 Winning Strategy of the Memory Game

Masato SHINODA
Nara Women’s University

We study the winning strategy of the Memory Game. In 1993, Zwick and Paterson showed that idle plies are effective for the purpose of maximizing the expected gain. In this paper, we show that idle plies are effective also for the purpose of maximizing the probability of winning the game, and we calculate the probability in some special cases.

1. 概要

The Memory Game（絵合わせ、あるいは「神経衰弱」）はよく知られたゲームである。その数学的側面の紹介記事としてStewart[1]、篠田 [2] がある。ここでは以下のような設定を考える。

(a) 1,1,2,2,3,3,...,N,N の数字のついた、全部で2N 枚のカードを用いる。最初に、すべてのカードを手に持つ。

(b) 先手番（プレイヤー P1 ）、後手番（プレイヤー P2 ）の2人のプレイヤーでゲームを行う。手番のプレイヤーはカードを1枚選んで表向きにする。さらにカードをもう1枚選び、先に選んだカードと同様数字であれば手からその2枚を取りる。このとき手番は移動せず、同じプレイヤーが再びカードを表向きにしていく。選んだ2枚のカードの数字が異なればその2枚のカードは場に裏向きで戻し、手番は相手に移る。

(c) 場のカードがなくなった時点で、多い枚数のカードを取っているほうが有利である。取ったカードの枚数が等しいときは引き分けである。

(d) いつまでも取れないカードが残ったままの場合、それまでに取った枚数の多いほうが勝ち、同数ならば引き分け、とする。

(d) のルールの必要性について後ほど説明する。さらに、ここでは「プレイヤーの記憶力は完璧である」ことを仮定しよう。すなわち、2 人のプレイヤーはそれまでに一度でも表向きにしたカードの数字をすべて記憶しているものとする。すると、単純な戦略として次の策が考えられる。

2. 戦略：手番のプレイヤーはまず今まで表向きにした、ことのないカード（以後「未知のカード」と呼ぶことにする）を1枚表向きにする。このとき、そのカードと同じ数字のカードが既に表向きにされた場合があるため（以後「既知のカード」と呼ぶ）それを2
枚目に再度表向きにして取る。もし同じ数字のカードが既知のカードでなければ、未知のカードをもう
1枚表向きにする。

この戦略は、とりあえず未知のカードを1枚表向きにし、もしその数字が初めて出たものであれば新
たな未知のカードを表にして偶然に賭けるという意味であり、実際のゲームでも多く用いられていると
思われる。ところが、この戦略が必ずしも最善とは限らないことが次の例で言える。

例1：$N = 4$ (1, 1, 2, 2, 3, 3, 4, 4 のカードを使用）で、P_1 が最初に 1, 2 を開けたとする。P_1 がま
ず未知のカードを開けたところ 2 であり、そこで既
知の 1 を開けて取り、続いて P_2 が 3 を開いた局面
を考える (i)。ここで P_2 がさらに未知のカードを
開け、それが 4 である (この確率は 2/4) ならば P_1
が 2, 3, 4 のカードをすべて取って P_1 の勝ちとな
ってしまう。また、それが 2 である (この確率は 1/4)
ならば、P_1 は自分の手番ですぐ 2 を取ることができる。そこで、(i) の場合で P_2 はリスクを避け、敢
えて既知の 2 を開け (パスをする) P_1 に手番を渡
す戦略が考えられる。このとき、リードされている
P_1 は 2-戦略を採るのが最善となる。簡単な
計算により (i) の場合で P_2 について

- 未知のカードを開けると勝つ確率が 1/4、引き
 分けの確率が 1/12、負ける確率が 2/3
- パスすると勝つ確率が 1/2、負ける確率が
 1/2

であり、パスが有効であるとわかる。

この例のようなパスを用いる戦略を、以下の 2
通りに分類する。

1-戦略：手番のプレイヤーはまず未知のカードを1
枚表向きにする。このとき、そのカードと同じ数字
のカードが既知のカードであればそれを 2 枚目で再
度表向きにして取る。もし同じ数字のカードが既知の
カードでなければ、別の既知のカードを 1 枚表向
きにし、相手に手番を渡す。

