
「マルチメディア通信と分散処理ワークショップj 平成14年10月

Flexible Group Communication Protocol

Tomoya Enokido， Takao Komiya， Roziali Ghopur， and Makoto Takizawa
Department of COlnputers and Systems Engineering

Tokyo Denki U niversi ty
E-mail {eno.komi.rozali.taki}@takilab.k.dendai.ac.jp

In a distributed α~pplication， a group of multiple processesαre required to be cooperating by exchaη.ging mes-
sα.ges. A group protocol suppo付sα groupof multiple processes with the cαusally， possibly totαlly ordered
delivery of rnessages. The group protocol is陀quiredto suppo付 enoughQoSαnd types of service forα.ppli-
cations in change 01 QoS supported by the underlying networkαnd QoS requi何 ments.A flexible protocol is
composed 01αcollection 01 functions like retransmission and confirmation. There are multipleωys to realize
each function. The flexible group protocol dynαmically tαkesαtype of module for each protocol function which
is the most suitable forα:pplications in change 01 network QoSαnd QoS問qui何ment.

やわらかいグループ通信プロトコル

複戸智也小富貴雄 ウプルロズアリ 滝沢誠
東京電機大学理工学部

分散システムでは、グループ内の複数のプロセスがメッセージの送受信によって協調動作を行う。グループ通
信プロトコルは、グループ内の複数のプロセスに対してメッセージの送信や紛失の検出、紛失したメッセージ
の再送信などの様々なサービスを提供する。また、ネットワークのサービス品質 (QoS)は輯犠や機器の障害に
より動的に変化する。そのため、 lつのグループ通信プロトコルの提供するサービスの方式では、ネットワーク
のQoSの変化に対して、アプリケーションの要求する QoSを常に満足することはできない。本論文では、や
わらかいグループプロトコルを提案する。やわらかいグループ通信プロトコルは、メッセージの送信や紛失の
検出、紛失したメッセージの再送信なと、の機能モジュールから構成されている。ネットワークのQoSの変化に
対して、アプリケーションの要求する QoSを満足するように最適な機能モジュールを動的に選択することによ
り、やわらかさをアプリケーションに提供する。

1 Introduction

In group communications， multiple processes first
establish a group and then messages are exchanged
among processes. In the group， a process sends a
message to multiple processes while receiving mes-
sages from multiple processes. lvlessages are required
to be causally delivered to processes in the group [1].
A group communication protocol is rea.lized by fol・
lowing functions:

1. 1rlulticast of messages.

2. Receipt confirmation of message receipt.

3. Detection of message loss.

4. Retransmission of a messages lost.

5. Ordering of messages received.

There are various ways to realize these functions.
In addition， implementation of group protocol de-
pends on what types and quality of communica-
tion service the underlying network supports for pro-
cesses. Messages sent by a process may be lost and
unexpectedly delayed due to congestions and faults
in the network. Thus， quality of service (QoS) like
bandwidth and message loss ratio is changed. Fur-
七hermore，there are various types of networks like
personal area networks [7J， local area networks， and

wide area networks which support different levels of
QoS. For example， if the under1ying network sup-
port8 re1iable on争to・onecommunications， there is no
need to realize no mechanism to detect message los8
and recover from the message loss. If broadcast net-
works like Ethernet and radio network [9] are used， a
message can be sent to all the processes by one trans-
mission. Applica七ionsrequire the system to support
a group .of processes with various types of service.
For example， every message is required to be totally
ordered in a group of replicas of database service，
l.e. every process can recelve messages m a same or-
der. Some messages are allowed to be lost in some
kinds of multimedia applications. The higher level
of communication function is supported， the larger
computation and communication overheads are im-
plied. Hence， the system has to take only necessary
and sufficient types of functions to support service
required by application by taking usage of services
supported by the underlying network. 1n this pa-
per， we discuss a fiexible group protocol which can
dynamically suppo凶 typesand quality of service re-
quired by applications even if QoS supported by the
underlying network is changed. Thus， the ftexibility
of the protocol is realized by dynamically selecting

-87-

types of functions in change of service supported by
the underlying network.
1n section 2， we present what types of service an
underlying network supports. 1n section 3， we dis-
cuss group communication service. 1n section 4， we
discuss what types of functions to be selected to de-
sign a group communication protocol. In section 5，
we discuss how to support flexiblity by changing re-
transmission schemes.

