
fマルチメディア通信と分散処理ワークショップJ 平成12年12月

Appraising the Communication Performance of a DSM Cluster with a
Low-level Application Programming Interface

Bernady O. Apduhan Yasushi Shimono Itsujiro Arita

DepartmenもofArtificial Intelligence

Kyushu Institute of Technology

Iizuka， 820・8502Japan

{bob， yasωhi，α行ta}@mickey. ai.kyutech. ac.jp

Abstract

ln this paper， we study the communication perlo門ηαnce
01 a DSM cluster computing environment (DSE) withα
Low-level Application Programming lnterfiαce (LAP刀us-
ing shared memory routines， and investigate its influence
on the system'5 scalability. We used some shared mem-
ory communication tests with low and high contention to
represent commonly used communication patterns. The
shα旬 dmemory routines sat on top 01 DSE's communica-
tion primitives. These were implemented using LAPI or
socket APIs. Communication was via a high perlormance
interconnection switch. The experiments are presented
and preliminαT官 results01 a DSM cluster implemented
with LAPI and iお perl01マnancecompared to using socket
AP ls are discussed.

1 Introduction

Parallel computing on networked workstations or PCs
has been gaining more attention in recent years. The per-
formance improvements of workstations or PCs and high-
speed networks are paving the way for the widespread
usage of cluster-based parallel systems.
Currently， message-passing and distributed shared

memory (DSM) are theもwoprevailing programming
models for parallel computing in a cluster computing en-
vironment. In the message-passing paradigm (e.g.， MPI
or PVM)， the programmer must be aware of the data 1か
cation and the timing， and must determine what to com-
municate， to which processor. This makes it cumbersome
to program with the message-passing paradigm， partic-
ularly for applications with complex data structures.
On the other hand， software DSM systems [8] pro-

vide a shared memory abstraction on top of the native
message-passing facilities. An application can be writ-
ten as if it will be executed on a shared memory mul-
tiprocessor， using typical read and write operations to
access shared data. The message-passing operation is
left to the underlying DSM system. Although it is con-
venient to program in DSM， DSM systems tend to gen-
erate more communication and are seen as less e伍cient
than message-passing systems. With message-passing，

the communication is wholly dealt with by the program-
mer， who must be knowledgeable on the data usage pat-
tern. In DSM， the system has little knowledge of出e
application program and should be conservative in de-
ciding what to communicate. Because sending messages
between workstations is expensive， this extra communi-
cation can induce serious performance degradation.
Among the popular DSM systems developed are IVY

[13]， Treadmarks [11]， Midway 問問dCRL [10]. Each
DSM system has its own design goals and problem do・
mains. Our laboratory has likewise developed an experi-
mental DSM: test bed， called DSE， to study the problems
and issues of a DSM・basedcluster computing system [2].
1n general， parallel applications on network-based

computing systems are mostsensitive to communication
overhead. A number of approaches have been proposed
to bypass the conventional protocol stack and directly
access streamlined communication protocols running on
high-speed networks.

Current DSEs are implemented at the UNIX user level
and use TCP sockeもsand expensive UNIX system calls
for communication. This arrangement provid白 porta-
bility at the expense of poor system performance， es-
pecially for fine-grain communication. The availability
on the IBM SP2 system of the Low-level Application
Programming Interface (LAPI)， which was d白 ignedto
provide low-latency on short messages， provides an ap-
propriate testbed to study the communication perfor-
mance enhancement of DSE. Our primary intent is to ex-
plore the performance capabilities of LAPI using a High-
Performance Switch (HPS) [1] in the IBM SP2， and to
study its infiuence on the performance of a DSM cluster
system.
This paper is organized錨 follows.We describe DSE

and its software organization in Section 2， and provide
an abridged description of LAPI and the experimental
testbed in Section 3. In Section 4， we present the ex-
periments， discuss the preliminary performance results
and compare with use of the sockets API. We describe
related work in Section 5， and in Section 6 we give our
concluding remarks.