0-戦略：手番のプレイヤーは既知のカードを 2 枚表
向きにし、相手に手番を渡す。

すなわち、1-戦略と0-戦略では、プレイヤーは
カードが取れないと知りつつわざと既知のカードを
表向きにして、相手に手番を渡す代わりに余計な情報
を与えないようにする。ルールの (d) は、両者とも
に 0-戦略を取った場合の勝敗判定法を与えている。

簡単な帰結として、「それまでに取ったカードの枚
数が少ないプレイヤーは0-戦略を選択できない」こ
とが言えるため、両者 0-戦略を取って (d) が適用さ
れるのは引き分けの場合のみとなる。本研究では
2-戦略、1-戦略、0-戦略の 3 つについてのみ考察す
る。これ以外の戦略については第 4 節で述べる。

Zwick-Paterson[3] において、各状態における「手
番側が取るカード枚数」 - 「相手が取るカード枚数」
の期待値が最大となるような戦略が考察されている。

戦略の選択は残りカード枚数および既知のカード枚
数によって定まる。[3] の主結果は以下の通りであ
る。

定理 A （Zwick-Paterson）1, 1, 2, 2, , n, n の 2n 枚
のカードが場にあり、そのうち 1, 2, , k (0 < k < n − 1) が1枚ずつ既知である局面を考え
る。
(i) $k \geq \frac{2(n+1)}{3}$ かつ $n + k$ が奇数であるとき、0-戦
略が最善である。
(ii) $k \geq 1$ かつ $n + k$ が偶数であるとき、あるいは
$(n, k) = (6, 1)$ であるとき、1-戦略が最善である。
(iii) 上記 (i)(ii) 以外の場合は、2-戦略が最善であ
る。

定理 B （Zwick-Paterson）定理 A と同じ局面で「手
番側が取るカード枚数」 - 「相手が取るカード枚
数」の期待値を $E(n, k)$ とするとき、$N \rightarrow \infty$ にお
いて
(i) N が奇数のとき、$E(N, 0) = \frac{1}{N^{2}} + O(N^{-3})$。
(ii) N が偶数のとき、$E(N, 0) = -\frac{1}{N^{2}} + O(N^{-3})$。

注意：初期局面からの優劣や期待値を述べるべきは
常にカード枚数を 2N 枚と大文字で表記している。
すなわち、$E(N, 0)$ はゲームの初期状態から「先手
が取るカード枚数」 - 「後手が取るカード枚数」
の期待値を表している。

すなわち、手番側が取るべき戦略は $n + k$ の偶奇
に強く依存し、また初期状態での先手後手の優劣は
N の偶奇に依存して決まることがわかる。

本研究では、ゲームに勝つときの取得ポイントを
1、引き分けのときの取得ポイントを 1/2 とし、取
得ポイントの期待値を最大とする戦略について考察
する。[3] の場合と異なる、この戦略選択は「残り
カード枚数、既知のカード枚数に加えて「その時点で互いの取ったカード枚数」にも依存する。そこで、定理Aの仮定同様に場の残り枚数が2n枚、そのうち1, 2, ..., kのk枚が既知のカードであり、さらにそれまでに取った手番側と相手のカード枚数の差が2n枚である（s > 0 なら手番側の取った枚数のほうが多い）としたときの選択すべき戦略をS(n, k, s)と書くことにする。例えばS(3, 1, 1) = 1である（これは例1の場合に該当する）、Sはn, k, sの値により複雑な挙動を示す。例として、n = 4, 5の場合を表に示す。

表1 n = 4 のときの戦略選択

<table>
<thead>
<tr>
<th>k \ s</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

表2 n = 5 のときの戦略選択

<table>
<thead>
<tr>
<th>k \ s</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

この表からもわかるように、0, 1, 2戦略の選択にはn, kの偶奇性が関係していると予想される。ただし、s ≥ 0であると部分的に0戦略が現れ、選択を複雑にしている。

