MCIVFAF 1 7HEEBEDRBET -2 397

Appraising the Communication Performance of a DSM Cluster with a
Low-level Application Programming Interface

Bernady O. Apduhan

Yasushi Shimono

Itsujiro Arita

Department of Artificial Intelligence
Kyushu Institute of Technology
Iizuka, 820-8502 Japan
{bob, yasushi, arita} @mickey.ai.kyutech.ac.jp

Abstract

In this paper, we study the communication performance
of a DSM cluster computing environment (DSE) with a
Low-level Application Programming Interface (LAPI) us-
ing shared memory routines, and investigate its influence
on the system’s scalability. We used some shared mem-
ory communication tests with low and high contention to
represent commonly used communication patterns. The
shared memory routines sat on top of DSE’s communica-
tion primitives. These were implemented using LAPI or
socket APIs. Communication was via a high performance
interconnection switch. The ezperiments are presented
and preliminary results of a DSM cluster implemented
with LAPI and its performance compared to using socket
APIs are discussed.

1 Introduction

Parallel computing on networked workstations or PCs
has been gaining more attention in recent years. The per-
formance improvements of workstations or PCs and high-
speed networks are paving the way for the widespread
usage of cluster-based parallel systems.

Currently, message-passing and distributed shared
memory (DSM) are the two prevailing programming
models for parallel computing in a cluster computing en-
vironment. In the message-passing paradigm (e.g., MPI
or PVM), the programmer must be aware of the data lo-
cation and the timing, and must determine what to com-
municate, to which processor. This makes it cumbersome
to program with the message-passing paradigm, partic-
ularly for applications with complex data structures.

On the other hand, software DSM systems [8] pro-
vide a shared memory abstraction on top of the native
message-passing facilities. An application can be writ-
ten as if it will be executed on a shared memory mul-
tiprocessor, using typical read and write operations to
access shared data. The message-passing operation is
left to the underlying DSM system. Although it is con-
venient to program in DSM, DSM systems tend to gen-
erate more communication and are seen as less efficient
than message-passing systems. With message-passing,

the communication is wholly dealt with by the program-
mer, who must be knowledgeable on the data usage pat-
tern. In DSM, the system has little knowledge of the
application program and should be conservative in de-
ciding what to communicate. Because sending messages
between workstations is expensive, this extra communi-
cation can induce serious performance degradation.

Among the popular DSM systems developed are IVY
(13], Treadmarks [11}, Midway [12] and CRL [10]. Each
DSM system has its own design goals and problem do-
mains. Our laboratory has likewise developed an experi-
mental DSM test bed, called DSE, to study the problems
and issues of a DSM-based cluster computing system [2].

In general, parallel applications on network-based
computing systems are most sensitive to communication
overhead. A number of approaches have been proposed
to bypass the conventional protocol stack and directly
access streamlined communication protocols running on
high-speed networks.

Current DSEs are implemented at the UNIX user level
and use TCP sockets and expensive UNIX system calls
for communication. This arrangement provides porta-
bility at the expense of poor system performance, es-
pecially for fine-grain communication. The availability
on the IBM SP2 system of the Low-level Application
Programming Interface (LAPI), which was designed to
provide low-latency on short messages, provides an ap-
propriate testbed to study the communication perfor-
mance enhancement of DSE. Our primary intent is to ex-
plore the performance capabilities of LAPI using a High-
Performance Switch (HPS) [1] in the IBM SP2, and to
study its influence on the performance of a DSM cluster
system.

This paper is organized as follows. We describe DSE
and its software organization in Section 2, and provide
an abridged description of LAPI and the experimental
testbed in Section 3. In Section 4, we present the ex-
periments, discuss the preliminary performance results
and compare with use of the sockets API. We describe
related work in Section 5, and in Section 6 we give our
concluding remarks.

—265—

ER124E12A

2 DSE and Software Organiza-
tion

DSE is a DSM cluster of networked workstations or PCs
running on UNIX-based OS platforms (SunOS, Solaris,
AIX, Linux, Free-BSD), interconnected by a local area
network [2]. DSE is implemented at the UNIX user level
for portability and availability. The DSE system model
and software organization are shown in Figures 1 and 2.

Processor Element

\ Interconnection Network l

Figure 1: The DSE System Model
| Paratio! Application (UNIX p]

l UNIX kornol I

Ethemnat

Figure 2: The DSE Software Organization

3 LAPI and Experimental Setup

The IBM SP2 system is a network of RS/6000
workstations interconnected via an adapter to a
high-performance, multistage, packet-switched network
(called SP switch, or HPS) with a bi-directional data
transfer rate of up to 110 Mbps between node pairs, as
well as by 100 Mbps Ethernet. Each node has its own
copy of the standard operating system AIX and other
standard RS/6000 system software [1].

