
Electronic Preprint for Journal of Information Processing Vol.30

Regular Paper

FPGA Acceleration of Swap-Based Tabu Search for
Solving Maximum Clique Problems

Kenji Kanazawa1,a)

Received: December 15, 2021, Accepted: March 16, 2022

Abstract: The Swap-Based Tabu Search (SBTS) is a heuristic algorithm for solving the maximum independent set
problems and can solve the maximum clique problems as well because the maximum clique in a graph is equivalent
to the maximum independent set in its complementary graph. Although SBTS is a powerful algorithm in solving the
maximum clique problems and has abundant inherent parallelism, it is difficult to parallelize because of its solution
searching heuristic involving indirect indexing on array components. In this paper, we show a variant of SBTS that
does not require indirect indexing while maintaining the same accuracy as that of the original version of SBTS and
describe its hardware acceleration using a Field-Programmable Gate Array (FPGA). Experimental results show that
our proposed SBTS variant on FPGA can solve the maximum clique problems up to 51.1 times faster than the original
SBTS algorithm on CPU and up to 5.40 times faster than our proposed SBTS variant on CPU, respectively.

Keywords: FPGA, maximum clique problems, tabu search

1. Introduction

Given an undirected graph G, the maximum clique problem
aims to find a clique with the maximum possible number of ver-
tices for G where a clique is G’s subgraph in which every two
distinct vertices are adjacent (joined by an edge). The maximum
clique problem is an NP-hard combinatorial optimization prob-
lem that occurs in many practical applications [1] such as bioin-
formatics [2] and VLSI CADs [3]. The maximum independent set
problem involves finding an independent set with the maximum
possible size in a graph, where the independent set comprises
pairwise non-adjacent vertices in the graph. In general, finding
a clique in G is equivalent to finding an independent set in G’s
complementary graph. Herein, G’s complementary graph G indi-
cates a graph obtained by disjointing all the adjacent vertices and
jointing every two vertices that originally have not been adjacent
in G. Therefore, a maximum clique in G can be obtained by con-
verting G to G and then finding a maximum independent set in G.
Figure 1 displays an example of the maximum clique in G and
the maximum independent set in G. In Fig. 1, the black vertices
consist of the maximum clique in G and the maximum indepen-
dent set in G, respectively. As depicted in Fig. 1, the maximum
independent set in G consists of the same vertices that are com-
prised of the maximum clique in G.

The Swap-Based Tabu Search (SBTS) [4] is one of the best
performing heuristic algorithm for solving the maximum clique
problems as well as the maximum independent set problems [4],
[5]. SBTS has abundance of inherent parallelism. However, it in-
volves many occurrences of irregular access to array components

1 Faculty of Engineering, Information and Systems, University of
Tsukuba, Tsukuba, Ibaraki 305–8573, Japan

a) kanazawa@cs.tsukuba.ac.jp

Fig. 1 G and its maximum clique (on the left side), and G and its maximum
independent set (on the right side).

caused by indirect indexing in the form of X[Y[i]] in its solution
search heuristic, thereby making its parallel implementation dif-
ficult.

In this paper, we describe a modified version of the SBTS al-
gorithm that does not require indirect indexing while maintain-
ing the same algorithmic accuracy as the original SBTS algo-
rithm and also represent its parallel implementation on a Field
Programmable Gate Array (FPGA). We then evaluate the perfor-
mance of our modified algorithm and its FPGA implementation,
evaluate the effectiveness of our proposed approach, based on
which we discuss the future tasks. This paper is an extension of
our previous conference papers [6], [7]. In Refs. [6], [7], we pro-
posed two techniques for facilitating parallel processing of the
SBTS algorithm, showed an FPGA implementation of the mod-
ified SBTS based on the two techniques, and evaluated overall
performance gain by the FPGA implementation. In this paper, we
evaluate the individual performance gain by our proposed tech-
niques on software and FPGA, respectively, based on which we
discuss how much does each technique contributes to the overall
performance gain.

2. Related Work

Several accelerators for the maximum clique problems have
been proposed up to now.

A GPU implementation of a parallel algorithm called the

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

“sticker model” was proposed [8], and its performance on Nvidia
GTX-680 was compared to several exact algorithms on soft-
ware [9], [10] using the DIMACS benchmark graphs [11]. This
algorithm was capable of solving problem instances up to 10×
faster than [9] and up to 35× faster than [10], keeping the same
solution accuracy as obtained by those exact approaches. How-
ever, this approach is considerably inferior to the latest heuristic
algorithms on software [4], [5] in terms of both execution time
and solution accuracy.

In our earlier research, we proposed an FPGA solver for the
maximum clique problems encoded into the partial maximum
satisfiability problems (Partial MaxSAT) based on the Dist al-
gorithm [12], which is a local search algorithm for solving Par-
tial MaxSAT [13]. The experimental results obtained using the
DIMACS benchmark graphs showed that the solver has abil-
ity to solve the maximum clique problems encoded into Partial
MaxSAT instances up to 22× faster than the same algorithm on
software. However, this approach is not yet comparable to the
latest heuristic algorithms including SBTS in terms of solution
accuracy.

Neither the above-mentioned accelerators are comparable to
the latest heuristic algorithms on software in terms of execution
time or solution accuracy. Our proposed approach on FPGA
achieves up to 51.1 times speedup without deteriorating the so-
lution accuracy compared with SBTS.

3. The Swap-Based Tabu Search Algorithm

This section introduces the Swap-based tabu search (SBTS)
proposed by Jin and Hao [4].

3.1 Definitions of the Symbols
Algorithm 1 summarizes the main procedure of SBTS. In Al-

gorithm 1, V and E are the sets of vertices and edges in a graph G,
respectively. S denotes an independent set in G, S max the largest
independent set found so far, |S | the size of S , i.e., the number of
vertices in S , and |S max| the size of S max. NS k (k = 0, 1, 2, > 2)
displays the subset of the difference set of V and S (denoted by
V\S), in which the element vertices have k adjacent vertices in S .
Note that NS >2 represents a subset of V\S , in which the element
vertices have three or more adjacent vertices in S . Figure 2 shows
an example of the independent set. In Fig. 2, the sets of vertices,
i.e., S and NS k, are as follows: S = {v2, v3, v6}, NS 0 = {v0},
NS 1 = {v5, v7, v8}, NS 2 = {v4}, and NS >2 = {v1}.

SBTS searches for a solution by iteratively moving a vertex in
any of NS k to S and its adjacent vertices in S to V\S , i.e., “swap-
ping” a vertex in any of NS k and its adjacent vertices in S . Here,
k is called the mapping degree and m(v) denotes the mapping de-
gree of a vertex v in V\S . m(v) − 1 is equal to the decrease in
|S | if v in V\S is moved to S because v in N\S and its adjacent
m(v) vertices in S are swapped. Note that |S | is increased only
if v is selected from NS 0, i.e., the set of vertices whose mapping
degrees are equal to 0. Thus, the mapping degree indicates the
change in solution accuracy when a swapping is executed. e(v),
the expanding degree of a vertex v in S , represents the number of
v ∈ S ’s adjacent vertices v′ in V\S such that m(v′) = 1. For v ∈ S ,
e(v)−1 corresponds to the number of vertices whose mapping de-

Algorithm 1 Main procedure of the SBTS algorithm
Require: A graph G = (V, E) and Itersmax

/* V and E: sets of vertices and edges in G, respectively. */
/* Itersmax: maximum iterations per run). */

Ensure: The largest independent set S max found.
1: /* Considering an initial independent set. */
2: Init(S ,NS 0,NS 1,NS 2,NS >2,m(), d(), e(), t());
3: S max ← S ; |S max | = |S |;
4:
5: /* Searching a Solution. */
6: for Iter = 1 to Itersmax do
7: v̇← NULL;
8: if NS 0 � ∅ or NS 1 � ∅ then
9: /* Intensification */

10: v̇← Sel Intense(S ,NS 0,NS 1, e(), d(), t(), Iter);
11: if v̇ == NULL then
12: /* Diversification */

13: v̇← Sel Diversify(S ,NS 2,NS >2, d(), t(), Iter);
14: end if
15: end if
16: updateIndependentSet(v̇, S ,NS 0,NS 1,NS 2,NS >2);
17: updateParameters(m(), d(), e(), t());
18: if |S | > |S max | then
19: S max ← S ; |S max | ← |S |;
20: end if
21: end for
22: return S max;

Fig. 2 Example of the independent set (indicated by black vertices).

