
Using Real Data to Animate SOFL Formal Specifications
Automatically

Mo Li and Shaoying Liu

Faculty of Computer and Information Sciences, Hosei University

mo.li.3e@stu.hosei.ac.jp and sliu@hosei.ac.jp

Abstract

To ensure the quality of final software products, it is very important to verify and validate the formal

specifications before their implementation. Specification animation is realized as a very useful technique for

verification and validation. It provides the end user with an intuitive way to observe the behavior of the

software system described in specification. In this paper, we propose an approach to animate the specifications

written in Structure Object-oriented Formal Language (SOFL). The animation strategy underlying this

approach is using system functional scenario as a basic animating unit and using data as connection to connect

each independent operation involved in one system functional scenario. We describe this strategy and the

process of using it in practice. And a prototype that support this approach is shown at the end of the paper.

1. Introduction
To ensure the quality of final software products, it is

very important to verify and validate the corresponding

formal specifications before their implementation.

Formal specification animation is realized as an

effective technique for specification verification and

validation. It provides an intuitive way to the end user to

monitor behaviors described in the specification, and it

is helpful for the end user to understand the system.

Several tools have been built to support animating

formal specifications written in different formal

languages, such as ANGOR[1], and B-Model

animator[2]. Most of them require a translation from a

formal language to an executable programming language

in order to achieve a full automation. But the translation

may impose many restrictions to the style of the

specifications written in a formal notation and this

would bring inconvenience to the developer.

In this paper, we describe an automatic approach for

SOFL[3] specification animation. There is no

restrictions to the language or style of specifications. In

this approach, the end user can animate the specification

on the Conditional Data Flow Diagram (CDFD, a part of

SOFL specification) directly. The animation strategy

underlying this approach is using system functional

scenario as basic animating unit and using data as

connection to connect each independent operation

involved in one system functional scenario. System

functional scenario is used as the basic unit of an

animation since it describes a specific behavior of the

system. To ensure that the entire specification will be

animated, all of the system functional scenarios defined

in the specification will be animated.

Formally, a system functional scenario can be defined

as a sequence of operations that processes a group of

input data to a group of output data, and each operation

in scenario is connected by intermediate data. In an

animation, real data are used to connect all operations in

the scenario instead of the intermediate data. The user

can select to provide the data themselves or let the data

be generated automatically. If the user selects to provide

the data for animation, they usually provide the most

typical data of the system. Meanwhile, the user need to

guarantee that the provided data satisfy the pre- and

post-conditions of the corresponding operations. If the

user wants to let the data be generated automatically, a

data generation method would generate the data that

satisfy the pre- and post-conditions. But the generated

data may not present the specific circumstance the user

wants to animate.

2. Animation Strategy and Process
As mentioned previously, we use the system

functional scenario as the basic animating unit.

Theoretically, a system scenario defines a specific

operational behavior through a sequential executions of

operations, which is usually presented to end users as a

pair of input and output. That is, given an input, the

result of a behavior of the system results in a certain

output. For example, Fig. 1 shows the CDFD of a

simplified ATM with only two functions. Totally five

scenarios are defined in the specification, and one of

them is listed as follow. Given the input "withdraw", the

output "cash" is processed by consequentially executing

three operations.
 {withdraw_com}[Receive_Command,

Check_Password, Withdraw]{cash}

Each independent operation involved in the scenario

is connected by intermediate data. To animate a specific

system scenario, the real data are used to connect all

operations instead of the intermediate data. Since the

data are restricted by the pre- and post-conditions of

each operation, the data present a real environment of

the behavior. The end user can observe the behavior of

system by monitoring the data, and the data provide a

concrete point of views of the behavior.

Fig. 1. CDFD of a Simple ATM

The data can be collected in two ways. One way is to

let the user provide the data. And the other way is to

generate data automatically. The generation method

does not require translating the formal specification to

any executable program, but the generated data may not

present the typical circumstance of the system. The data

generation method is first introduced in [4], and we will

not explain it further for the sake of space.

According to the strategy described above, we suggest

the following process for animation in practice.

Step 1: Derive all possible system scenarios from the

formal specification.

Since more than one system scenarios are usually

defined in the specification, it is necessary to derive all

possible system scenarios for animating the entire

specification.

To help the reader to understand the second step, we

first define the term operation functional scenario as

follow.

Let P(Piv, Pov)[Ppre, Ppost] denote the formal

specification of an operation P, where Piv and Pov are the

sets of all input and output variables. Ppre and Ppost are

the pre and post-condition of operation P, respectively.

Let Ppost ≡ (C1  D1)  ...  (Cn  Dn), where each Ci is a

predicate that contains no output variable and i, j

{1, ..., n}•i ≠ j  Ci  Cj = false; Di contains at least

one output variable. Then, a specification of an

operation can be expressed as (~Ppre  C1  D1)  ... 

(~Ppre  Cn  Dn). A conjunction ~Ppre  Ci  Di is

called an operation functional scenario.

Step 2: Let di[P1, ..., Pn]do be a selected system

scenario. Derive related operation scenarios of each Pi(i

{1, ..., n}) from its specification and get a set of

operation scenarios {S1, ..., Sn}, where Si is the related

operation scenario of Pi.

In animation, the operation scenario of each operation

involved the animated system scenario should be

derived from the specification for collecting data. As the

start point, the input data of the first process in the

system scenario should be collected first.

Step 3: Let ~P1
pre  C1

i  D1
i be the related operation

scenario of the first operation P1 in the selected system

scenario. The input data should be collected and satisfy

the predicate expression ~P1
pre  C1

i.

The input data collected in Step 3 is actually the input

of the selected system scenario. It can be used as the

basis to collect output data of P1, which is actually the

input data of P2. Repeating this procedure, the output

data of the entire system scenario can be collected

eventually. This idea is reflected in Step 4.

Step 4: Use the input data generated in Step 3 and the

operation scenarios derived in Step 2 to generate the

output data for each operation and entire system

scenario.

Animating all possible behaviors is required in our

animation strategy. The process of animating one

behavior should be repeated until all of the behaviors

have been animated.

Step 5: Repeat Step 2 to Step 4 until all the system

scenarios derived in Step 1 are animated.

3. Prototype
The prototype is implemented on the basis of a

framework that is built to help developers specifying

SOFL specification. The framework includes the editors

of specification and CDFD. Fig. 2 shows the snapshot of

animation board. For now, this prototype can only

accept the data provided by user. Implementing the data

generation method will be our next step.

Fig. 2. Animation Board

References

[1] Pierre Combes, Fabrice Dubois, and Beatrice

Renard. An open animation tool: application to

telecommunication systems. The International

Journal of Computer and Telecommunications

Networking 40(5). pages 599-620. 2002

[2] Waeselynck, H., and Behnia, S.. B model

animation for external verification. Proceedings of

the Second IEEE International Conference on

Formal Engineering Methods. pages 36-45. 1998

[3] Shaoying Liu.: Formal Engineering for Industrial

Software Development Using the SOFL Method.

Springer-Verlag, ISBN 3-540-20602-7. 2004

[4] Mo Li, Shaoying Liu. Automated Functional

Scenarios-based Formal Specification Animation.

Proceedings of the 19th Asia-Pacific Software

Engineering Conference (APSEC 2012). IEEE CS

press, pages 107-115. 2012

