[RINF AR T WEESHMAET— S5y 71 PRIAEIR

Flexible Group Communication Protocol

Tomoya Enokido, Takao Komiya, Roziali Ghopur, and Makoto Takizawa
Department of Computers and Systems Engineering
Tokyo Denki University
E-mail {eno, komi, rozali, taki}@takilab.k.dendai.ac.jp

In a distributed application, a group of multiple processes are required to be cooperating by exchanging mes-
sages. A group protocol supports a group of multiple processes with the causally, possibly totally ordered
delivery of messages. The group protocol is required to support enough QoS and types of service for appli-
cations in change of QoS supported by the underlying network and QoS requirements. A flexible protocol is
composed of a collection of functions like retransmission and confirmation. There are multiple ways to realize
each function. The flexible group protocol dynamically takes a type of module for each protocol function which
is the most suitable for applications in change of network QoS and QoS requirement.

PHOSMWNITN—TRIETO NN

HF Bt NE &g 97N 0X7Y ERE
REBMASE T3

HYUAT LT, I—THOEHRO O AN R v -V ORZEICX > THFAEMEZITS. V)V — 7@
EForalid, VIV—THOERO ORI L TAvE—CDRECHEOBRE. LAy —
DEEEREDHL LY —EAZEBHT S, £ Xy FT7—7 0V —EXGHE (QoS) ITEEDBIBOREI
L OEBMICELT B, FOD, 1 2O N—TBETONINORBETZEH—ERADARTIE. Xy b7—2
D QoS DEIFMLT, 7TV —2a > OERTS QoS Z2HITHRBTHILIATERL, FBRXTI, ©
bohnw)I—77o0balz2RBETBE, DHOoMWII—TBIETO FIIE. Avt—JDEEDHRED
B, #RLEAvE-COBEREREOBET A —IhoBRINTNE, Ty M7 —20 QoS DE{LIZ
MULT, 77U =23 0BERTS QoS 2R T AL IICRERSBIETY - E2BNOBIRT A2 &ick
0, RbhohZET Iy —a VIZREET 5,

1 Introduction wide area networks which support different levels of
QoS. For example, if the underlying network sup-
ports reliable one-to-one communications, there is no
need to realize no mechanism to detect message loss
and recover from the message loss. If broadcast net-
works like Ethernet and radio network [9] are used, a
message can be sent to all the processes by one trans-
mission. Applications require the system to support
a group of processes with various types of service.
For example, every message is required to be totally
ordered in a group of replicas of database service,
i.e. every process can receive messages in a same or-
der. Some messages are allowed to be lost in some
kinds of multimedia applications. The higher level
of communication function is supported, the larger
computation and communication overheads are im-
plied. Hence, the system has to take only necessary

In group communications, multiple processes first
establish a group and then messages are exchanged
among processes. In the group, a process sends a
message to multiple processes while receiving mes-
sages from multiple processes. Messages are required
to be causally delivered to processes in the group [1].
A group communication protocol is realized by fol-
lowing functions:

1. Multicast of messages.

Receipt confirmation of message receipt.
Detection of message loss.
Retransmission of a messages lost.

AN

Ordering of messages received.
There are various ways to realize these functions.

In addition, implementation of group protocol de-
pends on what types and quality of communica-
tion service the underlying network supports for pro-
cesses. Messages sent by a process may be lost and
unexpectedly delayed due to congestions and faults
in the network. Thus, quality of service (QoS) like
bandwidth and message loss ratio is changed. Fur-
thermore, there are various types of networks like
personal area networks {7], local area networks, and

and sufficient types of functions to support service
required by application by taking usage of services
supported by the underlying network. In this pa-
per, we discuss a flexible group protocol which can
dynamically support types and quality of service re-
quired by applications even if QoS supported by the
underlying network is changed. Thus, the flexibility
of the protocol is realized by dynamically selecting

types of functions in change of service supported by
the underlying network.

In section 2, we present what types of service an
underlying network supports. In section 3, we dis-
cuss group communication service. In section 4, we
discuss what types of functions to be selected to de-
sign a group communication protocol. In section 5,
we discuss how to support flexiblity by changing re-
transmission schemes.