-265ー

2 D8E and 80氏ware Organiza-

tion

DSE is a DSM cluster of networked workstations or PCs
running on UNIX-based OS platfor~s (SunOS， Solari5，
AIX， Linux， Free-BSD)， interconnected by a local area
network [2]. D5E is implemented at the UNIX user level
for portability and availability. The DSE system model
and software organization are shown in Figures 1 and 2.

Proccusor Element i'E PE

Elhemel

Figure 2: The DSE 50!もwareOrganization

3 LAPI and Experimental Setup

The IBM SP2 system is a network of RS/6000
workstations interconnected via an adapter to a
high-performance， multistage， packet-switched network
(called SP switch， or HP5) with a bi-directional data
transfer rate of up to 110 Mbps between node pairst as
well as by 100 Mbps Ethernet. Each node has its own
copy of the standard operating system AIX and other
standard RS/6000 system software [1].

The Low-level Applications Programming Interface
(LAPI) is a non-standard application programming in-
terface designed to provide optimal. communication per-
formance on the SP 5witch. It is available as part of
the SP 'software [3][5]. LAPI is an asynchronous commu-
nication mechanism meant to supply flexibi1ity to users
when writing parallel programs with dynamic and un-
predictable communication patterns. LAPI is designed

to be an efficient (low latency， high bandwidth) interface.
LAPI functionality includes data communication as well
部 synchronizationand ordering' primitiveS. Tbe LAPI
functions are divided into three groups: (1) A bωic "ac-
tive message" infrastructure that allows programmers to
ins凶 1a 5et of handlers that are invoked and executed in
the address space of a target process on behalf of the pro-
cess originating the active messagej (2) A set of defined
functions that provide a Remote Memory Copy (RMC)
interface for direct remote memQry acceSSj and (3) A 5et
of control function5 for the initialization and eventual
orderly shutdown of the LAPI layer. More detailed de-
scriptions of LAPI functions can be found in [4].
The DSE was ported to SP2 using LAPI， hencefortb

called DSB・LAPI，to exploit the communication perfor-
mance of the new interfacet as depicted in Figure 4. To
obtain a comparative communication performance eval-
uation， we also ported DSE to SP2 using typical TCP
sockets， henceforth called DSE-TCP， as depicted in Fig-
ure 3. Both implementations used the high-speed SP
switch.

U田aJlr・・'"'慣寓‘

Figure 3: The DSE Parallel Processing Library (using
Socke蛤)

Iparallol APl Library I

SP Switch

Figure 4: The DSE Parallel Proce5sing Library (using
LAPI)

-266-

4 Experhnents and Results

We conducted the communication performance evalua-
tion using some commonly used shared memory routines

or collective communication operations. In DSM， col-
lective operations are used to support synchronization，
shared-data invalidation and update， and were there-
fore a good instrument for evaluation. The dista川 mes-
sage access and barrier synchronization rou tines repre-
sent low-contention operations， while the broadcast and
all-to-all routines represent high-contention operations.
These routines were implemented on top of DSE's prim-
itives.

4.1 Distant Message Access

In this test， a process in node N (N > 0) read shared
memory data on node o. In a scalable 5)叫 em，no peト

formance difference should occur in sending messages to
close or distant nodes. The results in Figures 5， 6 and
7， show that the communication time of DSE・LAPIis
significant1y faster than DSE-TCP， where the latter uses
expensive sendO and receiveO system calls to commu-
nicate between DSE kernels， and also between the DSE
kernel and a DSE proc田 s.This procedure incurs a large
communication processing overhead and consumes most
of the communication time.

The higher communication performance exhibited by
DSE-LAPI can be attributed to the Active Message [6]
style of communications in LAPI and the Remote Mem-
ory Functions (RMC) on the SP switch. LAPI provides
one-sided communication and processes are not required
to synchronize explicit1y. Therefore， reading or writing
shared data and other processing are executed simultane-
ously. This test executes a simple one-to-one communi-
cation and clearly shows the high performance of LAPI，
and efficient implementation of a DSM with LAPI.

