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Abstract: We often compared measured photoelectron spectra with other spectra for material development and qual-
ity control in the industry. In particular, X-ray photoelectron spectroscopy is used to detect surface contamination and
chemical state changes. However, spectral data has perturbation of measurement devices, e.g., the difference in peak
width due to the resolution of the device, and the difference in peak position due to the charging phenomenon in the
spectral data. It is difficult to simply measure the distance between the measured spectra. Therefore, it is necessary
to develop a method for calculating the similarity between spectra that is independent of the device. To establish a
comparing procedure, we introduced a clustering method for spectral data to decouple the measurement perturbation.
We designed the clustering method for detecting contamination components and sample heterogeneity. This study
proposed an analytical model that separates the photoelectron peaks from the perturbation caused by the measurement
device. We applied the method to calculate the similarity between the spectra. As a result, we show the proposed
method could detect spectral data included with other components in the analysis of real X-ray photo-electron spec-
troscopy spectral data of TiO2.
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1. Introduction
Photoelectron spectroscopy is a method of measuring the elec-

tronic state of a sample by emitting an electromagnetic wave of
certain energy and measuring the energy of the electrons emitted
by the photoelectric effect. It is used for material development
and quality control in the industry. In particular, X-ray photoelec-
tron spectroscopy (XPS) measures the kinetic energy distribution
of photoelectrons emitted by X-ray irradiation. XPS has attracted
attention because it can perform surface analysis. XPS can mea-
sure many materials, including metallic and polymeric materials.
In recent years, analysis methods have been actively proposed
with the demand for automated analysis [1, 2]. The methods of
Nagata et al. and Shinozuka et al. can automatically estimate
the number of peaks and the parameters of the peaks [1, 2]. In a
related study, we proposed the analysis method that can automat-
ically estimate compound ratios using reference spectra obtained
from the literature [3]. This method has succeeded in significantly
reducing the variability of the analytical results. Meanwhile, it is
not established how to measure the distances between the spectra
and how the spectra can be clustered.

In material development, similarity of intrinsic spectral struc-
tures is essential for discussing material properties and quality
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control in the industry. Furthermore, clustering of XPS spectra
based on their similarity can be applied to the detection of surface
state changes. In spectral analysis, we often compare measure-
ment spectral data with other spectral data for material develop-
ment and quality control. However, spectral data has perturbation
of measurement devices, e.g., the difference in peak width due
to the resolution of the device, and the difference in peak posi-
tion due to the charging phenomenon in the spectral data. There-
fore, it is challenging to compare the spectral measurement data
with the data from the literature and the spectral data measured
by equipment of other institutions. The perturbations should be
modeled from the measurement equipment, and methods devel-
oped for comparing spectra independent of the perturbations. In
particular, the task of this study is the clustering of XPS spectral
data independent of the measurement device.

We designed the clustering to detect contamination compo-
nents and sample heterogeneity for material development and
industrial quality control. This study introduced an analytical
model that separates the photoelectron peaks and the perturba-
tion caused by the measurement device. We proposed a method
to calculate the similarity between spectra. This study shows the
proposed technique’s effectiveness from its application to artifi-
cial data and real XPS spectral data.

2. Method
In this study, we aimed to develop a clustering method for

XPS spectral data independent of the measurement equipment.
It is important to remove device-induced fluctuations from the

1

IPSJ SIG Technical Report

ⓒ 2022 Information Processing Society of Japan

Vol.2022-MPS-139 No.5
2022/7/26



Fig. 1 Conceptual diagram of the proposed method that compute degree of
dissimilarity in spectrum-to-spectrum excluding change in spectral
shape depending on measurement device.

spectrum. In this study, the key concept is to compute a de-
gree of dissimilarity in spectrum-to-spectrum, excluding change
in spectral shape depending on the measurement device. The pro-
posed method calculated the degree of dissimilarity in spectrum-
to-spectrum by two steps:
• Step 1:

We calculate the fitting peak of the spectral data D =

{(xi, yi)}Ni=1 throughout a pseudo-Voigt function. In this step,
we also estimate the number of peaks K and the peak param-
eters θ = {h, p,w, r}.

• Step 2:
We carry out fine-tuning on the estimated parameters θ to
apply them to other spectral data D′ = {(x′i , y

′
i )}

N′
i=1.