Table 1 Mapping, expanding, and diversifying degrees of the vertices in
Fig. 2.

mapping diversifying expanding
v0 0 1 v2 0
v1 3 1 v3 2
v4 2 3 v6 1
v5 1 1
v7 1 1
v8 1 1

grees become zero if v is moved to V\S by swapping. Therefore,
selecting a vertex in V\S whose adjacent vertex in S has a larger
expanding degree as a candidate for swapping leads to reach a
larger independent set in the next iteration. d(v), the diversifying

degree of a vertex v in V\S , indicates the number of v’s adjacent
vertices in V\S . Table 1 displays the mapping, expanding, and
diversifying degrees of the vertices in Fig. 2.

t(v) indicates the iteration number until which v in V\S is
prohibited from moving back to S . For example, t(v) = 100
represents that v is prohibited from moving back to S during
Iter ≤ 100, where Iter represents the current iteration number.
We call t(v) v’s “tabu tenure”, and if Iter > t(v), we say that v has
passed its tabu tenure.

3.2 Overall Procedure
3.2.1 Considering an Initial Independent Set

SBTS begins by considering an initial independent set. First,
it sets S to empty. Then, until V becomes empty, it iteratively

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Table 2 New mapping and diversifying degrees of w and changes in the
mapping and diversifying degrees of w′, and w′′.

w w′ w′′

mapping 1 +1 −1
diversifying L(w) − 1 −1 +1

selects v ∈ V at random, moves v to S , and removes all of the
v’s adjacent vertices from V . The algorithm then restores V to its
original state, calculates V\S , and then divides the element ver-
tices in V\S into NS 0, NS 1, NS 2, and NS >2 according to their
mapping degrees.
3.2.2 Searching a Solution

Subsequently, SBTS iteratively alternates the intensification

phase (searching for a better solution than the current one) and
diversification phase (perturbing the current solution to escape
from local optima) until it determines an independent set with the
target size or reaches the iteration limit.

In both of the search phases, the search process is driven by
selecting a vertex in any of NS k and then moving it to S . Here-
inafter, v̇ denotes a vertex in any of NS k that is selected to move
to S at the current iteration. As mentioned in Section 3.1, when
v̇ is moved to S , its k adjacent vertices in S must be moved to
V\S at the same time, except that v̇ is selected from NS 0. |S | is
increased, i.e., the solution is improved, only if v̇ is selected from
NS 0. If v̇ is selected from NS 1, then the search moves to another
solution without deteriorating |S |. Otherwise, |S | is decreased.

After moving v̇ to S , the diversifying and mapping degrees of
the following vertices as well as v̇ are changed.
• v̇’s adjacent vertices that have moved to V\S (denoted by w).
• v̇’s adjacent vertices that have originally stayed in V\S (de-

noted by w′).
• Vertices in V\S that are adjacent to w (denoted by w′′).

These vertices are moved to any of NS k (k = 0, 1, 2, > 2) in ac-
cordance with their new mapping degrees. Table 2 shows new
mapping and diversifying degrees of w and changes in the map-
ping and diversifying degrees of w′, and w′′. Note that values for
w′ and w′′ represent the differences from their previous values and
L(w) represents the number of adjacent vertices of v̇ in Table 2.
m(w) and d(w) become 1 and L(w) − 1, respectively, because v̇
has become the only adjacent vertex of w in S and all the other
adjacent vertices of w have been in V\S . m(w′) and d(w′) are in-
cremented and decremented, respectively, because v̇, i.e., one of
their adjacent vertices that was originally in N\S , has been moved
to S . On the contrary, m(w′′) and d(w′′) are decremented and in-
cremented, respectively, because w, i.e., their adjacent vertices
originally in S , have been moved to N\S .

The tabu tenures are calculated for w as follows:
• When m(v̇) = 1:

If |NS 1| < |NS 2| + |NS >2|, then t(w) = Iter + 10 + R(|NS 1|),
where R(x) is a random integer ranging from 0 to x−1. Oth-
erwise, t(w) = Iter + |NS 1|.

• When m(v̇) > 1: t(w) = Iter + 7.

3.3 Heuristics for Selecting the Vertex to be Swapped
3.3.1 Intensification Phase

In the intensification phase, SBTS aims to find better solutions
or to reach other solutions without deteriorating the current solu-

tion. For these purposes, v̇ is selected from any of the vertices in
either NS 0 or NS 1.

In the intensification phase, v̇ is selected as follows.
(1) If NS 0 is not empty, then v̇ is always randomly selected from

NS 0 regardless of whether it has passed its tabu tenure.
(2) Otherwise, v̇ is selected from NS 1 as follows.

i. If |NS 1| > |NS 2|+|NS >2|, the vertices in NS 1 whose ad-
jacent vertex in S (denoted by u) satisfies e(u) = 1 are
excluded from the candidates for selecting in advance.

ii. Among the vertices in NS 1 that have passed their tabu
tenures, select the vertex whose adjacent vertex in S

has the largest expanding degree. If there are multiple
candidate vertices whose adjacent vertex in S has the
same expanding degree, then select the vertex that has
the largest diversifying degree (ties are broken at ran-
dom).

If there are no vertices that satisfy the aforementioned condi-
tions, this implies that the search has reached a local optimum. At
this point, SBTS switches the search to the diversification phase.
3.3.2 Diversification Phase

In the diversification phase, SBTS attempts to escape from lo-
cal optima by perturbing the current solution. In the diversifica-
tion phase, v̇ is selected as follows.
(1) If |NS 1| > |NS 2| + |NS >2|, then select v̇ from the vertices

in NS >2 that have passed their tabu tenures with the largest
diversifying degree (ties are broken at random).

(2) Otherwise,
a. with probability p, select v̇ from the vertices in NS 2 that

have passed the tabu tenures with the largest diversify-
ing degree (ties are broken at random).

b. with probability 1 − p, select v̇ from NS >2 at random
without considering the tabu tenures.

3.4 Performance Bottleneck
To clear the performance bottleneck, we conduct performance

profiling of the original SBTS algorithm published by the de-
velopers *1 using DIMACS graph suite [11] on Core-i7 5820K
3.3 GHz with 32 GB main memory. In the performance pro-
filing, we use 17 graphs for which the original SBTS requires
more than 1 second to reach the best-known solutions. Herein,
the best-known solution stands for a clique of the graph with the
best-known size. For each graph, we execute 10 trials, measure
their average time, and then analyze the breakdown of the av-
erage time. Each trial is stopped when it either finds the best-
known solutions or reaches 109 iterations that are divided into
105 restarts (restart per 104 iterations). Trials that do not obtain
the best-known solutions are excluded.