また、上記の状況での手番側の取得ポイントの期待値をf(n, k, s)で表することにする。例えばf(2, 0, 0) = 1/3, f(2, 1, 0) = 2/3である。各手番で未知のカード枚数は非増加であるため、fの値はnが小さくkの大きい場合から順次定まっていくことに注意しておく。定義からf(n, k, s)はsについて単調非減少であり、s < nならばf(n, k, s) = 0, s > nならばf(n, k, s) = 1, またf(n, n, s) = 1 (s > -n) も同様である。このf(n, k, s)においても、例としてn = 4, 5の場合を表に示す。これならもn, k, sについて複雑な挙動を示し、例えばf(4, k, 1)はkに関して単調非減少であるがf(4, k, 0)はそうではない。

表3 n = 4 のときの f(n, k, s) の値

<table>
<thead>
<tr>
<th>k \ s</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>29</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
</tbody>
</table>

表4 n = 5 のときの f(n, k, s) の値

<table>
<thead>
<tr>
<th>k \ s</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41</td>
<td>57</td>
<td>133</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>57</td>
<td>133</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

本論文では、特にkが大きい（k ≥ n - 2）場合についての最善の戦略を決定し、f(n, k, s)の値を求めている（命題3-4，第2節）。また、他の場合における戦略選択についての予想を述べ（第3節）、最後に0, 1, 2戦略以外の戦略の可能性について述べる（第4節）。

2. 戦略の選択と決定

プレイヤーが0, 1, 2戦略を決定するにあたり、いくつか重要な関係式について述べる。まず、手番側のプレイヤーが0, 1, 2戦略を取るときのポイントの期待値は、カードを順に選ぶ確率からそれぞれ以下のようになる発表される。

\[f_0(n, k, s) = 1 - f(n, k, -s), \]
\[f_1(n, k, s) = \frac{k}{2n - k} f(n - 1, k - 1, s + 1) \]
\[+ \frac{2n - 2k}{2n - k} (1 - f(n, k + 1, -s)), \]
\[f_2(n, k, s) = \frac{k}{2n - k} f(n - 1, k - 1, s + 1) \]
\[+ \frac{2n - 2k}{2n - k} g(n, k, s). \]

ただし

\[g(n, k, s) = \frac{1}{2n - k - 1} f(n - 1, k - s + 1) \]
\[+ \frac{k}{2n - k - 1} (1 - f(n - 1, k - s + 1)) \]
\[+ \frac{2n - 2k}{2n - k} (1 - f(n, k + 2, -s)). \]
ここで、以下のことを注意しておく。

・上の関係式では、どちらのプレイヤーももし確実に取れるカードがあればすぐに取るものとなっている。

・プレイヤーが0戦略を取るためには \(k \geq 2 \) が、1戦略を取るためには \(k \geq 1 \) が必要である。

・ \(s < 0 \) のとき0戦略は無効である。

プレイヤーの取るべき戦略は

\[
f_j(n, k, s) = \max \{ f_0(n, k, s), f_1(n, k, s), f_2(n, k, s) \}
\]

をみたす \(j \) を選ぶことによって決定される。特に、1戦略と2戦略の比較は \((1 - f(n, k + 1, -s)) \) と \(g(n, k, s) \) の大小によって決まる。

簡単にする事実を2つ挙げる。

命題1 まず次のとき

\[
f(n, k, s) + f(n, k, -s) \geq 1.
\]

特に \(k \geq 2, s \geq 0 \) のとき \(f(n, k, s) \geq 1/2 \) である。

証明： \(k \geq 2 \) であるので0戦略が実行可能であり、

\[
f(n, k, s) \geq f_0(n, k, s) = 1 - f(n, k, -s).
\]

この式で \(s = 0 \) を代入すると \(f(n, k, 0) \geq 1/2 \) が得られる。

命題2 \(f(N, 0, 0) \to 1/2 \ (N \to \infty) \) である。

証明： 命題1より、まず \(f(N, 0, 0) \) の上からの評価について

\[
f(N, 0, 0) = \left(\frac{1}{2N - 1} \right)^2 f(N - 1, 0, 1) + \frac{2N - 2}{2N - 1} \left(1 - f(N, 2, 0) \right)
\leq \frac{1}{2N - 1} \times 1 + \frac{2N - 2}{2N - 1} \times \frac{1}{2}
= \frac{N}{2N - 1} \to \frac{1}{2}.
\]