In step 1, we applied a peak separation method proposed by
Shinotsuka et al [2]. Their method, which is based on the
Bayesian information criterion (BIC) [4], allowed us to estimate
the peak parameters and the number of peaks automatically. Step
2 means adjusting the change in spectral shape depending on the
measurement device. After these steps, the proposed method cal-
culated the error (sum of squared residuals) between spectral data
y′ and the fitted function based on peak parameters after fine-
tuning. The calculated error shows how well the fitted model (the
number of peaks K and the peak parameters θ) based on a spectral
data D can explain another spectral data D′ by adjusting the per-
turbation due to the measurement device. That is, the calculated
error corresponds to the degree of dissimilarity between D and
D′. Hereafter, we denote it as the function d(D,D′) in this study.
d(D,D′) excludes the change in spectral shape depending on the
measurement device. This means that d(D,D′) is a dissimilarity
of the spectra based on the structure of the photoelectron peak
derived from the measured sample.

The proposed method applied the dissimilarity function
d(D,D′) to all pairs of M spectral data. As a result, we can ob-
tain that we can obtain the dissimilarity matrix G. Therefore, G
consists of the following elements:

Gi j = d(Di,D j), (1)

where G ∈ RM×M , Gi j ≥ 0. Then we apply the principal compo-
nent analysis (PCA) to the dissimilarity matrix G for visualiza-
tion. We used the computed principal component (refer to as PC)
to detect the contamination spectral data.

2.1 Formulation of Fine Tuning
This section describes the fine-tuning method to adjust vari-

ations in spectral shape depending on measurement device. Here,
we assume that {x, y} and {x′, y′} are the spectral data of the same
sample measured in different measurement devices. Therefore,
{x, y} and {x′, y′} are described by the same peak structure θ and
the number of peaks K. However, the peak structure is perturbed
due to differences in the measurement devices. Here, we define
the peak parameters θ = {hk, pk, wk}

K
k=1} as follows:

• hk: peak intensity
• pk: peak position
• wk: peak width
In this study, the perturbations are described as parameters δ.

In Fine Tuning, we optimize δ under the given {x′, y′} and θ. First,
in Step 1, we estimated the parameters {K, θ} from {x, y}. Given
the parameters {K, θ}, the proposed method applied fine-tuning to
other spectral data y′ = {y′n}

N′
n=1 as follows:

y′n ≈ fK,θ(x′n; δ′, a, b), (2)

≈ S K,θ(x′n; δ′) + B(x′n; a, b), (3)

where fK,θ(x′n; δ′, a, b) is the fitting function. S K,θ(x′n; δ′) and
B(x′n; a, b) mean the signal spectrum and the background, respec-
tively. In the calculation of the background B(xn; a, b), we ap-
ply Shirley method [5, 6]. The parameter x′n means the bind-
ing energy. Here, we define the adjusting components δ′ =
{η, µ, ω, {rk}

K
k=1} as follows:

• η: intensity adjustment
• µ: position adjustment
• ω: width adjustment
• {rk}

K
k=1: Lorentz-Gauss ratio (LG ratio) of each peak

• {a, b}: End-point intensity of the background
We assume that a sum of the pseudo-Voigt functions composes

the signal spectrum S K,θ(x′n; δ′) as:

S K,θ(x′n; δ′) =
K∑

k=1

ηhkV(xn; pk + µ, ωwk, rk). (4)

The pseudo-Voigt function V(xn; p, w, r) has three parameters p,
w, and r [7], where each parameter means the center peak posi-
tion, width and LG-ratio, respectively. In fine-tuning, the esti-
mating parameters is β = {δ′, a, b}, and determine β so that the
error function Eyy′ (β|θ,K) was minimized. The error function
Eyy′ (β|θ,K) is defined by the following equation:

Eyy′ (β|θ,K) =
1
N′

N′∑
n=1

{y′n − fK,θ(x′n; δ′, a, b)}2, (5)

where V(xn; p, w, r) is the pseudo Voigt function [7]. Spectral
data y′ were represented by adjusting a function based on the
parameter θ according to the model of device-derived pertur-
bations. If the error function Eyy′ (β|θ,K) is high in this anal-
ysis model, it means that the intrinsic structure is not similar.
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Fig. 2 14 artificial spectral data consisting of 10 normal spectral data and
4 spectral data with pseudo surface contamination. Black data are
normal, red/blue data are abnormal data with 10/20% contamination,
respectively.

The proposed method optimized parameters using the Levenberg-
Marquardt method [8] that is one of the gradient methods.

3. Results
In order to evaluate the performance of our proposed method,

we apply it to both the artificial and real spectral data sets.