4.2 Broadcast Communication

In this test， the process in node 0 broadcast shared data
to other processes. In a scalable system， the execution
time would grow linearly with the number of nodes. The
broadcast communication test incurs a load on the node

holding the broadcast data.
In DSE-TCP， the DSE kernel on node 0 processes all

the read messages sent from other nodes and sends the

4.3 All-to圃 AllCommunication

In this test， all nodes broadcast data simultaneously with
high contention. Thus the communication traffic on the

network was higher than for the broadc槌 ttest. In a
scalable system， the execution time would grow linearly
with the number of nodes. Eaeh execution time of DSE-
TCP is longer than DSE-LAPI when the message size
is small or when few nodes are used， as shown in Fig-
ures 11， 12. The invocation of expensive system calls is
seen剖 theprimary cause. In DSE， the data size used
by most applications is less than or equal to 1024 bytes.
Therefore， the DSE system must provide e血cientcom-
munication for a fine-grain processing environment. On
DSE-TCP， the DSE kernel uses expensive system calls
and proc回 sesa11 incoming messages， whereas， on DSE-
LAPI， the nodes communicate with each other efficiently
using one-sided communication， such邸 RMC.This is
desirable in a fine-grain communication environment.

4.4 Barrier Synchronization

This test evaluated the performance of the DSE synchro-
nization barrier. As shown in Figure 14， the execution
time of DSE-TCP is faster than DSE・LAPI，but tends to
become slower as the number of processors is increased.
On DSE-TCP， each node sends a barrier synchroniza-
tion message to the node holding the synchronization
variable， and this latter node's DSE kernel checks the
message queue and processes the messages. The queued
messages are passed to the module by passing a pointer
to this message. On DSE-LAPI， the requ回 tsare sent to
the node holding the synchronization variable by invok-
ing the completion handler and placing the requests in
the synchronization queue. The system checks the syn-
chronization queue and processes the requests.

On LAPI， the messages are received by the event noti・
fication handler in the UNIX kernel. Interrupts for event
notification and synchronization queue handling occur
frequently in this implementation， causing synchroniza-
tion latency. This implementation of the synchronization
barrier should be improved in the future. It would have
been interesting to further evaluate the scalability perfor-
mance ofthe system with more processors， but computer
availability constraints made this impossible.

Related Work broadcast data to these nodes. Here， the DSE kernel 5
on node 0 must process many messages and invokes ex-
pensive system calls many times. As shown in Figures Some previous studies on LAPI andJor DSM on IBM SP2

m 筒 follows.Banikazemi， et a1. [7] st吋 edthe exploita-
tion of the LAPI library for efficient implementation of
standard MPI. They discussed the implementation and
mismatches between the requirements of standard MPI
and LAPI functionality. Karlsson， et al. [9] performed
a comparative characterization of communication pat-
terns in some applications using MPI and Treadmarks on

8， 9， 10， the execution time of DSE-TCP grows expo-
nential1y. Notice that the execution time of DSE-LAPI
was faster than DSE-TCP in each case and remained
constant regardless of the number ofnodes. The LAPI
RMC functions， which provide one-sided communication
and direct remote node memory access， explicitly reduce
the memory access load.

-267-

n
E
g
n
E
E

"I:ttni"ー骨ー

、Cp'， ..・

'.5

φ ・・ φ・・・+・・+・・・+・・+・・・+・・+・・・+・・・@・・・+・・+・・・+・・+

ロ5

。
10

nLlmbor 01 proα路縄問

12 14

Figure 5: Distant message access (size = 4 Bytes)

色，n1~除ー・

'tq)" +・

1，5

+・・+・・・φ・・+・・・+・・+・-・φ・・+・・・+・・+・・・+・・+・・，+・・+

0.5

M 】 ー ー ー.会今一
一一一一ーー一四 骨ーーーー咽

10
numbar 01 JXOCOS鈎市

12 14

Figure 6: Distant message access (size = 64 Bytes)