\(f(N, 0, 0) \) の下からの評価については、初期局面からプレイヤー \(P_1, P_2 \) の手番がそれぞれ終了し、次に \(P_1 \) の手番となった時点では、必ず手の2枚以上が既知のカードとなっていないことに注意し、命題1を用いればよい。すなわち、\(P_1, P_2 \) ともにカードを取れず再び \(P_1 \) の手番となる確率が少なくなることを意味する。

\[
f(N, 0, 0) \geq \left(\frac{2N - 2}{2N - 1} \right)^2 \times \left(\frac{2N - 2}{2N - 1} \right) \times \frac{1}{2} \to \frac{1}{2}
\]

と示すことができる。

命題2から、十分カード枚数が多ければこのゲームは公平に近いものであると言える。ただし、1/2との大小比較については簡単ではない。参考のため、\(N \) が小さいときの \(f(N, 0, 0) \) の値を表にまとめしておく。

<table>
<thead>
<tr>
<th>(N)</th>
<th>(f(N, 0, 0))</th>
<th>(N)</th>
<th>(f(N, 0, 0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.46667</td>
<td>1</td>
<td>0.49524</td>
</tr>
<tr>
<td>2</td>
<td>0.48946</td>
<td>2</td>
<td>0.50007</td>
</tr>
<tr>
<td>3</td>
<td>0.50478</td>
<td>3</td>
<td>0.50106</td>
</tr>
<tr>
<td>4</td>
<td>0.50254</td>
<td>4</td>
<td>0.50107</td>
</tr>
<tr>
<td>5</td>
<td>0.50097</td>
<td>5</td>
<td>0.50016</td>
</tr>
<tr>
<td>6</td>
<td>0.50005</td>
<td>6</td>
<td>0.49904</td>
</tr>
<tr>
<td>7</td>
<td>0.50008</td>
<td>7</td>
<td>0.49901</td>
</tr>
<tr>
<td>8</td>
<td>0.49933</td>
<td>8</td>
<td>0.49901</td>
</tr>
</tbody>
</table>

この表から、以下のように予想する。

予想12 \(N \) 枚のカードによる神経衰弱では、\(N \) の十分大きいとき、\(N \) が奇数なら後手有利、\(N \) が奇数なら先手有利である。

この予想は第1節で紹介した定理Bと同様である。現時点ではまだ数学的証明を得ていないが、近い将来示せるものと考えている。

3. 既知のカードが多い場合

解析が比較的容易な場合として、\(k = n \) に近いときを考えよう。第1節でも述べたように、\(k = n \) のときは、手番側は2戦略以下すべてのカードを取ることができるので \(f(n, n, s) = 1 \) （\(s \geq -n \)）である。次に \(k = n - 1 \) の場合を考える。このとき、1戦略が無効であることは明らかである。前節で述べた通り、\(s < 0 \) ならば2戦略を用いるより良い。結局、\(s \geq 0 \) の場合に0戦略を用いるべきかどうかのみが問題となるが、以下がわかる。
命題 3 $n \geq 3$ とする。$0 \leq s \leq n - 2$ ならば $S(n, n - 1, s) = 0$, $-n \leq s \leq -1$ または $s = n - 1,n$ では $S(n, n - 1, s) = 2$ である。このとき,

$$f(n, n - 1, s) = \begin{cases}
\frac{1}{n + 1} & (s = -n), \\
\frac{n + 1}{n + 1} + \frac{s(s - 3)}{2n(n + 1)} & (-n + 2 \leq s \leq n), \\
\frac{1}{2} + \frac{s}{n + 1} + \frac{s(s + 3)}{2n(n + 1)} & (0 \leq s \leq n - 3), \\
\frac{n - 1}{n + 1} + \frac{s(s - 2)}{n(n + 1)} & (s = n - 2), \\
\frac{n^2 - n + 2}{n + 1} & (s = n), \\
\frac{n(n + 1)}{n(n + 1)} & (s = n + 1).
\end{cases}$$

