
Improved Computation of Bounds for Positive Roots of Polynomials

Masami Takata1, Takuto Akiyama2, Sho Araki3, Kinji Kimura4, and Yoshimasa Nakamura5
1Academic Group of Information and Computer Sciences, Nara Women’s University,

Kita-Uoya-Nishi-Machi, Nara 630-8506, JAPAN
2345Graduate School of Informatics, Kyoto University,
Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, JAPAN

1takata@ics.nara-wu.ac.jp, 2akiyama@amp.i.kyoto-u.ac.jp, 3araki@amp.i.kyoto-u.ac.jp,
4kkimur@amp.i.kyoto-u.ac.jp, 5ynaka@i.kyoto-u.ac.jp

Abstract— A new lower bound for computing positive roots
of polynomial equations is proposed. We discuss a two-
stage algorithm for computing positive roots of polynomial
equations. We employ the new bound to accelerate the con-
tinued fraction method based on Vincent’s theorem. Finally,
we conduct experiments to evaluate the effectiveness of the
proposed lower bound.

(This paper is submitted to PDPTA’13.)

Keywords: continued fraction method, Vincent’s theorem, local-
max bound, Newton’s method, Laguerre’s theorem

1. Introduction
The real roots of univariate polynomial equations are more

useful than the imaginary roots for practical applications in
various engineering fields. Thus, the objective of this study
is the computation of all real roots of polynomial equations.
For this purpose, we develop a real-root isolation algorithm.
For polynomial equations without multiple roots, each root
can be isolated into a numeric interval. Then, the accuracy
of the isolated real roots can be easily enhanced by using a
bisection method.

The continued fraction method for isolating the positive
roots of univariate polynomial equations is based on Vin-
cent’s theorem [2], [10]. In this method, each positive root is
isolated using Descartes’ rule of signs [3], which focuses on
the coefficients of the polynomial equations. The execution
of Descartes’ rule of signs requires origin shifts.

To accelerate the continued fraction method based on
Vincent’s theorem, the lower bound of the smallest positive
root is required. In general, to obtain the lower bound of
positive roots of a polynomial equation, we first substitute
1/x for x in the polynomial equation f(x). Second, we
compute the upper bound of the positive roots. Third, we
obtain the lower bound by computing the inverse of the
upper bound. The Cauchy bound [9] and the Kioustelidis
bound [6] are known as upper bounds of the positive roots of
polynomial equations. Akritas et al. introduced a generalized
theorem including the Cauchy bound and the Kioustelidis
bound [1]. Then, by specializing this generalized theorem,
they proposed a new upper bound called the local-max

bound, which is different from both the Cauchy bound and
the Kioustelidis bound.

In this paper, we propose a new lower bound for accel-
erating the continued fraction method based on Vincent’s
theorem.

2. Positive Roots of Polynomials
To compute the positive roots of a polynomial equation

f(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0, (1)
x ∈ R, ai ∈ Z,

in the interval x ∈ (0,∞), we first isolate each root into a
numeric interval. Second, we improve the accuracy of the
real roots by using a bisection method. Here, the intervals
are defined by,

x ∈ [a, b], x ∈ (a, b] or x ∈ [a, b), a, b ∈ R, a ≤ b, (2)

where [, ], (, ] or [, ) denote a closed interval, a left-open
right-closed interval, and a left-closed right-open interval,
respectively.

3. Continued Fraction Method based
Vincent’s Theorem for Isolating Positive
Roots
3.1 Concept

In the continued fraction method based on Vincent’s
theorem, real roots in (0,∞) can be isolated using the
Descartes’ rule of signs.

Descartes’ rule of signs is derived from the following
theorem.

Theorem 1 (The Descartes’ rule of signs): In a polyno-
mial equation

f(x) = a0x
n + · · ·+ an−1x+ an = 0,

x ∈ R,

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan 1

Vol.2013-MPS-94 No.8
2013/7/22



with real coefficients,

W := the number of “changes of sign” in the list of
coefficients{a0, a1, . . . , an} except ai = 0,

N := the number of positive roots in (0,∞)

are defined. Under these definitions, we have,

N = W − 2h.