Table 3 represents the outlines of the graphs used for the pro-
filing and the results of the trials. Nv and Ne denote the number
of vertices and edges in each graph, #adjavg shows the average
number of adjacent vertices of each vertex. “best” denotes sizes
of the best-known solutions, i.e., the number of vertices in the
best-known solutions. “size” denotes the best sizes of the ob-
tained cliques in the experiments (the average sizes are in brack-

*1 http://www.info.univ-angers.fr/pub/hao/mis.html

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Table 3 Benchmark graphs and results of searching solutions by the
original SBTS.

graph Nv Ne #adjavg best size secavg

brock400 1 400 59,723 100.4 27 27 (27) 42.5
brock400 2 400 59,786 100.1 29 29 (29) 9.97
brock400 3 400 59,681 100.6 31 31 (31) 1.16
san400 0.7 1 400 55,860 119.7 40 40 (40) 2.03
brock800 1 800 207,505 280.2 23 23 (22.8) 3,597.0
brock800 2 800 208,166 278.6 24 24 (24) 1,065.3
brock800 3 800 207,333 280.7 25 25 (25) 1,100.4
brock800 4 800 207,643 279.9 26 26 (26) 263.0
C1000.9 1,000 450,079 98.8 68 68 (68) 6.89
san1000 1,000 250,500 498.0 15 15 (15) 23.0
MANN a45 1,035 533,115 3.8 345 345 (345) 11.9
p hat1500-1 1,500 284,923 1,119.1 12 12 (12) 8.65
C2000.5 2,000 999,836 999.2 16 16 (16) 2.87
MANN a81 3,321 5,506,380 3.9 1,100 1,100 (1,100) 18.3
keller6 3,361 4,619,898 610.9 59 59 (59) 314.3
C4000.5 4,000 4,000,268 1,998.9 18 18 (18) 1,053.8
C2000.9 2,000 1,799,532 199.5 80 78 (77.2) -

Fig. 3 Breakdown of total elapsed time for each graph in Table 3
(graph names are abbreviated).

ets). secavg denotes the elapsed time in seconds to obtain the best-
known solutions.

Figure 3 shows the breakdown of the total elapsed time for
each graph. C2000.9 is excluded because no trials reach its best-
known solution in the profiling. In Fig. 3, “init” denotes initial-
ization that includes time spent for reading a given graph and con-
verting to its complementary graph. “sel.vtx” denotes the time to
select a vertex for swapping in the intensification and diversifica-
tion phases, which is proportional to Nv. “update” represents the
summation of the time to swap v̇ and its adjacent vertices and the
time to update the parameters (the mapping, expanding, and di-
versifying degrees) occurring with the swapping, which depends
on #adjavg because the number of the parameters to be updated in
each iteration is proportional to #adjavg. “calc.tt” shows the time
to calculate new values of the tabu tenures. Note that “update”
does not include “calc.tt” in the profiling. “other” represents the
subtractions of above-stated times from the total elapsed time.

As shown in Fig. 3, “update” occupies 82% on average and
99% at maximum over the total elapsed time, which forms the
bottleneck in most cases. As for MANN graphs, “sel.vtx” domi-
nates the total elapsed times, which occupies 78% and 89% over
the total elapsed times of MANN a45 and MANN a81, respec-
tively. This is because Nv is relatively large and #adjavg is con-
siderably smaller than Nv in MANN graphs, thereby resulting in

large ratio of “sel.vtx” over the total elapsed times.

4. Algorithm Modification for Parallel Pro-
cessing

In this section, we explain how the algorithm is modified for
facilitating the parallel processing. Based on our experiments,
there is hardly any loss in solution accuracy by the alternations,
depending on problem instances. This will be discussed in Sec-
tion 6.

4.1 Change the Heuristic in the Intensification Phase
The most difficult part to parallelize is Step 2) in the intensi-

fication phase. As described in Section 3.3.1, when v̇ is selected
from NS 1, it is necessary to determine its adjacent vertex in S

for each candidate vertex in NS 1 and then read its expanding de-
gree. In software programs, a table of the expanding degrees and
a list of adjacent vertices (called adjacency list) for each vertex
are prepared so that the expanding degrees of only the adjacent
vertices can be read immediately. This requires indirect array in-
dexing in the form of X[Y[i]], where X and Y correspond to the
expanding degree table and a candidate vertex v’s adjacency list,
respectively, and Y[i] represents one of v’s adjacent vertices in S .

There are several issues that hinder parallelization of referring
the expanding degree table. Firstly, the aforementioned indirect
array indexing incurs irregular access patterns to X[]. Secondly,
there can be multiple candidate vertices in NS 1 that have a com-
mon adjacent vertex in S , which causes access conflicts in the
expanding degree table. It is difficult to schedule the vertices in
NS 1 to avoid the access conflicts in advance because the adja-
cent vertex in S for each vertex varies in every iteration. We may
avoid the access conflict by preparing duplicates of the expanding
degree table. However, this requires a very complicated control
logic for the parallel circuits to maintain the consistency between
the duplicates.

To solve these issues, we introduce a substitute decision
methodology without involving indirect indexing so that the ver-
tex selection method can be parallelized more easily. Specifi-
cally, we utilize the number of iterations after passing the tabu
tenures instead of the expanding degrees. The new vertex selec-
tion method in the intensification phase is as follows:
(i) If NS 0 is not empty, v̇ is always randomly selected from NS 0

regardless of whether it has passed its tabu tenure.
(ii) Otherwise, it is selected from the vertices in NS 1 that have

taken the most iterations after passing their tabu tenures
(ties are broken at random).

Step (ii) can be executed by comparing the tabu tenures of the ver-
tices in NS 1, selecting the vertex with the minimum tabu tenure,
and comparing the selected vertex’s tabu tenure with current Iter

to check whether the selected vertex has passed its tabu tenure.
This process does not incur the indirect array indexing because
the tabu tenures are referred to directly by the candidate vertices.

4.2 Simplify the Tabu Tenure Calculation
To calculate the tabu tenures, it is necessary to calculate R(x),

which is equivalent to the remainder of a random integer divided
by x. The simple ways to calculate remainder are the restoring

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

and non-restoring divisions. However, these consume calculation
time proportional to the bit width of the operands.

In our proposed approach, we replace R(x) with a function that
returns 0 or x − 1 at random (denoted by R′(x)). R′(x) can be
realized as follows:
• If a random bit r is equal to 1, then return x − 1. Otherwise,

return 0.
R′(x) can be implemented only by a random bit generator and a

multiplexer, which requires considerably less hardware resources
and can be executed in a fixed time regardless of the operand bit
width.

5. Hardware Implementation

5.1 Overview of the Hardware
Figure 4 shows a block diagram of the hardware of our pro-

posed approach on an FPGA board. In Fig. 4, m tbl, d tbl, and
tabu tbl denote the mapping and diversifying degrees, and the
tabu tenures for each vertex, respectively. S array and NSk arrays
denote the binary arrays which correspond to S and NS k in Algo-
rithm 1, respectively. |S| cnt and |NSk | cnts denote the counters
that hold the numbers of the elements in S and each of NS k, re-
spectively. The list table holds the adjacency list for each vertex.
“list(v)” represents v’s adjacency list. The address table translates
v to the address of list(v) in the list table. “w buf” is a temporal
buffer for storing certain vertices. All the tables and buffers ex-
cept for the list table are implemented by the on-chip memories
on FPGA. “vertex selector” denotes the function block to select
v̇ based on the selection methods in the intensification or diver-
sification phases. “updater” denotes the function block to update
m tbl, d tbl, tabu tbl, S array, NSk arrays, |S| cnt, and |NSk | cnts
in each iteration.

