Processing Vol.26

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

P\ /S

and Modeling of Computer Systems, pp.25-36 (2004).

Wilson, P.R.: Uniprocessor Garbage Collection Techniques, IWMM
'92 Proc. International Workshop on Memory Management, pp.1-42
(1992).

McCarthy, J.: Recursive functions of symbolic expressions and their
computation by machine, Comm. ACM, Vol.3, No.4, pp.184-195
(1960).

Collins, G.E.: A method for overlapping and erasure of lists, Comm.
ACM, Vol.3, No.12, pp.655-657 (1960).

Appel, A.W.: Garbage collection can be faster than stack allocation,
Inf. Proc. Lett., Vol.25, No.4, pp.275-279 (1987).

Yuasa, T.: Real-time garbage collection on general-purpose machines,
Journal of Systems and Software, Vol.11, No.3, pp.181-198, DOI:
http://dx.doi.org/10.1016/0164-1212(90)90084-Y (1990).

Endo, T., Tanaka, Y., Maeda, A. and Yamaguchi, Y.: A Real-Time
Garbage Collection for Java using Snapshot Algorithm, /IEICE Tech-
nical Report, Vol.701, No.102, (CPSY2002 105-109), pp.7-12 (2002).
(in Japanese)

Henry, G. and Baker, Jr.: List processing in real time on a serial com-
puter, Comm. ACM, Vol.21, No.4, pp.280-294,

DOI: http://dx.doi.org/10.1145/359460.359470 (1978).

Baker, H.G.: The Treadmill: Real-Time Garbage Collection Without
Motion Sickness, ACM SIGPLAN Notices, Vol.27, No.3, pp.66-70
(1992).

Lieberman, H. and Hewitt, C.E.: A Real-Time Garbage Collec-
tor based on the Lifetimes of Objects, Comm. ACM, Vol.26, No.6,
pp.-419-429 (1983).

Boehm, H., Demers, A.J. and Shenker, S.: Mostly Parallel Garbage
Collection, ACM SIGPLAN ’91 Conference on Programming Lan-
guage Design and Implementation, pp.157-164, Toronto, Canada
(1991).

O’Toole, J., Nettles, S. and Gi-ord, D.: Concurrent compacting
garbage collection of a persistent heap, Proc. 14th ACM Symposium
on Operating Systems Principles, pp.161-174, Asheville, NC (USA)
(1993).

Dijkstra, E.-W., Lamport, L., Martin, A.J., Scholten, C.S. and Ste_ens,
E.EM.: On-the-fly garbage collection: An exercise in cooperation,
CACM, Vol.21, No.11, pp.966-975 (1978).

Doligez, D. and Leroy, X.: A concurrent, generational garbage collec-
tor for a multithreaded implementation of ML, Conference Record of
the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pp.113—-123, ACM (1993).

Mori, R., Hamanaka, S., Oguchi, M. and Yamaguchi, S.: A Study
on Performance Improvement of Android Generational GC by Opti-
mizing its Promote Condition, The 79th National Convention of IPSJ,
3G-01 (2017). (in Japanese)

Higashiyama, T., Masuda, H. and Ochiai, S.: Evaluation of Android
realtime performance, The 75th National Convention of IPSJ, pp.35—
36 (2017). (in Japanese)

Kawamura, S. and Tsumura, T.: Hardware Supported Marking for
Common Garbage Collections, Proc. 2016 4th International Sympo-
sium on Computing and Networking (CANDAR), pp.381-387, DOIL:
10.1109/CANDAR.2016.0073 (2016).

Nagata, K., Nakamura, Y., Nomura, S. and Yamaguchi, S.: A Study
on Shortening STW Time of Concurrent GC of Dalvik VM, SIG Tech-
nical Reports, 2014-CDS-9, Vol.19, pp.1-5 (2014). (in Japanese)
Hamanaka, S., Kurihara, S., Fukuda, S., Oguchi, M. and Yamaguchi,
S.: Application State Aware GC Selection Optimization in Android,
Proc. 2016 IEEE International Conference on Consumer Electronics-
Taiwan (ICCE-TW), Nantou, pp.1-2, DOI: 10.1109/
ICCE-TW.2016.7520974 (2016).

Nomura, S., Nakamura, Y., Sakamoto, H. and Yamaguchi, S.: LRU
Based Memory Termination in Android Low Memory Killer, /PSJ
Transactions CDS, Vol.1, No.5, pp.9-19, Information Processing So-
ciety of Japan (IPSJ), (2015) (in Japanese).

Ryusuke Mori received his B.E. degree
from Kogakuin University in 2017. He
is currently a master course student in
- = Electrical Engineering and Electronics,
School of

Kogakuin University.

Graduate Engineering,

© 2018 Information Processing Society of Japan

&

was research fellow at the Institute Science, University of Tech-

Masato Oguchi received his B.E. from
Keio University, M.E. and Ph.D. from
The University of Tokyo in 1990, 1992,
and 1995 respectively. In 1995, he was
a researcher in the National Center for
science Information System (NACSIS) —
currently known as National Institute of
Informatics (NII). From 1996 to 2000, he

nology in Germany as a viviting reaarcher in 1998-2000, he be-

came an associate professor at the Research and Development

initiative in Chuo University. He joined Ochanomizu University

in 2003 as an associate professor. Sciences, Ochanomizu Univer-

sity. His research filed is in network computing middleware, in-

cluding high performance computing as well as mobile network-
ing. He is a member of IEEE, ACM, IEICE, and IPSJ.

Saneyasu Yamaguchi received his Engi-
neering Doctor’s degree (Ph.D.) at The
University of Tokyo in 2002. During
2002-2006, he stayed in Institute od In-
dustrial Science, The University of Tokyo
to study I/O processing. He now with
Kogakuin University. Currently his re-
searches focus on operating systems, vir-

tualized systems, and storage system. He is a member of IPSJ,

IEEE, and IEICE.