2 Underlying Networks

A group of multiple processes pi, ..., pp (n > 2)
are cooperating through exchanging messages by us-
ing underlying network service. Networks are char-
acterized in terms of the number of destinations of
each message, level of reliability, and types of ordered
delivery of messages. First, there are two types of
networks, one-to-one and broadcast networks, with
respect to processes how many processes each mes-
sage can be sent to. In the one-to-one network, a
message is sent to one process by one transmission.
TCP/IP (8] supports one-to-one communication ser-
vice. On the other hand, a message is sent to all the
processes by one transmission in the broadcast net-
work. Ethernet and radio network [9] are broadcast
types of networks.

Secondly, networks support different levels of re-
liability. In the reliable one-to-one network, mes-
sages are delivered to the destinations with neither
message loss nor duplication in the sending order.
A TCP connection [8] supports reliable one-to-one
communication service as long as the connection ex-
ists. In a reliable broadcast network, every process
receives all messages in a same order. In less-reliable
one-to-one networks, messages may be lost. In less-
reliable broadcast networks, some process does not
receive a message broadcast. The Ethernet supports
less reliable broadcast communication because some
frames are lost due to contention.

Lastly, we discuss in what order a destination pro-
cess receives messages. Suppose a process sends mes-
sages to another process. In a sending order pre-
serving network, every destination process receives
a message in the sending order. This is supported
by a TCP connection between a pair of processes.
Now, suppose multiple processes send messages to
multiple processes. A process receives messages from
multiple processes. In a totelly ordering network, ev-
ery process receives the messages in the same order.
For example, Ethernet and radio networks support
the totally ordering service while it is less-reliable. If
each pair of processes communicate with one another
by using a TCP connection, each process reliabily re-
ceives messages in the sending order from each pro-
cess. However, a pair of processes may not receive
messages from different processes in the same order.

The underlying network is modeled to be a collec-
tion of bidirectional logical communication channels,
each of which exists between a pair of processes in

a group. Here, notations (p;, p;) and C;; show a
channel between a pair of processes p; and p;. If
each channel is realized by a TCP [8] connection,
the network supports processes with reliable, send-
ing order preserved, one-to-one communication ser-
vice. Each channel (p;, p;) supports some quality of
service (QoS), delay time [msec], message loss ratio
(%] and bandwidth [bps]. Let Q;; show QoS sup-
ported by a channel (p;, p;). QoS supported by each
channel is changed due to congestions in the network.
The change of the network is modeled to be change
of QoS supported by the network.

3 Group Communication Service

A group of multiple processes p, ..., pn(n>1) are
exchanging messages in the network. There is no cen-
tralized controller. Let s;(m) and r;(m) denote send-
ing and receipt events of a message m in a process
P;i. A message m, cousally precedes another message
mg (m; — my) if and only if (iff) s;(m) happens be-
fore rj(m) [1,2], m; is causally concurrent with my
(m1 || mg) if neither m; — mgy nor mg — m;. For
example, suppose there are three processes p;, ps,
and p3 in a group G [Fig. 1]. A process p; sends
a message m; to a pair of processes p; and ps. The
process p sends a message my to ps after receiving a
message m. Here, m; causally precedes ms (m; —
mgz). Due to communication delay, m; may arrive at
the process p3 after ms. The process p3 is required
to deliver m; before ms because my — mg. A pair
of messages m; and mgy are causally delivered iff my
— g and m; is delivered before ms in every com-
mon destination of m; and ms. Some messages are
causally concurrent. In the totally ordered delivery,
all the messages are delivered in every common des-
tination of the messages in the same order. That is
a pair of messages m; and mp are totally delivered
iff m; and mo are causally delivered if m; — ms or
mg — my, and m; and ms are delivered in a same
order in every common destination of m; and my if
m and mg are causally concurrent.

P: D2 b3
m;

my

4 time

Fig. 1: Causally ordered delivery.