The Low-level Applications Programming Interface
(LAPI) is a non-standard application programming in-
terface designed to provide optimal communication per-
formance on the SP switch.. It is available as part of
the SP software [3](5]. LAPI is an asynchronous commu-
nication mechanism meant to supply flexibility to users
when writing parallel programs with dynamic and un-
predictable communication patterns. LAPI is designed

to be an efficient (low latency, high bandwidth) interface.
LAPI functionality includes data communication as well
as synchronization and ordering primitives. The LAPI
functions are divided into three groups: (1) A basic "ac-
tive message” infrastructure that allows programmers to
install a set of handlers that are invoked and executed in
the address space of a target process on behalf of the pro-
cess originating the active message; (2) A set of defined
functions that provide a Remote Memory Copy (RMC)
interface for direct remote memory access; and (3) A set
of control functions for the initialization and eventual
orderly shutdown of the LAPI layer. More detailed de-
scriptions of LAPI functions can be found in [4].

The DSE was ported to SP2 using LAPI, henceforth
called DSE-LAPI, to exploit the communication perfor-
mance of the new interface, as depicted in Figure 4. To
obtain a comparative communication performance eval-
uation, we also ported DSE to SP2 using typical TCP
sockets, henceforth called DSE-TCP, as depicted in Fig-
ure 3. Both implementations used the high-speed SP
switch.

Figure 3: The DSE Parallel Processing Library (using
Sockets)

Parallel AP1 LibutyJ

r
Parallel Processing Library J— roquest R

AT

vv-uu-) Proc 158 Yanagemant Hodule M‘W‘

I e B
nnqc-m . :

ﬂmm
LAPI layer]

ot

Global Memory

access to the reoste

sll:bu Meoory Ut Lo the

ximu node

I SP Switch I

Figure 4: The DSE Parallel Processing Library (using
LAPI)

—266—

4 Experiments and Results

We conducted the communication performance evalua-
tion using some commonly used shared memory routines
or collective communication operations. In DSM, col-
lective operations are used to support synchronization,
shared-data invalidation and update, and were there-
fore a good instrument for evaluation. The distant mes-
sage access and barrier synchronization routines repre-
sent low-contention operations, while the broadcast and
all-to-all routines represent high-contention operations.
These routines were implemented on top of DSE’s prim-
itives.

4.1 Distant Message Access

In this test, a process in node N (N > 0) read shared
memory data on node 0. In a scalable system, no per-
formance difference should occur in sending messages to
close or distant nodes. The results in Figures 5, 6 and
7, show that the communication time of DSE-LAPI is
significantly faster than DSE-TCP, where the latter uses
expensive send() and receive() system calls to commu-
nicate between DSE kernels, and also between the DSE
kernel and a DSE process. This procedure incurs a large
communication processing overhead and consumes most
of the communication time.

The higher communication performance exhibited by
DSE-LAPI can be attributed to the Active Message [6]
style of communications in LAPI and the Remote Mem-
ory Functions (RMC) on the SP switch. LAPI provides
one-sided communication and processes are not required
to synchronize explicitly. Therefore, reading or writing
shared data and other processing are executed simultane-
ously. This test executes a simple one-to-one communi-
cation and clearly shows the high performance of LAPI,
and efficient implementation of a DSM with LAPL.

4.2 Broadcast Communication

In this test, the process in node 0 broadcast shared data
to other processes. In a scalable system, the execution
time would grow linearly with the number of nodes. The
broadcast communication test incurs a load on the node
holding the broadcast data.

In DSE-TCP, the DSE kernel on node 0 processes all
the read messages sent from other nodes and sends the
broadcast data to these nodes. Here, the DSE kernel
on node 0 must process many messages and invokes ex-
pensive system calls many times. As shown in Figures
8, 9, 10, the execution time of DSE-TCP grows expo-
nentially. Notice that the execution time of DSE-LAPI
was faster than DSE-TCP in each case and remained
constant regardless of the number of nodes. The LAPI
RMC functions, which provide one-sided communication
and direct remote node memory access, explicitly reduce
the memory access load.

4.3 All-to-All Communication

In this test, all nodes broadcast data simultaneously with
high contention. Thus the communication traffic on the
network was higher than for the broadcast test. In a
scalable system, the execution time would grow linearly
with the number of nodes. Each execution time of DSE-
TCP is longer than DSE-LAPI when the message size
is small or when few nodes are used, as shown in Fig-
ures 11, 12. The invocation of expensive system calls is
seen as the primary cause. In DSE, the data size used
by most applications is less than or equal to 1024 bytes.
Therefore, the DSE system must provide efficient com-
munication for a fine-grain processing environment. On
DSE-TCP, the DSE kernel uses expensive system calls
and processes all incoming messages, whereas, on DSE-
LAPI, the nodes communicate with each other efficiently
using one-sided communication, such as RMC. This is
desirable in a fine-grain communication environment.