The aforementioned tables and arrays, with the exception of
the list and address tables and w buf, are in the form of a content
addressable memory (CAM), in which a vertex number is used as
the address. For example, m tbl[0] represents the mapping degree
of Vertex 0, and tabu tbl[1] indicates the tabu tenure of Vertex 1.
The values in the arrays indicate which of the vertex sets each

Fig. 4 Block diagram of the proposed approach on an FPGA board.

vertex is in. For example, S array[2] = 1 indicates that Vertex
2 is in S , and NS0 array[3] = 0 represents that Vertex 3 is not
in NS 0. Furthermore, when S array[v] and NSk array[v] become
1 and 0, respectively, this means that v has moved from NS k to
S at the iteration. By using such data structures, moving of the
vertices among the vertex sets can be implemented using bit op-
erations, thereby simplifying the circuit and reducing the on-chip
memory consumption.
5.1.1 Parallel Processing of Tables and Arrays

m tbl, d tbl, tabu tbl, S array, NSk arrays, and w buf are di-
vided into P sub-banks such that up to P vertices in list(v) are
processed at once. Also, |S| cnt and |NSk | cnts comprise P sub-
counters, respectively. The i-th sub-counters hold the number of
1 in the i-th sub-banks (i.e., the number of the element vertices in
the i-th sub-banks) of the corresponding arrays. The total number
of the element vertices is determined by summing up the values
of the sub-counters.

To read out the values of those tables and arrays for a vertex,
the lower log2 P bits of the vertex number are used to specify the
sub-banks to access and the remaining bits of the vertex are used
as the address of the sub-banks. For example, m tbl[v] is read out
from the address v � log2 P of the i-th sub-bank of m tbl, where
‘�’ represents the right shift and i is equivalent to v’s lower log2 P

bits. For any vertices v in i-th sub-bank, the following equation
holds: v = i + P × (v � log2 P).

list(v) whose length L(v) exceeds P is divided into multiple sub-
lists and each sub-list is processed in turn. Vertices in each sub-
list are placed to the fixed position so that these can access only
the corresponding sub-banks (i.e., the sub-banks whose indices
are equivalent to the lower log2 P bits of the vertices), thereby
facilitating parallel processing of multiple vertices in adjacency
lists.

5.2 Processing Sequence
In our proposed approach, a host CPU converts the given graph

to its complementary graph, generates the address and list tables,
and finally, downloads them to the circuit on FPGA.

Next, the circuit on FPGA constructs an initial solution as fol-
lows.

i) Set all the bits in NS0 array to 1 and those in the other arrays
to 0.

ii) Select v̇ that satisfies NS0 array[v̇] = 1 at random and set
NS0 array[v̇] and S array[v̇] to 0 and 1, respectively.

iii) Read every w′ from list(v̇), and then update m tbl[w′] and
d tbl[w′] and set NSk array[w′] according to the new values
of m tbl[w′].

iv) Update |S| cnt and |NSk | cnts (i.e., increase or decrease the
sub-counters of them according to the changes in S array and
NSk arrays by Steps ii) and iii)).

v) Repeat Steps ii) to iv) until all the bits in NS0 array become
0.

Subsequently, the following procedure is executed on FPGA to
search for a solution.

vi) Select v̇ according to the heuristics in SBTS.
vii) Set S array[v̇] to 1 and NSk array[v̇] to 0, respectively.

viii) Read every w and w′ from list(v̇), and then update m tbl[w],

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

d tbl[w], m tbl[w′], and d tbl[w′]. Then, set S array[w] to
0, and NSk array[w] and NSk array[w′] according to the new
values of m tbl[w] and m tbl[w′]. Concurrently, store every
w into w buf.

ix) Update |S| cnt and |NS1| cnt.
x) For each vertex in w buf, execute the following processing

in turn (updating m(w′′), d(w′′), and NSk array[w′′]).
(a) Read list(w). Herein, v̈ denotes the vertices in list(w).
(b) Update the values of m tbl[v̈] and d tbl[v̈].
(c) Set NSk array[v̈] according to the new values of

m tbl[v̈].
(d) Update S cnt and |NSk | cnts.

xi) Update tabu tbl[w].

5.3 Selection of a Vertex to be Swapped
In our proposed approach, the selection methods of v̇ can be

categorized into the following three types (note that the intensifi-
cation phase is changed as described in Section 4.1):
x) Select a vertex among the vertices v that satisfy NSk array[v]
= 1 at random, where k = 0 or >2 (corresponding to Step (1)
in the intensification phase and Step (2)-b in the diversifica-
tion phase).

y) Select a vertex with the smallest value of tabu tbl among the
vertices v that satisfy NS1 array[v] = 1 (corresponding to
Step (2) in the intensification phase).

z) Select a vertex with the largest value of d tbl among the ver-
tices v that satisfy NSk array[v] = 1, where k = 2 or >2
(corresponding to Steps (1) and (2)-a in the diversification
phase).

Among them, (x) is parallelized using a binary tree of multi-
plexers with random selections signals. (y) is virtually equiva-
lent to the min function, which is parallelized by a binary tree
of the min operation circuits (comprising multiplexers and com-
parators). Similarly, (z) is parallelized by a binary tree of the max
operation circuits.

In the following sections, we describe the details of the above-
mentioned circuits. All of the circuits are fully pipelined.
5.3.1 Random Vertex Selector

Figure 5 shows the circuit for the random selection (P = 8).
The area surrounded by the dotted line represents the sub-banks
of NSk array (k = 0 or > 2) and their indices.

The random vertex selector selects a vertex by executing the
following procedure.

(i) The values in the sub-banks of NSk array are read from the
address pointed by the addr pointer. Concurrently, the “MADs”
(multiply-add operators) restore their associated vertices from the
pairs of the read address and the sub-bank indices by calculating
the following equation: v = i + P × addr pointer, where i stands
for the sub-bank index. If the values read from the NSk array
are 0, the vertices are invalidated (converted to NULL) by the
“masks.”

(ii) The vertices are sent to the multiplexer tree. Each multi-
plexer in the tree selects any of the valid (non-NULL) input ver-
tices at random. The multiplexer at the final stage stores the input
vertex to “reg.” If there is already a vertex in the reg, it randomly
selects either the vertex from its preceding multiplexer or one that

Fig. 5 Random vertex selector (P = 8).

Fig. 6 Vertex selector based on the min function (P = 8).

has been stored in the reg and then overwrites the reg by the se-
lected vertex.

(i) and (ii) are repeated Nv/P times by changing the
addr pointer from 0 to Nv/P− 1, a vertex is in this way randomly
selected among the vertices in NS k.
5.3.2 Vertex Selector Based on the Min Function

Figure 6 shows the vertex selector based on the min func-
tion. In Fig. 6, the area surrounded by the dotted line indicates
the sub-banks of NS1 array (the black rectangles), the sub-banks
of tabu tbl (the red rectangles), and the indices of the sub-banks.

The procedure for the vertex selection is as follows.
(i) The values in the sub-banks of NS1 array are read from the

address pointed by the addr pointer. Then, the corresponding ver-
tices are extracted in the same manner as the random vertex se-
lector. In addition, the tabu tenures of the extracted vertices are
read from the tabu tbl.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 7 Vertex selector based on the max function (P = 8).

(ii) The extracted vertices are sent to the multiplexer tree along
with their tabu tenures. Each multiplexer in the tree selects the
valid input vertex with smaller tabu tenure (ties are broken at ran-
dom). The multiplexer at the final stage selects the vertex with
the smaller tabu tenure among the valid vertex from its preceding
multiplexer and the one that has been stored already in the reg,
and then overwrites the reg by the selected one.