この命題の証明は、まず1-戦略を繰り返し用いた場合の $f(n, n - 2, s)$ の期待値を計算し、0 または2-戦略ではこの値を超えないことを示して得られる。なお、命題では $s \neq 0$ のときは $f(n, n - 2, s)$ の n に関する漸近挙動のみを示しているが、実際には (ii) 同様に具体的な表示を得ることができる（ただし s, s の偶奇、s の正負による場合分けが必要で煩雑なためここでは省略している）。

この命題で特に重要な点は、$n \to \infty$ で $f(n, n - 2, 0) \to 17/24$ が1/2を大きく超えた値に収束することである。$f(n, n - 2, 0) \to 1/2$ となるのは $\alpha = -0.1575 \ldots$ のときであり、これは既知のカードが $n - 2$ 枚ある局面では手番を握ることが（多少のカード枚数の不利よりも）重要であることを示している。これは以下のよう説明される。$k = n - 1$ の局面では、$s \geq 0$ であるときのほとんどで0-戦略を用いる。つまり、パースを相手手番を渡すことになるので、どちらの手番であるかはあまり重要ではない（結局負けても用が定められたカードを開けさせられる）。従って、$k = n - 2$ の局面では1枚開けて外れのカードであっても、そこで手番を渡せばダメージを受けない。すなわち、$k = n - 2$ のときは「外れが出るまで1-戦略を採用する」ことが可能となる。n が十分大きくなければ外れが出る確率が低いため、ここで大きくカード番数を積むことができ、勝負確率が高くなる。

以上のように、$k = n - 1$ は「手番の価値が低い」，$k = n - 2$ は「手番の価値が高い」と言える。すると、$k = n - 3$ では手番側は1-戦略よりも2-戦略を選びがべくと言える：なぜなら、1-戦略では相手にわずかず「手番の価値が高い位置」で手番を渡すことになるからである。$k = n - 4$ では逆に、2-戦略を採ると相手に$k = n - 2$ で手番を渡す可能性が生じるために1-戦略を採用することになる。こうした繰り返しにより、$n - k$ の偶奇（$n + k$ の偶奇と同じ）によって戦略の選択が変わるものと考えられる。ただしはりs の値に関係する（特に2-戦略と0-戦略の選択）ため、一筋では証明できない。参考として、$n = 15, 16$ のときの戦略の選択を Appendix に示しておく。
4. 特殊な戦略

前節までに、0.1.2-戦略の選択について考察した。これら3つ以外の戦略が考えられないかどうかについて述べる。なお、[3]においてもすでに0.1.2戦略のみが考察され、他の戦略については文末の注釈という形でGerecz[4]を引用して言及している。

例2：ゲームの途中で1, 1, 2, 3, 3の6枚が残り、1のカードが1枚既知であるとし、ここまでの2人のプレイヤーP1, P2の取ったカード枚数は同じであるとする。ここでP1が未知のカードを開けたところ1であった(*).ここで既知の1を開けて取ると、P1の取得ポイントの期待値は\(f(2,0,1) = 1/3 \)である。ところが、(*)の局面で既知の1を敢えて開けず張りと別の未知のカードを開けて手番をP2に渡すと、P3は既知の2枚を取ることができるので、結局このときのP1の取得ポイントの期待値は1 - \(f(2,1,1) = 1/3 \)と変わらない。

この例は、「カードが取れる状況でわざと取らない」という戦略が一概に否定できないことを示している。ただし、これはカードの残り枚数が少ないために起こった特殊な状況でも考えられる。そこで、新しい戦略を以下のように定義する。

\(x \)-戦略：自分の手番のときに未知のカードを1枚開け、それが既知のカードの1つと一致したときに敢えて別の既知のカードを開ける。

\(y \)-戦略：自分の手番のときに未知のカードを1枚開け、それが既知のカードの1つと一致したときに敢えて別の未知のカードを開ける。

前節まででは、1-戦略および2-戦略では既知のカードと一致したら取ることを前提としていた（第2節の仮定(*)）。また、「カードを取れる状況」がもう一つあることに注意し、次の戦略も定義する。