Here, h is a non-negative integer.

By using Theorem 1, the number of positive roots of the
polynomial equation f(x) is determined in the following
conditional branch:

• In the case that W = 0, f(x), x ∈ (0,∞) does not
have any positive roots.

• In the case that W = 1, f(x) has only one positive root
in the interval x ∈ (0,∞).

• In the case that W ≥ 2, the number of positive roots
of f(x) cannot be determined.

In the case that W = 1, the isolated interval should be set
to (0, ub], where ub denotes the upper bound of positive roots
for a polynomial equation f(x). Computation methods for
the upper bound of positive roots of a polynomial equation
f(x) are described in Section 3.2.

In the case that W ≥ 2, we divide the interval (0,∞) in
the two intervals. Then, Descartes’ rule of signs is applied
in each interval. In the continued fraction method based on
Vincent’s theorem, the interval (0,∞) is divided in (0, 1)
and (1,∞). The division is performed by the replacement

x→ x+ 1,

x→ 1

x+ 1
.

By using the replacement x→ x+1, the interval (0,∞) of
the replaced polynomial equation corresponds to the interval
(1,∞) of the original polynomial equation. Similarly, by
using the replacement x→ 1/(x+1), the interval (0,∞) of
the replaced polynomial equation corresponds to the interval
(0, 1) of the original polynomial equation. The intervals
(1,∞) and (0, 1) do not include the case that x = 1. To solve
for this case, after either replacement, we check whether the
coefficient an, which is a constant term, vanishes. If an = 0
in the replaced polynomial equation, then 1 is a root of the
original polynomial equation.

3.2 Computation for Upper Bound
Akritas et al. introduced the local-max pairing strategy

(defined in Definition 1) in order to generate a suitable
bound.

Definition 1 (“local-max”): For a polynomial equation
f(x) given by eq. (1), the coefficient −ak of the term
−akxn−k in f(x) is paired with the coefficient am/2l of the

Algorithm 1 Implementation of the “local-max” bound.
cl← {an, an−1, · · · , a1, a0}
if n+ 1 ≤ 1 then

return ub3 = 0
end if
j = n+ 1
t = 1
for i = n to 1 step −1 do

if cl(i) < 0 then
tempub = (2t(−cl(i)/cl(j)))1/(j−i)

if tempub > ub then
ub = tempub

end if
t++

else if cl(i) > cl(j) then
j = i
t = 1

end if
end for
ub3 = ub

term amxn−m, where am is the largest positive coefficient
with 0 ≤ m < k and t denotes the number of times the
coefficient am has been used.

The implementation of the local-max bound is described in
Algorithm1, and the output is ub3.

3.3 Acceleration using Lower Bound
The continued fraction method based on Vincent’s theo-

rem requires many replacement operations x → x + 1 and
x → 1/(x + 1). In other words, the origin shift is realized
by x → x + 1. Thus, if the positive roots are much larger
than 1, then the computation time increases, as we must
repeat the replacement operation x→ x+1. To decrease the
computation time, the lower bound of the smallest positive
root of a polynomial equation should be used as a shift.

In general, to obtain the lower bound lb of an original
polynomial equation, we first substitute 1/x for x in the
original polynomial equation. Second, we compute the upper
bound ub3 of the positive roots. Third, we obtain the lower
bound lb by computing the inverse of the upper bound as
follows:

lb =
1

ub3
. (3)

If lb > 1, then the replacement x→ x+ lb is adopted, as the
computation time for isolating the positive roots decrease. If
lb ≤ 1, then we do not adopt the lower bound lb, as the lower
bound lb is not sufficiently large to reduce the computation
time.