(i) and (ii) are repeated Nv/P times by changing the
addr pointer from 0 to Nv/P− 1, the vertex with the smallest tabu
tenure is in this way selected among the vertices in NS 1.

(iii) Finally, “cmp” compares the tabu tenure of the selected
vertex to Iter to determine whether the selected vertex has passed
its tabu tenure and discards it if it has not passed its tabu tenure.
5.3.3 Vertex Selector Based on the Max Function

Figure 7 shows the vertex selector based on the max func-
tion. The blue rectangles surrounded by the dotted line denote
the sub-banks of d tbl, the black rectangles are the sub-banks of
NSk array (k = 2 or > 2), and the red rectangles are the same as
in Fig. 6. The integer numbers are the indices of these sub-banks.

The procedure for the vertex selection is as follows. Firstly, (i)
the values in the sub-banks of NSk array are read from the address
pointed by the addr pointer. Then the corresponding vertices are
extracted in the same manner as the former two vertex selectors.
In addition, (ii) the cmps compare the tabu tenures to Iter and
then the masks at the lower positions invalidate the vertices that
have not passed their tabu tenures. Then, (iii) the multiplexer
tree selects the vertex with the largest diversifying degree among
the valid vertices and the vertex that has been stored already in
the reg, and then overwrites the reg by the selected one. (i)–(iii)
are repeated Nv/P times by changing the addr pointer from 0 to
Nv/P, and in this way the vertex with the maximum diversifying
degree is selected.

5.4 Parallel Processing of Vertex Swapping
5.4.1 Structure of the Updater

As mentioned in Section 3.2.2, the following values must be
updated whenever v̇ and w are swapped: the mapping and di-
versifying degrees of w, w′, and w′′, and the tabu tenures of w.
Accordingly, it is necessary to update the values of m tbl, d tbl,
tabu tbl, S array, and NSk arrays for the above vertices.

Figure 8 depicts the structure of the updater in Fig. 4, the
circuit for updating m tbl, d tbl, tabu tbl, S array, NSk arrays,
|S| cnt, and |NSk | cnts. In Fig. 8, tick-lined rectangles (“up-
date S”, “update NSk, “+/-”, “sum”, and “calc tt”) represent the
components of the updater. The blue rectangles denote the sub-
counters of |S| cnt and |NSk | cnts. “ptr” indicates the number of
the entries in each sub-buffer of w buf. Also, v0, v1, . . ., vP repre-
sent the vertices read from the list table in parallel.

“update S” and “update NSk” are the functions for updating
the values of S array and the values of NSk arrays, respectively.
“+/−” denotes a functional unit to calculate the new mapping and
diversifying degrees and to update the values of the sub-counters.
“sum” represents an adder tree to sum up the values of the sub-
counters. “calc tt” calculates the tabu tenures by executing R′(x)
described in Section 4.2.
5.4.2 Procedure for Updating the Tables and Arrays
(1) Set m tbl[v̇] and d tbl[v̇] to 0 and L(v̇), respectively. Herein,

we suppose that v̇’s mapping degree was λ before swapping
and we denote v̇’s lower log2 P bits as α. Note that m tbl[v̇]
is at address v̇ � log2 P of α-th sub-bank in m tbl as men-
tioned in Section 5.1.1, and the same is true for the other
tables and arrays.

(2) Set S array[v̇] and NSλ array[v̇] to 1 and 0, respectively.
Also, increment α-th sub-counter of |S| cnt and decrement
α-th sub-counter of |NSλ| cnt.

(3) Read the address table by v̇ to read out the address of list(v̇),
and then read list(v̇) from the list table.

(4) Update the tables and arrays for the vertices in list(v̇). As
mentioned in Section 5.1.1, up to P vertices are read from
list(v̇) at once and then following steps are executed for the
vertices in parallel, which are repeated until all the vertices
in list(v̇) are processed. Herein, we denote the vertices read
from list(v̇) as v̈ and v̈’s lower log2 P bits as β.
(a) If S array[v̈] = 1, then store v̈ into β-th sub-buffers of

w buf, increment their corresponding ptrs. Otherwise,
execute the following steps. Note that v̈ with S array[v̈]
= 1 correspond to w and v̈ with S array[v̈] = 0 corre-
spond to w′.
(i) Increment m tbl[v̈] and decrement d tbl[v̈]. Herein,

we represent the new values of m tbl[v̈] as μ.
(ii) Update NSk arrays[v̈] and |NSk | cnts as follows:

(A) If μ = 1 or 2, then set NSμ array[v̈] to 1, and
set NSμ−1 array[v̈] to 0. Also, increment and
decrement the corresponding sub-counters of
|NSμ| cnt and |NSμ−1| cnt, respectively.

(B) If μ = 3, then set NS>2 array[v̈] to 1, and
set NS2 array[v̈] to 0. Also, increment and
decrement the corresponding sub-counters of
|NS>2| cnt and |NS2| cnt, respectively.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 8 Block diagram of the updater.

Table 4 Pipeline specifications.

number of stages initiation interval
(4) 7 1
(5) 7 1
(6) 5 3

(5) Execute the following steps for every vertex in w buf:
(a) Read a vertex w from a sub-buffer of w buf.
(b) Read list(w) in the same manner as Step 3). Note that

the vertices in list(w) correspond to w′′.
(c) Update m tbl, d tbl, NSk arrays, and NSk cnts for w′′.

Likewise Step (4), up to P vertices are read from list(w)
at once and then following steps are executed for the
vertices in parallel, which are repeated until all the ver-
tices in list(w) are processed.
(i) Decrement m tbl[w′′] and increment d tbl[w′′].

Herein, we denote the new values of m tbl[w′′] as
ν.

(ii) Update NSk arrays[w′′] and the sub-counters of
|NSk | cnts as follows:
(A) If ν = 0 or 1, then set NSν array[v̈] to 1, and

set NSν+1 array[v̈] to 0. Also, increment and
decrement the corresponding sub-counters of
|NSν| cnt and |NSν+1| cnt, respectively.

(B) If ν = 2, then set NS2 array[v̈] to 1, and
set NS>2 array[v̈] to 0. Also, increment and
decrement the corresponding sub-counters of
|NS2| cnt and |NS>2| cnt, respectively.

(6) Execute the following steps repeatedly until all the ptrs be-
come 0:
(a) Read out vertices in all the sub-buffers of w buf whose

corresponding ptrs > 0.
(b) Calculate the tabu tenures for the read vertices w, write

the calculated values into tabu tbl[w], set S array[w] to
0, and decrement ptrs if ptrs > 0.

(c) Set NS1 array[w] and NS0 array[w] to 1 and 0, respec-
tively. Also, increment and decrement the correspond-
ing sub-counters of |NS1| cnt and |NS0| cnt, respec-
tively.

(d) Set m tbl[w] and d tbl[w] to 1 and L(w)−1, respectively.
(7) For |S| cnt and |NSk | cnts (k = 0, 1, 2, > 2), sum up values of

the sub-counters, respectively. All the summations are exe-
cuted simultaneously.

Steps (4), (5), and (6) are pipelined, respectively. Table 4
shows the specifications of the pipeline processing. In our current
implementation, the pipeline for Step (6) stalls for three clock
cycles to avoid control hazards while Steps (4) and (5) are fully
pipelined.

6. Performance Evaluation

6.1 Experimental Setup
We compared our modified SBTS algorithm and its FPGA im-

plementation with the original SBTS algorithm using DIMACS
benchmark graph suite [11]. In order to clarify the contribution
of each technique described in Sections 4.1 and 4.2, we prepared
three variants of our modified SBTS algorithm on software as fol-
lows.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Table 5 Resource utilization of FPGA-mod-A (90 MHz, P = 64).