2
""'"・・-
'tq)'・+・

1.5

+・・+・・・+・・+・・・+・・+・・・φ・・+・・・+・・+・・・+・・+・・・+・・+

0.5

"ーーーー・・
一 一 】 白 込

一 日 開

10
即時1OI'0lprocc障制官

14 12

Figure 7: Distant message邸 cess(size = 1024 Bytes)

16

16

16

-268-

a
''''叫・.園"ー・
可申"， +・

m

.+

"'，・・+

， +・・・+
p・

.+・・ 4

.+
.・..・・ φ・・

" 4砂・・+-...，..

10
numbor 01 11"0伺旬。，.

12 14 16

Figure 8: Broadcast (size = 4 Byt白)

25
'bt!o'ー骨-

'tq)" +・

舗

.+
9・・・ 4炉.

~.

e ，
...

.φ.
+ "

-・-+-・・+・・・4
+ "・+・・・+

6 10
問 naafofpro制施I0I'l

12 14 司自

Figure 9: Broadcast (size = 64 Bytes)

25r一一--.--

日窃

m ...

，"
15

，<砂-
，+'

10
~

。，"・.

......+・・・4
+・・+・・・+・

10
nur時即0111"飢渇.011

12 14 18

Figure 10: Broadcast (size = 1024 Byt回)

-hwM・-J.+圃+働ー・-

2.5

ωf
...

.+・・ 4・・・+

.... ・・令

.キ・

I ~ 1.
+・・+・ー . +・・・+-'

+ •

初

10
0.5

.
n胴 beBvofm個 制 問10

12 14 18 e
numt剛adpm0・飼町z署o

12 14 16

Figure 11: All-tcトallcommunication (size = 4 Bytes)

ω
....... ・-・・-
，~'・+・

+・・+
.+・

t'

印

.~

M

w

m

8
E
S
S
E
-
E

.a..... .+
.+・・ Y

.+ .
...・

.~・・+'
+ •

4砂

20

10

8 10
num切folpnx渇事SQfS

12 14

Figure 12: All-to-all communication (size = 64 Bytes)

ω
'laprτ-
一一・
.

.~・・ 7

50

a キ・・・ 4併・
+ .

....

品

柑

M

訓

告
E
s
s
e
a
E

" .キ
+・・・+・・+・・・+・

..
+

泊

10

10
numbof 01 PtO白描S町S

12 14

Figure 13: All-tか 311communication (size = 1024 Bytω)

Figure 14: Synchronization barrier (size = 1024 Bytes)

叩 IBMSP2. The study revealed that Treadmarks pro-
grams tend to cause a more even network load compared
with MPI programs， and discussed ways to improve per-
formance.

Perhaps the work most related to our. study is that
by Gautam Shah， et al. [5]， which included the develop-
ment of IBM's LAPI library in an effort to optimize the
performance of Pacifi.c Northwest National Laboratory's
Global Arrays (GA) toolkit and its app1ications on the
IBM RSj6000 SP system， The GA library w幽 portedto
exploit the performance of LAPI.
While we share some of our objectives with these stud-

ies， we differ significantly on targeted goals. Our goal
:6 is to study the performance of a software-DSM system

with low-level APIs， such邸 LAPI，in an effort to gain
fi.rst・handexperience in implementation issues and their
intricacies in developing a highly e筒cient and portable
software-DSM system with a single sy剖emimage using
commodity standard APIs.