\(i \)-戦略：自分の手番において既知のカードの中に同種のカードが2枚あるとき、敢えて同種のカードを取らないで別のカードを開ける。

こちらも、前節までではまず同種のカードを取ることを前提としていた。こうした\(x,y,i \)-戦略は一見不自然であり、ほとんど実用はないとと思われる。

予想2 \(x,y,i \)-戦略が真に有効である局面は存在しない。

ここで、「真に」と言う意味は \(x,y,i \)-戦略を用いると、用いないときに比べて取得ポイントの期待値が正値増加することを意味している。上で述べた例2は \(y \)-戦略を用いても期待値は（変わらないが）増加していないので、この予想とは矛盾していない。

この予想に関する部分的結果を述べる。場の残りカードが1, 1, 2, ..., n, nの2n枚とする。そのうち既知のカードが1, 1, 2, ..., p, p, p + 1, p + 2, ..., p + k, すなわち既知のカードで同種のものがp種、残りの既知のカードがk枚であるとする。それまでに取った自分と相手のカード枚数の差は2s枚であるとし、このときの手番側の取得ポイントの期待値を\(f(p)(n, k, s) \)で表すことにする。\(p = 0 \)ならば今までに同様に\(f(n, k, s) \)で表す。

命題5
(i) \(x \)-戦略は、\((p, k) = (0, 2) \)または\((1, 1) \)でなければならない。
(ii) \(y \)-戦略は、\((p, k) = (0, 2) \)または\((1, 1) \)でなければならない。
(iii) \(p \geq 3 \)のとき、\(f(p)(n, k, s) = f(p-1)(n-1, k, s+1) \)である。

証明：(i)の\(p = 0 \)の場合について示す。\(k \geq 3 \)とする。プレイヤーP1が1枚目前に未知のカードの数字が既知のカードの1つと一致したとき、\(P_1 \)がそのカードを取り、引き続いて1-戦略を用いるとすれば\(P_1 \)から見た期待値は1 - \(f(n-1, k-1, s+1) \)となる。これに対し、\(P_1 \)が\(x \)-戦略を採るすれば、\(P_2 \)がそのカードを取ることができるのだから\(P_1 \)から見た期待値は1 - \(f(n-1, k-1, s+1) \)以下となる。

\(f(n-1, k-1, s+1) \leq f(n-1, k-1, s+1) \)であるから、この場合に\(x \)-戦略は真に有効とはならない。(i)の\(p \geq 0 \)のとき、また(ii), (iii)についてこ、単に\(x,y,i \)-戦略を用いた場合と、取れるカードを取った後で対応する戦略を用いた場合とを比較すれば示すことができる。

簡単に出すと、\(k = 0 \)になるとパス戦略が使えないので、手番を渡して相手にカードを与えてもパス戦略を使う権利は保持していた。このように\(x,y,i \)-戦略の意図である。従って、元の状態で\(k \geq 3 \)や\(p \geq 3 \)のように既知のカードが十分あればわざわざ

\((p, k) = (0, 2) \)または(1, 1)のときは真に有効であると言っているわけではない。
5. まとめと今後の課題

この論文では、プレイヤーの記憶力が完璧である場合の「神経衰弱」に関してパス戦略が有効であることを示し、既知のカード枚数が多い場合についてポイントの期待値を具体的に計算した。今後の課題としては、まず0,1,2戦略だけを考えれば十分であることを（予想2）を数学的に証明し、0,1,2戦略からどの戦略を選択すればよいかをすべての局面について決定し、カード枚数が多いときの先手後手の優劣を決定する（予想1）ことである。

また、ルール設定を変更したゲームにも興味がある。例えば引き分けの場合の取得ポイントを1/3をすること、あるいは同等点の場合は先手（または後手）勝ちとして「引き分けを避ける」設定も考えられる。さらに、実際のゲームと関連付ければ、プレイヤーの記憶が不完全である場合についても同様の問題が考えられる。

参考文献

□ □ □
Appendix

表 6 $n = 15$ のときの戦略選択

<table>
<thead>
<tr>
<th>$k \backslash s$</th>
<th>-15</th>
<th>$-14 \sim -1$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

表 7 $n = 16$ のときの戦略選択

<table>
<thead>
<tr>
<th>$k \backslash s$</th>
<th>-16</th>
<th>$-15 \sim -1$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>