Resource Consumed / Total
LUT 346.6 K / 660.8 K (52.4%)

flipflop 319.1 K / 1,321 K (24.1%)
36 Kb block RAM 737 / 2,160 (34.1%)

DSP 12 / 5,520 (0.217%)

Table 6 Resource utilization of FPGA-mod-AB (140 MHz, P = 64).

Resource Consumed / Total
LUT 257.3 K / 660.8 K (38.9%)

flipflop 256.9 K / 1,321 K (19.4%)
36 Kb block RAM 727 / 2,160 (33.7%)

DSP 12 / 5,520 (0.217%)

Table 7 The number of graphs for which each implementation found the
best-known solutions in all the trials.

of graphs original mod-A mod-B mod-AB FPGA-mod-AB
80 78 77 77 77 76

• mod-A: SBTS with the modified heuristic for vertex swap-
ping (described in Section 4.1);

• mod-B: SBTS with the simplified tabu tenure calculation
(described in Section 4.2);

• mod-AB: SBTS with both of the modified heuristic for ver-
tex swapping and the simplified tabu tenure calculation.

Also, we tested FPGA implementations based on mod-A and
mod-AB, respectively. Hereinafter, we denote the former as
“FPGA-mod-A” and the latter as “FPGA-mod-AB.” We did not
test the FPGA implementation of mod-B because mod-B utilizes
the expanding degrees in the intensification phase which is not
suitable for parallel implementation on FPGA as discussed in
Section 4.1.

The software implementations were compiled by g++ with -
O3 option and were executed on Core-i7 5820K 3.3 GHz with
32 GB main memory. The FPGA implementations were imple-
mented on a XIL-ACCEL-RD-KU115 board comprising a Kin-
tex Ultrascale XCKU115 FPGA (by Xilinx, Inc.) and 16 GB off-
chip DDR4-SDRAMs. Tables 5 and 6 summarize the resource
utilizations of the FPGA implementations. The maximum oper-
ational frequencies were 90 MHz in FPGA-mod-A and 140 MHz
in FPGA-mod-AB. The differences in the operational frequency
and resource utilizations will be discussed in Section 6.5.2.

6.2 Evaluation Condition
In each implementation, 50 trials were executed for each graph,

respectively, except for C2000.9. As for C2000.9, 10 trials were
executed because this graph was considerably time consuming in
the evaluation. Each trial was stopped when it either found the
best-known solutions or reached 109 iterations that were divided
into 105 restarts (restart per 104 iterations).

6.3 Accuracy Evaluation
In order to evaluate accuracy deterioration in our proposed ap-

proach, we first compared the number of graphs for which each
implementation reached the best-known solutions in all the trials.
In this evaluation, we tested the original SBTS, mod-A, mod-B,
mod-AB, and FPGA-mod-AB. Table 7 shows the result of the
comparison. As is evident from Table 7, our proposed approach
prevented a loss in accuracy in most cases.

Table 8 Average sizes of the cliques obtained for hard instance graphs.

graph original mod-A mod-B mod-AB FPGA-mod-AB
brock800 1 22.8 23 22.7 23 22.8
brock800 2 24 24 23.9 24 24
MANN a45 345 344 345 344.1 344.5
MANN a81 1,100 1,097 1,100 1,097 1,098.1
C2000.9 78.0 77.0 78.3 77.7 76.9

Table 9 Overall performance gain by algorithm modifications.

mod-A mod-B mod-AB

Xiter

best 0.188 0.495 0.192
avg 1.32 1.04 1.32

worst 9.22 1.74 10.9

Xsec

max 26.1 1.40 24.5
avg 2.71 1.02 2.46
min 0.600 0.716 0.500

Xiter/sec

max 14.7 1.66 14.7
avg 2.42 1.04 2.33
min 0.324 0.491 0.209

We then focused on the graphs of which each implementation
missed out on reaching the best known solutions in at least one
trial. Table 8 shows a comparison of the average sizes of the
obtained cliques for such graphs. Degradations of the solution
accuracy were observed for MANN a45 and MANN a81 in mod-
A, mod-AB, and FPGA-mod-AB. In general, graphs that encode
problems from other domains involve the structure derived from
their original problems. MANN graphs are from the set covering
problems arising from Steiner triple systems [14], and the solu-
tion search heuristic in our proposed approach may not be effec-
tive for Steiner triple systems so much. Additional evaluations are
required to clarify the relationship between the graph structures
and effectiveness of our proposed approach.

6.4 Performance Gain by Algorithm Modification
Table 9 represents the performance gain by each variant of our

proposed approach over the original SBTS. In Table 9, Xiter rep-
resents the ratio of iterations to reach the best-known solutions
in each variant to those in the original SBTS. Note that when
Xiter is large, the variant requires more number of iterations than
the original SBTS. Xsec and Xiter/sec represent speedup by total
elapsed seconds and the number of iterations per second to reach
the best-known solutions, respectively, compared with the orig-
inal SBTS algorithm. Both of them include the time spent for
reading a given graph and generating its complementary graph.
Trials that did not obtain the best-known solutions are excluded.
Although Xsec is affected by the increase/decrease of the num-
ber of iterations, Xiter/sec does not vary so much regardless of the
number of iterations. Therefore, Xiter/sec is a better criterion for
evaluating performance gain than Xsec.

As can be seen in Table 9, mod-A and mod-AB achieve com-
parable performance. As described in Section 4.1, mod-A and
mod-AB do not incur indirect array indexing by referencing the
expanding degrees occurring in the original SBTS. This leads to
reducing the random access to the main memory and promoting
burst access to it, thereby improving the throughput of the search.
Furthermore, both of the variants utilize only one parameter, tabu
tenure, to select a vertex to be swapped in its intensification phase,
whereas the original utilizes two kinds of parameters, the expand-
ing and diversifying degrees. This leads to reducing the frequency

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Table 10 Performance comparison between FPGA and software implementations.

graph
software (original) software (mod-AB) FPGA-mod-AB (140 MHz, P = 64)
size #iteravg secavg size #iteravg secavg size #iteravg secavg X1 X2

brock400 1 27(27) 1.96×107 41.7 27(27) 7.33×106 5.58 27(27) 7.16×106 9.42 4.43 0.592
brock400 2 29(29) 4.34×106 9.19 29(29) 1.55×106 1.20 29(29) 1.19×106 1.63 5.65 0.740
brock400 3 31(31) 5.00×105 1.09 31(31) 3.51×105 0.292 31(31) 3.21×105 0.487 2.24 0.599
san400 0.7 1 40(40) 3.99×105 1.07 40(40) 1.17×105 0.177 40(40) 9.89×104 0.190 5.65 0.930
brock800 1 23(22.8) 3.48×108 4,388 23(23) 3.21×108 586 23(22.8) 2.71×108 389 11.3 1.51
brock800 2 24(24) 1.22×108 1,520 24(24) 1.17×108 211 24(24) 1.33×108 190 7.98 1.11
brock800 3 25(25) 1.03×108 1,292 25(25) 8.06×107 147 25(25) 7.12×107 102 12.6 1.44
brock800 4 26(26) 2.86×107 359 26(26) 3.55×107 64.3 26(26) 4.14×107 59.4 6.04 1.08
C1000.9 68(68) 2.00×106 9.78 68(68) 2.03×107 14.5 68(68) 1.83×107 25.8 0.378 0.563
san1000 15(15) 1.14×106 26.0 15(15) 2.32×105 1.06 15(15) 2.77×105 0.581 44.7 1.83
MANN a45 345(345) 5.03×106 7.97 345(344.1) 4.88×106 7.66 345(344.5) 2.48×108 330 0.0242 0.0232
p hat1500-1 12(12) 1.01×105 7.59 12(12) 1.07×105 0.952 12(12) 1.07×105 0.581 13.1 1.64
C2000.5 16(16) 3.11×104 2.77 16(16) 4.50×104 0.631 16(16) 3.48×104 0.617 4.49 1.02
MANN a81 1,100(1,100) 7.52×105 18.3 1,097(1,097) - - 1,100(1,098.1) 7.78×107 132 0.139 -
keller6 59(59) 9.61×106 411 59(59) 1.38×107 49.1 59(59) 4.45×106 9.13 45.0 5.38
C4000.5 18(18) 4.90×106 844 18(18) 7.62×106 89.2 18(18) 6.21×106 16.5 51.1 5.40
C2000.9 78(78.0) - - 80(77.7) 3.88×108 476 78(76.9) - - - -