6 Concluding Remarks

We described the implementation of a DSM cluster'com-
puting environment with LAPI on an mM SP2 system
using an SP Switch. We then evaluated the communi-
cation performance using commonly used shared mem-
ory routines， and compared it with another implemen-
tation using七hesockets API. Preliminary perform叩 ce
with LAPI shows promising results in almost all experi-
menもsand clarified some related issues.
The results verify the usability of LAPI as a non-

1s st叩 dardlow-Ievel interface to provide optimal commu-
nication on the dedica色ed.SPswitch. -Likewise， the high
performance can be attributed tothe active message style
infrastructure and the Remote Memory Copy interface
inherent in LAPI. The former ，reduce communication la-

-269-

tencyand the latter provide direct shared memory ac-
cess which further provides an overlapping communica-
tion and computation processing. The high performance
exhibited by LAPI substantiate the merit of using a low-
level programming interface on a DSM cluster， and pro-
vide insights and intricacies in development.
Future research directions include implementation of

the collective communication operations in the DSE ker-
nel to further exploit LAPI performance， and a system-
atic study of the impact of communication performance
on parallel applications in a DSE-LAPI cluster.

References

[1] IBM. IBM Systems Joumal， Vol. 34， No. 2， 1995.

[10] Kirk L. Johnson， Frans 'K制 hoek，D伽 rahA.
Wallach， CRL: High-Performance All-Software Dis-
tributed Shared Memory， Proc. SIGOPS '95， pp.
213-228， Colorado， USA， Dec. 1995.

[11]αistiana Amza， Alan 1. Cox， Sandhya Dwarkadas，
Pete Keleher， Honghui Lu， Ramakrishnan Raja-
mony， Weimin Yu， and Willy Zwaenepoel， Tread-
marks: Shared Memory Computing on Networks
of Workstations， IEEE Computer， pp. 18・28，Feb.
1996.

[12J Brian N. Bershad， Matthew J. Zekauskas， and
Wayne A. Sawdon， The Midway Distributed Shared
Memory System， Proc. 98th IEEE Computer Soci-
ety Intemational Conference(COMPCON'93)， pp.
528・537，February 1993.

同 TatsuyaAsazu， Bernady O. Apduhan， Itsujiro
Arita，-Towards ~ Portabl~ Cluster Computing E~vi- [13] ~ai ~i，_ IyY: A Share~d Virtual Memory System for
ronment Supporting Single System Im~ge， 1~ Proc. ~arallel Co~puting， Proc. of the Intemational Con-
ICPP'99・MMNS Workshop， pp. 488・493，Sept. fe陀 nceon Parallel Computing， pp. 94-101， 1988.
1999.

[3] IBM. PSSP for AIX : Command and Technical Ref-
erences， rel 2.4， document GC23・3900・05，IBM Cor-
poration， 1998.

[4] 1BM. PSSP for AIX : Administrcttion Guide: The
Communications Low・LevelApplication Program・
ming Interface， rel 2.4， document GC23・3897，・05，
IBM Corporation， 1998.

[5} Gautam Shah， et al， Performance and Experience
with LAP1 -A New High-Performance Communi-
cation Library for the IBM RS/6000 SP， In Proc.
IPPS '98， pp. 260-267， March 1998.

[6J T. von Eiken， D.E. Culler， S.C. Goldstein， K.E.
Schauser， Active Messages: A Mechanism for 1nte-
grated Communication and Computation， ln Proc.
Intemational Symposium on Computer A陀 hitec-
ture， pp. 256・266，1992.

(7] Mohammad Banikazemi， Rama K. Govindaraju，
Robert Blackmore and Dhabaleswar K. Panda， Im-
p伴lem悶 en凶t“i略 Effi伍船伽ci仰i
SP Sys叫tem:Experiences and Performance Evalua-
tion， In Proc. IPPS '98， pp.183・190，1998.

[8] Kai Li ， Paul H吋 ak，Memory Coherence in Shared
Virtual Memory Systems， ACM 7ransactions on
Computer Systems， Vol. 7， No. 4， pp. 321-359， Nov.
1989.

[9) Sven Kar1sson， Mats Brorsson， A Comparative
Characterization of Communication Patterns in Ap-
plications Using MPI and Shared Memory on an
IBM SP2， Proc. 2nd Int'l. Workshop on Network・
Based Parallel Computing， pp. 189・201，Las Vegas，
Nevada， Jan. 31・ Feb.1， 1998.

-270ー