4.4 Barrier Synchronization

This test evaluated the performance of the DSE synchro-
nization barrier. As shown in Figure 14, the execution
time of DSE-TCP is faster than DSE-LAPI, but tends to
become slower as the number of processors is increased.
On DSE-TCP, each node sends a barrier synchroniza-
tion message to the node holding the synchronization
variable, and this latter node’'s DSE kernel checks the
message queue and processes the messages. The queuned
messages are passed to the module by passing a pointer
to this message. On DSE-LAP], the requests are sent to
the node holding the synchronization variable by invok-
ing the completion handler and placing the requests in
the synchronization queue. The system checks the syn-
chronization queue and processes the requests.

On LAPI, the messages are received by the event noti-
fication handler in the UNIX kernel. Interrupts for event
notification and synchronization queue handling occur
frequently in this implementation, causing synchroniza-
tion latency. This implementation of the synchronization
barrier should be improved in the future. It would have
been interesting to further evaluate the scalability perfor-
mance of the system with more processors, but computer
availability constraints made this impossible.

5 Related Work

Some previous studies on LAPI and/or DSM on IBM SP2
are as follows. Banikazemi, et al. [7] studied the exploita-
tion of the LAPI library for efficient implementation of
standard MPI. They discussed the implementation and
mismatches between the requirements of standard MPI
and LAPI functionality. Karlsson, et al. [9] performed
a comparative characterization of communication pat-
terns in some applications using MPI and Treadmarks on

—267—

18

05

05

0.5

oy oy
xb
D Rt I S Rt R e R R R o B gis' +
w0} P 1
hd
sr LT d
T
IR
»— PERE AN
A e A A 2 e A o X . & —— i e A A s
2 4 6 8 10 12 1 16 2 4 8 8 10 12 " 16
numbor of processors rumbor of processors
Figure 5: Distant message access (size = 4 Bytes) Figure 8: Broadcast (size = 4 Bytes)
v v v v v v v 2 v v v v v v ~—
Ty -
af 4
0'*
A
L . ST IR I P P . 15 » 1
ry
10 ra 1
.- “"
1 b
5F .
Lo
* R
A r Py A A i A n L 2 . - . 2 A A A A Miad
2 4 [a 10 12 14 18 2 4 s 8 10 12 14 18
numbor of procossors numbor of procossors
Figure 6: Distant message access (size = 64 Bytes) Figure 9: Broadcast (size = 64 Bytes)
T r v T T T Y 25 T v Y v Y v L2
e T
‘0
| 2 o |
o
R R R R Y I O g 3 15F)
o |
-t
] 1
s
e 4,..4---*"*..‘.
e e e — :
. . . N . . . o : i : :
2 4 3 3 10 12 " 18 2 4) 8 10 12 14 18
numbor of procossons numbor of procossors

Figure 7: Distant message access (size = 1024 Bytes)

—268—

Figure 10: Broadcast (size = 1024 Bytes)

50 %""' 4
*
sf F
P 2
§‘°' L *
.
8 P
% o
.Esu- o
.-
2
| ~—_'_~’_’_~_‘——~/—.

10 12 14 16

2 4 [} 8
number of processors

Figure 11: All-to-all communication (size = 4 Bytes)

g ry——
o f -+
e
L
»>
sof .
-
R
4 +
g +
8 mt
L +
Eso +°
20
) ./_—_____./"—"—/A
° -l A ', Y
2 4 [} 8 10 12 14 16
numbor of procassors

Figure 12: All-to-all communication (size = 64 Bytes)

L r—

of T
B4 -+
SRR
soF +
7
+ + .-0"

3° .
H +
é‘”‘ Y

8 1 12 14 18
number of processors

Figure 13: All-to-all communication (size = 1024 Bytes)

o5

.

2 4 6] 10 12 14 18
numbar of processors

Figure 14: Synchronization barrier (size = 1024 Bytes)

an IBM SP2. The study revealed that Treadmarks pro-
grams tend to cause a more even network load compared
with MPI programs, and discussed ways to improve per-
formance.