Messages received are ordered by every process in
the distributed approach. In order to causally de-
liver messages, each process p; manipulates a vector
clock V = (W, .., Vi, } [3]. Initially, every ele-
ment in the vector (V) is zero. Each time a process
p; sends a message, V; := V; + 1. Then a message
m carries the vector clock m.V (=V). On receipt
of a message m, Vji= max(Vy, mV;) (j =1, .., »,

j#1) in a process p;. A message m; causally precedes
another message mo (m; — ma) iff m;.V < my. V.
Thus, the process can causally deliver messages by
using the vector clock under an assumption that the
underlying network is reliable. Message gaps cannot
be detected by using the vector clock.

Nakamura and Takizawa [4-6] discuss a vector
of sequence numbers to. detect message loss and
causally order messages. Each message m sent by
a process p; is assigned a sequence number m.seq.
The sequence number seq is incremented by one each
time p; sends a message. The process p; manipulates
variables rsq, ..., 7sgn to correctly receive messages.
Each variable rsq; shows a sequence number seq of
message which p; expects to receive next from an-
other process p; (j=1, ..., n). A message m sent by p;
carries the receipt confirmation m.rsq;(= rsg;)(j=1,
..,). Suppose a process p; receives a.message m
from another process p;. If rsq; = m.seq, the process
p; accepts the message m. Otherwise, there is some
message m’ from p; where rsq; < m’.seq < m.seq, i.e.
p; fails to receive m’. If p; accepts a message m from
a process pj, the receipt confirmation information
carried by m is stored in a matrix Ack, Ack[j k] :=
m.rsgg (k=1, ..., n). A message m; causally precedes
another message mg (m; — ma) iff my.rsqg < ma.rsg
[6]. Suppose a process p; accepts a message m from
another process p;. After receiving messages, the
messages received are tested by using Ack if the pro-
cess p; accepts them. A message m received from a
process p; is referred to as re-acknowledged by a pro-
cess p; if m.seq < min(Ack[1,j], ..., Ack[n,j]). Here,
the process p; is sure that m is received by every
process. Here, there still might be another process
where m is not re-acknowledged. A message m from
a process p; is referred to as acknowledged iff m is re-
acknowledged and there is one re-acknowledged mes-
sage my. from every process px where m — my. That
is, the process p; is sure that m is re-acknowledged
in every process, i.e. every process knows that every
other process surely receives the message m. Here,
the process p; can deliver the message m.

4 Functions of Group Protocol
4.1 Control

There are following types of control schemes [Fig.
2|:

1. Centralized control.

2. Distributed control.

controller

{1) Centrolized control (2) Distributed control

Fig. 2: Control scheme.

In the centralized control, there is one centralized
controller in a group. A process first sends a message

to the controller and then the controller forwards the
message to the destination processes. Each destina-
tion process sends receipt confirmation to the con-
troller if the process successfully receives the mes-
sage. Then the controller sends receipt confirma-
tion of the message to the sender if the controller
receives the confirmation message from all the desti-
nation processes. Most distributed systems like cur-
rent teleconference systems take this approach. It
takes at least two rounds to deliver messages since
every message is forwarded by the controller. On
the other hand, there is no centralized controller in
the distributed control scheme. Each process makes
a decision on correct receipt and delivery order of
messages received by itself. The vector clock [3] can
be used to causally order messages in each process.
4.2 Transmission

There are following schemes to transmit a message
m to multiple processes [Fig. 3):

1. Direct transmission.

2. Indirect transmission.

In the direct transmission, each process directly
sends a message to each destination, and directly re-
ceives messages from other processes [Fig. 3 (1)].
Thus, a message can be delivered to every destina-
tion by one round.

In the indirect transmission, messages are first sent
to some process. The process forwards the message
to another process and finally delivers the message to
the destination processes. The tree routing [6] is an
example of the indirect transmission. In the central-
ized control, the indirect transmission is adopted. It
takes more than one round to deliver a message in the
indirect one. The direct scheme is preferable in real-
time communication because of shorter delay time.
In the direct transmission, each process is required
to make a decision on correct receipt and ordered de-
livery of messages by itself, i.e. distributed control.
4.3 Confirmation

There are following schemes to confirm the message
receipt [Fig. 4]:

1. Centralized confirmation.

2. Decentralized confirmation.

3. Distributed confirmation.

In the centralized confirmation, every process sends
receipt confirmation message to some process, e.g.
centralized controller. After receiving confirmation
messages from all the destination processes, the pro-
cess sends a receipt confirmation to the sender pro-
cess. In the decentralized one, a sender process plays

<3

(1) Direct transmission

{2) Indirect transmission
Fig. 3: Transmission.