of the main memory access in itself. On the other hand, perfor-
mance gain by mod-B is limited in the most cases. This is reason-
able because the calculation of the tabu tenures hardly occupies
the total elapsed time as shown in Fig. 3 in Section 3.4. The maxi-
mum of Xiter/sec is 1.66× in mod-B, which seems to be high for the
small occupation ratio of the tabu tenure calculation. To clarify
the reason for this, it may be necessary to analyze the difference
in behavior at each iteration between the original SBTS and mod-
B, which is one of our future tasks. Overall, performance gain by
the algorithm modification mainly arises from the changes in the
vertex selection heuristic in the intensification phase.

6.5 Performance Gain by Hardware Acceleration
Firstly, we present the performance comparison of FPGA-

mod-AB with the original SBTS and mod-AB. In this evaluation,
we focus on the the same graphs as those used for the perfor-
mance profiling in Section 3.4. In the other 63 graphs, all the soft-
ware implementations and FPGA-mod-AB reach the best-known
solutions in less than 1 second according to our experiments. We
exclude such graphs and focus on the remaining 17 ones.

Table 10 shows the performance comparison of each imple-
mentation. “size” and secavg have the same meanings as in Ta-
ble 3. The time spent on downloading the data into the FPGA is
also accounted for by secavg of the FPGA implementation. #iteravg

denotes the average number of iterations to obtain the best-known
solutions. X1 and X2 represent the speedup values of the FPGA
implementation by secavg compared with the original SBTS and
mod-AB, respectively. Trials that did not obtain the best-known
solutions are excluded for evaluating X1 and X2.

As shown in Table 10, FPGA-mod-AB performs well (up to
51.1× speedup) as compared with the original SBTS. On the other
hand, the speedup over mod-AB is limited (up to 5.40×). As dis-
cussed in Section 6.4, throughput of mod-AB is superior to that
of the original SBTS. This indicates that the speedup of FPGA-
mod-AB over the original may result not only from the parallel
processing on FPGA but also from the low throughput of the orig-
inal SBTS on CPU.
6.5.1 Effectiveness of Parallel Processing

As described in Sections 5.3 and 5.4, parallel and pipeline pro-

Table 11 Performance of FPGA-mod-A (90 MHz, P = 64).

graph size #iteravg secavg Xiter/sec Xsec

brock400 1 27 (27) 5.36×106 11.4 0.617 0.825
brock400 2 29 (29) 1.44×106 3.07 0.642 0.529
brock400 3 31 (31) 3.62×105 0.790 0.690 0.611
san400 0.7 1 40 (40) 1.06×105 0.269 0.757 0.704
brock800 2 24 (24) 1.72×108 393 0.628 0.484
brock800 3 25 (25) 9.21×107 210 0.630 0.488
brock800 4 26 (26) 4.01×107 91.2 0.630 0.652
C1000.9 68 (68) 1.89×107 43.1 0.617 0.599
san1000 15 (15) 2.64×105 0.764 0.724 0.760
p hat1500-1 12 (12) 1.20×105 0.696 0.931 0.834
C2000.5 16 (16) 4.76×104 0.854 0.987 0.722
keller6 59 (59) 4.36×106 13.6 0.661 0.673
C4000.5 18 (18) 5.78×106 22.9 0.673 0.722

cessing accelerate the selection of vertices for swapping and up-
dating of the parameters that occur with the swapping. The in-
herent parallelism of the former and that of the latter depend on
Nv and #adjavg, respectively. Overall, both X1 and X2 are roughly
proportional to Nv and #adjavg, respectively, which indicates that
FPGA-mod-AB leverages the inherent parallelism.

FPGA-mod-AB outperforms the original SBTS on CPU ex-
cept for C1000.9, MANN a45, and MANN a81. As for C1000.9,
mod-AB and FPGA-mod-AB require approximately 10×more it-
erations than the original SBTS, thereby cancelling out the effec-
tiveness of the parallel and pipeline processing. This may be be-
cause mod-AB, i.e., the underlying algorithm of FPGA-mod-AB,
causes a loss in accuracy for C1000.9, thereby requiring more it-
erations to reach the best known solution. While this is also true
for MANN graphs, FPGA-mod-AB requires more iterations than
mod-AB as well as the original SBTS by orders of magnitude un-
like the case of C1000.9. The number of iterations between A
and B should be about the same since their underlying algorithm
is the same. Investigating why the number of iterations is so dif-
ferent between FPGA-mod-AB and mod-AB for MANN graphs
is one of our future tasks.
6.5.2 Effectiveness of Simplifying Tabu Tenure Calculation

Next, we compare the performance of FPGA-mod-A with
FPGA-mod-AB, based on which we discuss the effectiveness of
simplifying tabu tenure calculation. Table 11 shows the perfor-
mance of FPGA-mod-A. Xsec shows the ratio of elapsed time of

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Table 12 Performance of FPGA-mod-AB when off-chip DRAMs unused
(133 MHz, P = 64).

graph size #iteravg secavg X1 X2 X3

brock400 1 27 (27) 7.16×106 5.25 7.95 1.06 1.79
brock400 2 29 (29) 1.19×106 0.941 9.76 1.28 1.73
brock400 3 31 (31) 3.21×105 0.296 3.69 0.986 1.65
san400 0.7 1 40 (40) 9.89×104 0.130 8.26 1.36 1.46
brock800 1 23 (22.8) 2.71×108 227 19.3 2.58 1.72
brock800 2 24 (24) 1.33×108 109 14.0 1.94 1.75
brock800 3 25 (25) 7.12×107 59.4 21.7 2.47 1.72
brock800 4 26 (26) 4.14×107 34.8 10.3 1.85 1.71
C1000.9 68 (68) 1.83×107 14.8 0.659 0.981 1.74

FPGA-mod-A to that of FPGA-mod-AB. Xiter/sec represents the
ratio of iterations per second of FPGA-mod-A to that of FPGA-
mod-AB. Other notations have the same meanings as in Table 10.

The performance of FPGA-mod-A is inferior to that of FPGA-
mod-AB in all the tested cases because of its lower operational
frequency. If FPGA-mod-A could operate at the same frequency
as FPGA-mod-AB, performance of both would be nearly equal.
For example, Xiter/sec and Xsec for brock400 1 would become
0.960× and 1.28×, respectively. As can be seen from Tables 5
and 6, utilizations of LUTs and flipflops in FPGA-mod-A are in-
creased by 35% and 24%, respectively, compared with FPGA-
mod-AB. This is because the remainder calculators for generat-
ing random integers are implemented by LUTs and flipflops in
FPGA-mod-A (64 remainder calculators are implemented to cal-
culate up to 64 tabu tenures at once). The operational frequency
of FPGA-mod-A is decreased by 36% compared with FPGA-
mod-AB, which implies that removing the remainder calculators
leads to reducing the critical path delay. Thus, simplification of
the tabu tenure calculation contributes to increasing the perfor-
mance while reducing hardware resource utilization.
6.5.3 Reducing Off-chip DRAM Access Latency

As discussed in Section 6.5, the speedup of FPGA-mod-AB
over mod-AB is limited. The access latency of the off-chip
DRAMs is considered to be a major factor in limiting the per-
formance. In the FPGA implementation, the list table was as-
signed to the off-chip DRAMs. As can be seen from Table 6,
1,433 on-chip memories (block RAMs) were still available. By
implementing the list table using the block RAMs, the off-chip
DRAM access latency can be canceled.