3.1 Applying to an Artificial Spectral Data
We describe the generation of artificial spectral data. Artifi-

cial spectral data were generated on the basis of the pseudo-Voigt
function V(xn; pk + µ, ωwk, rk). This study generated 14 artificial
spectral data consisting of 10 normal spectral data and 4 spectral
data with pseudo surface contamination. The normal spectral data
was composed of a single peak with peak position p1 = 529.6
[eV]. In contrast, the abnormal spectral data was composed of
summed up the normal spectral data and a single peak with peak
position p2 = 530.8 [eV] as pseudo surface contamination.

We added the contamination peak, which has a 10% or 20%
area of the main peak area to the normal spectral. Here, we de-
termined that the peak width wk was 1.0. The peak shift µ, width
ω and LG ratio r by uniform random numbers in the range of
[−0.3, 0.3], [0.5, 1.0] and [0.0, 0.4], respectively. This represents
a change in the spectral shape depending on the measurement de-
vice. Figure 2 shows the artificial spectral data. As shown in
Figure 2, the black data is normal and the red / blue data are ab-
normal data with 10/20% contamination, respectively.

Here, we show results applying three methods to the artificial
spectral data. There were two simple methods and the proposed
method. Figure 3 shows the scatter plot of PC1 and PC2 when ap-
plying PCA to (a) a matrix of raw spectral data, (b) a matrix of the
correlation coefficient of the raw spectra C and (c) the dissimilar-
ity matrix proposed by us. The matrix of correlation C consists of
the elements Ci j = c(y(i), y( j)), where c(y(i), y( j)) is the correlation

coefficient of y(i) and y(i). The correlation coefficients are simple
metric values that calculate the similarity of the vectors.

In Figure 2, the gray data points are normal spectral data. The
red / blue data points are abnormal data with 10/20% contamina-
tion. As shown in Figure 3 (a) and (b), the simple method did not
allow us to separate normal spectral data (gray data point) and
spectral data with pseudo contamination (red / blue data points).
This is because we do not consider the change in a spectral shape-
derived measurement device. In contrast, as shown in Figure 3
(c), the proposed method can separate normal spectral data and
abnormal spectral data with pseudo contamination clearly. There-
fore, the proposed method is useful for detecting abnormal spec-
tral data with contamination from multiple XPS spectral data.
This investigation shows that the proposed method classifies the
XPS spectral data on the basis of the intrinsic peak structure in-
dependent of the measurement device.

3.2 Applying to the Real Spectral Data
This section describe the real XPS spectral data applying the

proposed method. We obtained 15 Ti2p XPS spectral data that
are supposed to be pure TiO2 from the literature [9–21]. Figure 4
shows the real XPS spectral data of TiO2 from various literature.
As shown in Figure 4, it is confirmed that the variation in peak
position and peak shape depending on differences in energy res-
olution and differences in calibration of the energy axis despite
spectral data from the same compound. The purpose of this sec-
tion is to classify the measured TiO2 spectral data independent of
the perturbation component from the measurement device.

We show results applying the proposed method to 15 Ti2p XPS
spectral data of TiO2 from literature. Here, PC1 and PC2 can
explained about 88% of the dissimilarity matrix G from the ex-
plained variance ratio, and thus we consider PC1 and PC2 in this
study. Figure 5 shows a scatter plot of PC1 and PC2. In Fig-
ure 5, each data point corresponds to each XPS spectral data of
TiO2. As shown in Figure 5, it is divided 15 spectral data into two
groups: the minority group and the majority group.

4. Conclusion
Our purpose was to develop a clustering method for spectral

data independent of the measurement device. In this study, we
introduced an analytical model that separates the photoelectron
peaks and the perturbation due to measurement device, and pro-
posed a method to calculate the similarity between the spectra.
The proposed method allowed to classify spectral data based on
similarity of intrinsic spectral structures, which is independent of
the perturbation component from the measurement device. In this
paper, we show two investigations: applying the proposed method
to artificial spectral data and the real spectral data. In the arti-
ficial spectral data analysis, we shows that the proposed method
detected spectral data having pseudo contamination. This cluster-
ing method can be expected to be used to detect surface contam-
ination and sample heterogeneity for material development and
quality control in industry.
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Fig. 3 Scatter plot of PC1 and PC2 when applying PCA to (a) a matrix of raw spectral data, (b) a matrix
of the correlation coefficient of raw spectra C and (c) the dissimilarity matrix calculated by the
proposed method. Gray data pints are normal spectral data and red/blue data points are abnormal
data with 10/20% contamination respectively.

Fig. 4 Ti 2p XPS spectral data of TiO2 from various literatures. Spectral
data (a) to (o) from 15 literature sources [9–21].

Fig. 5 Scatter plot of PC1 and PC2 when applying PCA to the dissimilarity
matrix calculated by the proposed method in real XPS spectral data
of TiO2.
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