Perhaps the work most related to our study is that
by Gautam Shah, et al. 5], which included the develop-
ment of IBM's LAPI library in an effort to optimize the
performance of Pacific Northwest National Laboratory’s
Global Arrays (GA) toolkit and its applications on the
IBM RS/6000 SP system. The GA library was ported to
exploit the performance of LAPL

While we share some of our objectives with these stud-
ies, we differ significantly on targeted goals. Our goal
is to study the performance of a software-DSM system
with low-level APIs, such as LAPI, in an effort to gain
first-hand experience in implementation issues and their
intricacies in developing a highly efficient and portable
software-DSM system with a single system image using
commodity standard APIs.

6 Concluding Remarks

We described the implementation of a DSM cluster com-
puting environment with LAPI on an IBM SP2 system
using an SP Switch, We then evaluated the communi-
cation performance using commonly used shared mem-
ory routines, and compared it with another implemen-
tation using the sockets API. Preliminary performance
with LAPI shows promising results in almost all experi-
ments and clarified some related issues.

The results verify the usability of LAPI as a non-
standard low-level interface to provide optimal commu-
nication on the dedicated.SP switch. Likewise, the high
performance can be attributed to the active message style
infrastructure and the Remote Memory Copy interface
inherent in LAPI. The former reduce communication la-

—269—

tency and the latter provide direct shared memory ac-
cess which further provides an overlapping communica-

tion and computation processing. The high performance -

exhibited by LAPI substantiate the merit of using a low-
level programming interface on a DSM cluster, and pro-
vide insights and intricacies in development. '

Future research directions include implementation of
the collective communication operations in the DSE ker-
nel to further exploit LAPI performance, and a system-
atic study of the impact of communication performance
on parallel applications in a DSE-LAPI cluster.

References

(1] IBM. IBM Systems Journal, Vol. 34, No. 2, 1995.

{2) Tatsuya Asazu, Bernady O. Apduhan, Itsujiro
Arita, Towards a Portable Cluster Computing Envi-
ronment Supporting Single System Image, In Proc.
ICPP’99-MMNS Workshop, pp. 488-493, Sept.
1999.

IBM. PSSP for AIX : Command and Technical Ref-
erences, rel 2.4, document GC23-3900-05, IBM Cor-
poration, 1998.

IBM. PSSP for AIX : Administration Guide: The
Communications Low-Level Application Program-
ming Interface, rel 2.4, document GC23-3897-05,
IBM Corporation, 1998.

(3

—_—

[4

—_—

Gautam Shah, et al, Performance and Experience
with LAPI - A New High-Performance Communi-
cation Library for the IBM RS/6000 SP, In Proc.
IPPS 98, pp. 260-267, March 1998.

T. von Eiken, D.E. Culler, S.C. Goldstein, K.E.
Schauser, Active Messages: A Mechanism for Inte-
grated Communication and Computation, In Proc.
International Symposium on Computer Architec-
ture, pp. 256-266, 1992.

Mohammad Banikazemi, Rama K. Govindaraju,
Robert Blackmore and Dhabaleswar K. Panda, Im-
plementing Efficient MPI on LAPI for IBM RS/6000
SP System: Experiences and Performance Evalua-
tion, In Proc. IPPS ’98, pp.183-190, 1998.

Kaij Li , Paul Hudak, Memory Coherence in Shared
Virtual Memory Systems, ACM Transactions on
Computer Systems , Vol. 7, No. 4, pp. 321-359, Nov.
1989.

(5]

(6]

(7l

(8]

Sven Karlsson, Mats Brorsson, A Comparative
Characterization of Communication Patterns in Ap-
plications Using MPI and Shared Memory on an
IBM SP2, Proc. 2nd Int’l. Workshop on Network-
Based Parallel Computing, pp. 189-201, Las Vegas,
Nevada, Jan. 31 - Feb. 1, 1998.

()

[10] Kirk L. Johnson, Frans Kaashoek, Deborah A.
Wallach, CRL: High-Performance All-Software Dis-
tributed Shared Memory, Proc. SIGOPS '95, pp.
213-228, Colorado, USA, Dec. 1995.

[11] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas,
Pete Keleher, Honghui Lu, Ramakrishnan Raja-
mony, Weimin Yu, and Willy Zwaenepoel, Tread-
marks: Shared Memory Computing on Networks
of Workstations, JEEE Computer, pp. 18-28, Feb.

1996.

Brian N. Bershad, Matthew J. Zekauskas, and
Wayne A. Sawdon, The Midway Distributed Shared
Memory System, Proc. 38th IEEE Computer Soci-
ety International Conference(COMPCON’93), pp.
528-537, February 1993.

Kai Li, IVY: A Shared Virtual Memory System for
Parallel Computing, Proc. of the International Con-
ference on Parallel Computing, pp. 94-101, 1988.

2

(13}

—270—