@ : Sender

(1) Cenlrafized

@ : Sender

(2) Deceniralized

(3) Distributed
— | message

Fig. 4: Confirmation schemes.

= = =& : confimation

a role of the centralized controller. That is, each des-
tination process sends a receipt confirmation to the
sender.

In the distributed confirmation scheme, each des-
tination process sends a receipt confirmation to not
only the sender process but also all the other destina-
tion processes. Since a group includes n processes, a
sender process p; sends (n— 1) instances of a message
in the one-to-one network and one message instance
in the broadcast network. Then, each destination
process sends (n — 1) confirmation messages in the
one-to-one network and one confirmation message in
the broadcast network. Hence, totally (n — 1) and
(n — 1) messages are transmitted in the one-to-one
and broadcast networks, respectively. Thus, in the
one-to-one and broadcast networks, communication
overheads are O(n?) and O(n) for number n of pro-
cesses, respectively. In order to reduce the number
of messages transmitted in the network, confirma-
tion information of message receipt is carried back
by other messages. In addition, a process does not
send a confirmation message as soon as the process
receives a message if the process does not have data
to send. If the process receives some number of mes-
sages or it takes some time since the process has
most recently received a message, the process sends
the confirmation of every message which is not con-
firmed yet. Thus, the delayed confirmation strategy
is adopted to reduce the number of messages trans-
mitted.

Suppose a process p; sends a message to processes
D1, -, Pn- In the centralized confirmation, every
destination process p; sends a confirmation message
to one controller process pi if p; is succeeded in re-
ceiving the message m. If the controller process pi
receives confirmation messages from all the destina-
tion processes, the process p, sends a confirmation
message to the sender p;. In the decentralized confir-
mation, each destination process p; sends a confirma-
tion message back to a sender process p; of message
m. Each process p; does not send only confirmation
message each time the process receives a message. If

there is no data to be sent, the process p; sends a
confirmation of the message to each destination pro-
cess of the message after p; receives some number of
messages. Tachikawa and Takizawa show that the
overhead of distributed way can be reduce to O(n)
by using these ways.

4.4 Detection of message loss

Messages are lost due to buffer overrun, unexpected
delay, and congestion in the network. Message loss
can be detected by checking sequence numbers as
presented in the preceding section. On receipt of a
message ™ from another process p;, a process p; ac-
cepts m if rsqg; = m.seq. Then, rsg; is incremented
by one. Otherwise, p; finds there is some message
m’ from p; where 7sg;< m’.seqg < m.seq. Now sup-
pose that a process p; sends a message m. The mes-
sage m carries a sequence number m.seq and receipt
confirmation m.rsq (=(m.rsqq, ...,m.7sqy }). Here,
suppose a process p; sends a message m; to a pair
of processes pa and p3. Here, p; fails to receive m;
although p; accepts m;. The process p; sends a mes-
sage my to pp after receiving m,. Here, ma.rsq,>
my.seq. Now, py receives mo. Here, rsq; < ma.7sg
in p2 since pz expects to receive m, from p, i.e. rsqy
= my.seq2. Thus a process p; can find loss of mes-
sage m; from a process p; on receipt of a message
ma from another process p;. if rsg; < ma.rsq;(j # k).

Fig. 5: Detection of message loss.

If a process selectively sends messages to a subset
of processes, not necessarily all the processes, addi-
tional subsequence numbers ssqy, ..., ssq, are used.
Here, ssg; is incremented by one each time a pro-
cess sends a message destined to a process p; (j=1,
..., n). Each process manipulates variables rssqy, ...,
7ssqn on receipt of a message m from a process p;, a
process p; accepts m if m.ssq = rssq;. Then rssg;:=
rssq; + 1. If m.ssq; > rssq;, p; fails to receive a mes-
sage m’ from p; when rssq; < m’ssq; < m.ssqj. A
sender process can detect message loss of destination
process by timeout mechanism.