We could implement a circuit that could handle the graphs with
800 vertices by using 256 block RAMs instead of using off-chip
DRAMs to implement the list table (C1000.9 could be handled
as well because the amount of the list table for C1000.9 was
small enough). However, the system clock frequency was re-
duced to 133 MHz because the timing constraints became more
severe due to the increase of the block RAMs. Table 12 shows
the performance of the above-stated circuit. In Table 12, X3 repre-
sents the speedup values of the circuit without using the off-chip
DRAMs by secavg over the FPGA implementation (using off-chip
DRAMs), and the other notations have the same meanings as in
Table 10. X3 ranges from 1.46× to 1.79×, which implies that the
off-chip DRAM access latency accounted for 32% to 44% of the
overall execution time in the tested cases.

Although larger graphs can be handled using more block
RAMs to implement the list table, overuse of the block RAMs

must be avoided to prevent degradation of the system clock fre-
quency from negating the effect achieved from eliminating off-
chip DRAM access latency. According to our experiments, the
system clock frequency was down to less than 80 MHz by using
448 block RAMs for the list table. In this case, the cancellation
of the off-chip DRAM access latency was neutralized in the most
of the tested cases although it could handle the graphs with 2,000
vertices without using off-chip DRAMs.

To eliminate the DRAM access latency using a small number
of the block RAMs for larger graphs, a cache memory for the list
table may be effective. One concern is that multiple cache lines
are necessary to hold long adjacency lists, which requires a com-
plicated cache control logic. However, the DRAM access latency
for reading such long lists can be negligible because the time it
takes to read long lists is higher than the DRAM access latency.
Therefore, caching only short adjacency lists that can be held by
a single cache line would be a reasonable approach.

7. Conclusions and Future Work

In this paper, we have described an approach for solving the
maximum clique problems using FPGA based on the SBTS algo-
rithm. We modified the SBTS algorithm to discard the indirect
array indexing occurring in the original SBTS algorithm thereby
facilitating its parallel implementation. We then implemented
a circuit based on the modified version of SBTS using FPGA
and evaluated the performance. Using the DIMACS benchmark
graphs, we showed that the FPGA implementation is up to 5.40×
and 51.1× faster than the same algorithm and the original SBTS
algorithm, respectively. On the other hand, it has also been im-
plied that the effectiveness of our proposed approach would de-
pend on the structure of the graphs derived from their original
problems. In order to clarify this point, we need to investigate the
relationship between the structure of graphs and the accuracy of
our proposed approach, which will be one of the tasks for future
work.

Our current implementation can handle all the graphs in DI-
MACS benchmark graph suite. However, real-world graphs are
considerably larger (comprising more than 1 M vertices) than the
DIMACS graphs. To extend the graph size that could be handled,
it might be necessary to allocate most of the tables and arrays
on the on-chip memories to the off-chip DRAMs, which could
cause performance degradation by increasing the memory access
latency. To overcome the performance degradation, we need to
investigate appropriate data allocation for the on-chip memories
and the off-chip DRAMs that could fully utilize the burst access
operation of the DRAMs, which is also a task for future work.

Another topic for future work is applying our proposed ap-
proach to some variants of the maximum clique problems, e.g.,
the weighted maximum clique problems. In Refs. [15], [16], par-
allel algorithms have been proposed for the weighted maximum
clique problems. Extending our proposed approach to handle the
weighted maximum clique problems and comparing its perfor-
mance with the existing parallel algorithms are also tasks for fu-
ture work.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

References

[1] Pardalos, P.M. and Xue, J.: The maximum clique problem, Journal of
Global Optimization, Vol.4, No.3, pp.301–328 (1994).

[2] Strickland, D.M., Barnes, E. and Sokol, J.S.: Optimal Protein
Structure Alignment Using Maximum Cliques, Operations Research,
Vol.53, No.3, pp.389–402 (2005).

[3] Corno, F., Prinetto, P. and Reorda, M.S.: Using symbolic techniques
to find the maximum clique in very large sparse graphs, EDTC-1995,
pp.320–324 (1995).

[4] Jin, Y. and Hao, J.: General swap-based multiple neighborhood tabu
search for the maximum independent set problem, Engineering Appli-
cations of Artificial Intelligence, Vol.37, pp.20–33 (2015).

[5] Wu, Q. and Hao, J.: A review on algorithms for maximum clique
problems, European Journal of Operational Research, Vol.242, No.3,
pp.693–709 (2015).

[6] Kanazawa, K.: Accelerating Swap-Based Tabu Search for Solving
Maximum Clique Problems on FPGA, ISPA-2019, pp.1033–1040
(2019).

[7] Kanazawa, K.: Solving Maximum Clique Problems using FPGA
Based on Swap-Based Tabu Search, HSI-2020, 7 pages (2021).

[8] Ordońẽz-Guilleń, N.E. and Martińez-Peŕez, I.M.: Heuristic Search
Space Generation for Maximum Clique Problem Inspired in
Biomolecular Filtering, Journal of Signal Processing Systems, Vol.83,
No.3, pp.389–400 (2016).

[9] Batsyn, M., Goldengorin, B., Maslov, E. and Pardalos, P.M.: Improve-
ments to MCS algorithm for the maximum clique problem, Journal of
Combinatorial Optimization, Vol.27, No.2, pp.397–416 (2013).

[10] Tomita, E., Sutani, Y., Takahashi, S. and Wakabayashi, M.: A simple
and faster branch-and-bound algorithm for finding a maximum clique,
WALCOM-2010, pp.191–203 (2010).

[11] Johnson, D.S. and Trick, M.A.: Cliques, coloring, and satisfiability:
second DIMACS implementation challenge, American Mathematical
Society (1996).

[12] Kanazawa, K. and Cai, S.: FPGA Acceleration to Solve Maxi-
mum Clique Problems Encoded into Partial MaxSAT, MCSoC-2018,
pp.217–224 (2018).

[13] Cai, S., Luo, C., Thornton, J. and Su, K.: Tailoring Local Search for
Partial MaxSAT, AAAI-2014, pp.2623–2629 (2014).

[14] Mannino, C. and Sassano, A.: Solving hard set covering problems,
Operations Research Letters, Vol.18, No.1, pp.1–6 (1995).

[15] Baz, D., Hifi, M., Wu, L. and Shi, X.: A parallel ant colony optimiza-
tion for the maximum-weight clique problem, IPDPSW-2016, pp.796–
800 (2016).

[16] Sevinc, E. and Dokeroglu, T.: A novel parallel local search algorithm
for the maximum vertex weight clique problem in large graphs, Soft
Computing, Vol.24, No.5, pp.3551–3567 (2020).

Kenji Kanazawa received his Ph.D.
from University of Tsukuba in 2012.
He is currently an assistant professor
at University of Tsukuba. His research
interests include parallel processing,
reconfigurable computing systems, and
highly efficient computing systems using
hardware accelerator.

c© 2022 Information Processing Society of Japan