Algorithm 2 shows a continued fraction method based
on Vincent’s theorem with origin shift using the local-max

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan 2

Vol.2013-MPS-94 No.8
2013/7/22



Algorithm 2 Continued fraction method based on Vincent’s
theorem with the local-max shift strategy.
R← ϕ
S ← {poly}
if 0 is a solution of poly then

R← R ∪ [0, 0]
poly ← poly/x

end if
while S ̸= ϕ do

poly ← dequeue(S)
W ← Descartes(poly)
if W = 1 then
ub3 ← Algorithm1 with poly
R← R ∪ Inverse Möbius trans ((0, ub3])

else if W ≥ 2 then
poly2← Trans(poly, x→ 1/x)
ub3 ← Algorithm1 with poly2
lb← 1/ub3
if lb > 1 then
poly ← Trans(poly, x→ x+ lb)
if 0 is a solution of poly then
R← R ∪ Inverse Möbius trans ([lb, lb])
poly ← poly/x

end if
end if
poly3← Trans(poly, x→ x+ 1)
if 0 is a solution of poly3 then
R← R ∪ Inverse Möbius trans ([1, 1])
poly3← poly3/x

end if
poly4← Trans(poly, x→ 1/x+ 1)
S ← S ∪ {poly3, poly4}

end if
end while

bound. The computation time for the Algorithm 2 is less than
that for the continued fraction method based on Vincent’s
theorem without the origin shift. The replacements x→ x+1
and x→ 1/(x+1) are called Möbius transformations. After
the intervals for isolating the positive roots of a polynomial
equation are determined, each interval should be replaced
by the interval processed by all inverse transformations of
Möbius transformations.

4. New Lower Bound
The acceleration of the continued fraction method based

on Vincent’s theorem employs the origin shift, which adopts
the lower bound lb of the smallest positive root of a given
polynomial equation. Thus, if the lower bound tends to the
smallest positive root, then the computation time of the
continued fraction method decreases.

In this paper, we propose a new lower bound generated by
Newton’s method. Note that in some polynomial equations,

a bound generated by Newton’s method is not suitable as
the lower bound. Hence, by using Laguerre’s theorem [7],
it must be checked whether a bound generated by Newton’s
method is a suitable lower bound.

Newton’s method is defined by the following recurrence
formula:

xm+1 = xm −
f(xm)

f ′(xm)
. (4)

Here, f ′(x) denotes the first derivative of f(x). If Newton’s
method is adopted at the origin, then a candidate for the
lower bound r is computed as follows:

r = 0− f(0)

f ′(0)
= − an

an−1
. (5)

The cost for computing r is O(1).
We can check whether a candidate for the lower bound

r is suitable by using the Laguerre theorem. The improved
algorithm of the continued fraction method based on Vin-
cent’s theorem with the shift strategy, including both the
local-max bound and the new lower bound generated by
Newton’s method, is shown in Algorithm 3.

5. Experiment
In this section, we conduct experiments to evaluate the

effectiveness of the proposed lower bound.
Here, Algorithm 2 and Algorithm 3 are compared.
As test polynomial equations, we use f(x) with integer

coefficients:

f(x) =
r∏

i=0

(x− xi)×

s∏
j=0

(x− αj + iβj)(x− αj − iβj), (6)

xi, αj , βj ∈ R.

Here, parameters xi, αj , and βj are randomly set as follows:

−10000 ≤ xi, αj , βj ≤ 10000, (7)

Parameters s and r are set to s = 490, r = 20. Then, we
generate 100 test polynomial equations.

In the continued fraction method based on Vincent’s
theorem, the multiple-precision arithmetic library GMP [4]
is needed to compute all coefficients in replaced polynomial
equations.

Figure 1 shows the plots of the computation time in all
test polynomial equations. In Figure 1, the computation time
for Algorithm 3 is less than that for Algorithm 2, and the
difference among the computation time in Algorithm 3 is
small.

Table 1 shows the computation time for the 100 random
polynomial equations. The maximum computation time for
Algorithm 3 is 1.48 times faster than that for Algorithm 2.
The average computation time for Algorithm 3 is 1.09 times

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan 3

Vol.2013-MPS-94 No.8
2013/7/22



Algorithm 3 Improvement of the continued fraction method
based on Vincent’s theorem with the shift strategy including
both the local-max bound and the new lower bound gener-
ated by Newton’s method.
R← ϕ
S ← {poly}
if 0 is a solution of poly then