4.5 Retransmission

If a process p; fails to receive a message m, m is
required to be retransmitted. There are following
retransmission schemes with respect to which process
retransmits a message m [Fig. 6]:

1. Sender retransmission.
2. Destination retransmission.

Suppose a process p; sends a message m to pro-
cesses and one destination process p; fails to receive

m. The first way is that the sender process p; re-
transmits the message m to p;. This is the sender
retransmission, which is adopted by most protocols.
Another way is the destination retransmission. Here,
one or more than one destination process which has
safely received the message m forwards m to the pro-
cess p;. In the distributed confirmation, not only a
sender process but also every destination process re-
ceives receipt confirmation of a message m from ev-
ery other destination process. Hence, each process
can know if every other destination process safely re-
ceives a message m. If a destination process py finds
that another destination process p; has not received
the message m, py forwards m to p;. Here, if mul-
tiple destination process forward the message, the
network traffic is increased. One process has to be
selected. One way is that destination process nearest
to p; forwards the message.

5 Flexible Protocol
5.1 Architecture

The classes of the protocol functions for transmis-
sion, confirmation, retransmission, detection of mes-
sage loss, and the control schemes are stored in a
protocol module base (PMB). The flexible group pro-
tocol module (FGPM) takes one way for each type
of group communication functions from PMB, which
can support an application with necessary and suf-
ficient QoS, given QoS supported by an underlying
network. The FGPM is distributed in every pro-
cess. The FGPM monitors QoS supported by the
underlying network. The network QoS information
monitored is stored in a QoS base (QB). If QoS is
detected to be changed, the FGPM reconstructs a
group protocol module (GPM) by selecting protocol
function in the protocol base.
5.2 Retransmission
5.2.1 Cost model

First, we discuss which retransmission scheme the
group protocol takes, i.e. sender and destination re-
transmission ones. Suppose a process ps sends a mes-
sage m to processes in a group G and then a pair of
processes p; and p, receive the message m while an-
other process p, fails to receive m. We use following
parameters:

1. d;; = delay time of channel C; between a pair

of processes p; and p; [msec].

2. fij = probability that a message is lost in a chan-
nel C;.

m .
p; m P ka
O 2]

O Or
i
(1) Sender retransmission.
) . (2) Destination
X+ : failtoreceive retransmission.

---» : fetransmission

Fig. 6: Retransmission scheme.

Detection of
pessage losg

Fig. 7: Flexible group protocol.

3. b;; = bandwidth of the channel C; [bps].

4. |m| = size of message m [bit] .

First, let us consider the sender retransmission.
The sender p, detects that a destination process p,
has not received the message m. It takes (2d;;+ |m|/
bi;) [msec] to detect message loss after p, sends the
message m. Then p, retransmits m to p,. Here, the
message m may be lost again. The expected time
STs, and expected number SN;, of message to be
transmitted to deliver a message m to a destination
Py are given as follows:

1. 8T, = (2dsy + |m|/ bsu)/(1 — fou)-

2. SNg, = 1/(1 = fs)-

In the destination retransmission, some destination
process forwards the message m to the process p,
[Fig. 8]. Suppose the process p; forwards the mes-
sage m to p,. The expected time DT, and expected
number DN;, of messages to deliver m to p, are
given as follows:

1. DTsv = (dst + Iml/ bst) + (dtv + !ml/ btv)/(l

= fuo).

2. DNy, = (2 = feo) /(1 = fru).

bs bt Du Pv
T ém\ =
T, T~

2N

Fig. 8: Destination retransmission.

|

time

If ST, > DTy, the destination process p; forwards
the message m to the process p,.

Each process p; monitors delay time d;,, band-
width b;,, and loss probability f;, for each process
py. For example, the process p; obtains these QoS
informations by periodically sending ping messages
to all the processes in the group. The process p,
maintains the quality of service (QoS) information
in a variable @ where Qu, = (by diw,ftu) for u =

1, ..., n. If the process p; receives QoS information
from another process ps, Qsu = { bsy,dsu,fsu) for u
=1, ..., n. Each process p; checks the retransmission

condition by using the QoS information Q.