R← R ∪ [0, 0]
poly ← poly/x

end if
while S ̸= ϕ do

poly ← dequeue(S)
W ← Descartes(poly)
if W = 1 then
ub← Algorithm 1 with poly
R← R ∪ Inverse Möbius trans ((0, ub])

else if W ≥ 2 then
poly2← Trans(poly, x→ 1/x)
ub3 ← Algorithm 1 with poly2
r ← NewtonLowerbound(poly) which is checked
by using the Laguerre theorem
lb← max(1/ub3, r)
if lb > 1 then
poly ← Trans(poly, x→ x+ lb)
if 0 is a solution of poly then
R← R ∪ Inverse Möbius trans ([lb, lb])
poly ← poly/x

end if
end if
poly3← Trans(poly, x→ x+ 1)
if 0 is a solution of poly3 then
R← R ∪ Inverse Möbius trans ([1, 1])
poly3← poly3/x

end if
poly4← Trans(poly, x→ 1/x+ 1)
S ← S ∪ {poly3, poly4}

end if
end while

faster than that for Algorithm 2. The standard deviations in
Algorithm 2 and Algorithm 3 are not considerably large.

From Figure 1 and Table 1, the computation time for
Algorithm 3 is less than that for Algorithm 2. This is because
some lower bounds generated from Newton’s method are
more suitable than the local-max bound. Consequently, the
continued fraction method based on Vincent’s theorem is
improved by using the proposed lower bound.

Hence, the improved continued fraction method with the
local-max bound and the proposed lower bound generated
by Newton’s method is efficient.

0

10

20

30

40

50

60

70

C
o

m
p

u
ta

�
o

n
a

l 
�

m
e

 [
se

c.
]

Algorithm 2 Algorithm 3

Fig. 1: Computation time in all test polynomial equations.
[sec.]

Table 1: Computation time.
average [sec.] deviation max.[sec.] min.[sec.]

Algorithm 2 30.45 6.45 68.74 20.76
Algorithm 3 28.05 4.46 43.04 19.89

6. Conclusions
In this paper, we proposed a new lower bound for ac-

celerating the continued fraction method based on Vincent’s
theorem.

In the future, the proposed lower bound should be evalu-
ated using different types of test polynomials from (7).

References
[1] A. Akritas, A. Strzeboński, P. Vigklas, “Implementations of a New

Theorem for Computing Bounds for Positive Roots of Polynomials,”
Computing, 78, pp. 355–367, 2006.

[2] A. Akritas, A. Strzeboński, P. Vigklas, “Improving the performance of
the continued fractions method using new bounds of positive roots”.
Nonlinear Analysis: Modelling and Control, 13, pp. 265–279, 2008.

[3] G. Collins, A. Akritas, “Polynomial Real Root Isolation Using
Descartes’ Rule of Signs”, SYMSAC ’76, Proceedings of the third
ACM symposium on Symbolic and algebraic computation, Yorktown
Heights, NY, USA, ACM, pp. 272-275, 1976.

[4] (2013) The GNU MP Bignum Library. [Online]. Available:
http://gmplib.org/

[5] P. Henrich, “Applied and computational complex analysis”, Wiley
Classics Library Edition, Volume I, 1988.

[6] B. Kioustelidis, “Bounds for positive roots of polynomials,”, J. Comput.
Appl. Math., 16(2), pp. 241–244, 1986.

[7] E. Laguerre, “On the Theory of Numeric Equations”,
Journal de Mathématique pures et appliquées, 3e série, t.
IX, 1883. Translated by Stewart A. Levin, available from
http://sepwww.stanford.edu/oldsep/stew/laguerre.pdf

[8] R.E. Moore, “Interval Analysis”. Prentice Hall, Englewood Cliffs, N.J.,
1966

[9] N. Obreschkoff, “Verteilung und Berechnung der Nullstellen reeller
Polynome”, Berlin: VEB Deutscher Verlag der Wissenschaften 1963.

[10] A.J.H. Vincent, “Sur la resolution des équations numériques, ” J.
Math. Pures Appl. 1, pp. 341–372, 1836.

IPSJ SIG Technical Report

ⓒ 2013 Information Processing Society of Japan 4

Vol.2013-MPS-94 No.8
2013/7/22