5.2.2 Change of retransmission scheme

In change of QoS, each process p, in the group G
changes the type of retransmission function. Suppose
a sender process ps; sends a message m and all the
processes take the sender retransmission scheme. As
shown in Fig. 8, a process p, fails to receive the mes-
sage m. According to the change of QoS supported
by the underlying network, the sender p, makes a
decision to change the retransmission scheme with

the destination one, say a process p, forwards the ‘

message m to p,. However, the process p; still takes
the sender retransmission. Here, no process forwards
the message m to p,. In order to prevent this silent
situation, we take a following protocol:

1. A process p; sends a message m if p; is a sender
of m. If p; is a destination process of m, p; sends
a receipt confirmation of m to the sender and all
the other destination processes in the group G.

2. The process p; detects that p, has not received
the message m.

3. The process p, selects a retransmission scheme
based on the QoS information Q.

4. Suppose the process p; takes the destination re-
transmission scheme and p,; is a process to for-
ward the message m to a process p,.

e p, forwards m to p,.

e p; sends a message Retxt to the sender p,
and a destination process, say p,, which is
next best process to forward m.

5. If the process p; is not a process to forward the
message m, py waits for receipt confirmation if
m from p,,.

6. Suppose process p; is a sender of a message m.
If p; takes a sender retransmission scheme, p;
retransmits m to p,. If p, takes a destination
retransmission scheme, p; waits for Retxt mes-
sage from a destination. If p; does not receive
ReTxT, p, retransmits m to p,.

Next, suppose all the processes take the destination
retransmission scheme in a group G. Here, a process
P, sends a message m and a process p,, fails to receive
a message m. Suppose a process p; is a process to
forward m. Here, suppose QoS supported by the
network is changed and p, decides to take the sender
retransmission scheme. However, the sender p; still
takes the destination retransmission scheme. Here,
no process forwards the message m to the process p,.
In order to overcome the difficulty, p; still forwards
the message m to the process p,,.

1. Sender process ps; sends a message m to all the
destination processes in the group G.

2. All destination processes in G send receipt con-
firmation not only to sender process p; but also
to other destination processes in group.

3. Process p, fails to receive the message m.

4. A destination process p; detects that p, has not
received the message m.

5. The process p, forwards m to the process p, at
the same time, p, sends ReTzT message to the
sender process p;.

6. On receipt of the ReTxT message, the sender p;
retransmits the message m to the process p,.

[Theorem)] At least one process forwards a message
m to a process which fails to receive the message m.
a

6 Concluding Remarks

In this paper, we made clear what types of func-
tions to be realized in group communication protocol.
We are now discussing how to select other functions
so as to satisfy application requirements in change of
network.

References

[1] K. Birman and T. Joseph. Reliable Communication
in the Presence of Failures. ACM Trans. on Computer
Systems, 5(1):47-76, 1987.

[2] L. Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. CACM, 21(7):558-
565, 1978. '

[3] F. Mattern. Virtual Time and Global States of
Distributed Systems. Parallel and Distributed Algo-
rithms, pages 215-226, 1989.

[4] A. Nakamura and M. Takizawa. Reliable Broadcast
Protocol for Selectively Ordering PDUs. Proc. of
IEEE ICDCS-11, pages 239-246, 1991.

[5] A.Nakamura and M. Takizawa. Priority-Based Total
and Semi-Total Ordering Broadcast Protocols. Proc.
of IEEE ICDCS-12, pages 178-185, 1992,

[6] A. Nakamura and M. Takizawa. Causally Ordering
Broadcast Protocol. Proc. of IEEE ICDCS-14, pages
48-55, 1994.

[7] R.Prasad. Basic Concept of Personal Area Networks.
WWRF, Kick off Meeting, 2000.

[8] M. Rey. Transmission Control Protocol.
1981.

[9] X. Zhao, C. Castelluccia, and M. Baker. Flexible
Network Support for Mobile Hosts. MONET, 6(2),
2001.

RFC793,