2 Underlying Networks
A group of multiple processes Pl，…， Pn (nと2)
are cooperating through exchanging messages by us-
ing underlying network service. Networks are char-
acterized in terms of the number of destinations of
each message， level of reliability， and types of ordered
delivery of messages. First， there are two types of
networks， one-to-one and broαdcαst networks， with
respect to processes how many processes each mes-
sage can be sent to. 1n the one-to-one network， a
message is sent to one process by one transmission.
TCP /IP [8] supports one-to-one c∞om即nmun
v吋ic閃e.On the other hand， a message is sent to all the
proc倒 sesby one transmission in the broadcast net-
work. Ethernet and radio network [9] are broadcast
types of networks.
Secondly， networks support different levels of r争
liability. 1n the reliable one-to-one network， mes-
sages are delivered to the destinations with neither
message 1088 nor duplication in the sending order.
A TCP connection [8] supports re1iable one-to-one
communication service as long as the connection ex-
ists. 1n a reliable broadcast network， every process
receives all messages in a same order. In less-reliable
one-to-one networks， messages may be lost. 1n less-
reliable broadcast networks， some process does not
receive a message broadcast. The Ethernet supports
less reliable broadcast communication because some
frames are lost due to contention.
Lastly， we discuss in what order a d倒 tinationpro-
cess receives messages. Suppose a process sends mes-
sages to another process. 1n a sending order pre-
serving netwol'k， every destination process receives
a message in the sending order. This is supported
by a TCP connection hetween a pair of processes.
Now， suppose multiple processes send messages to
multiple processes. A process receives messages from
multiple processes. 1n a 如何回llyordering network， ev-
ery process receives the messages in the same order.
For example， Ethernet and radio networks support
the totally ordering service while it is less-reliable. If
each pair of processes communicate with one another
by using a TCP connection， each process reliabily r←
ceives messages in the sending order from each pro-
cess. However， a pair of processes may not receive
messages from different processes in the same order.
The underlying network is modeled to be a collec-
tion of bidirectionallogical communication channels，
each of which exists be

a group. Here， notations (pゎPj)andCtJ show a
channel betw明 na pair of process四 Piand Pj. If
each channel is realized by a TCP [8] connection，
the network supportsprocesses with reliable， send-
ing order preserved， one-to-one communic抗ionser-
vice. Each channel (Pi， Pj) supports some quality of
service (QoS)， delay time [msec]， message loss ratio
[%] and bandwidth [bps]. Let Qij show QoS sup-
ported by a channel (Pi' Pj). QoS supported by.each
channel is changed d ue to cong-estions in the networ k.
The change of the networ k is modeled to be change
of QoS supported by the network.

3 Group Communication Service
A group of multiple process回 Pb ・・・，Pn(n>l) are
exchanging messages in the.network. There is no cen-
tralized controller. Let Si (m) and r i (m) denote send-
ing and receipt events of a message m in a process
Pi・Amessage m 1 causally precedes another message
m2 (ml→m2) if and only if (iff) Si(m) hα:ppens be-
fore Tj(m) [1，2]， ml is caωαlly concurrent with m2
(ml 11 m2) if neither ml→ m2 nor m2→ ml. For
example， suppose there are three processes Pl， P2，
and Pa in a group G [Fig. 1 J • A process Pl sends
a message ml to a pair of processes P2 and P3・The
process P2 sends a message m2 to Pa after receiving a
message ml. Here， 111.1 caωally precedes 問2(ml→
m2). Due to communication delay， ml may al'rive at
the process P3 after m2・Theprocess P3 is required
to deliver rnl before m2 because m}→m2・Apair
of messages ml and m2 are cαusally delive陀diff m1
→ 'Tn2 and ml is delivered before m2 in every com-
mon destination of 'ml and m2・Somemessages are
causally concurrent. ln the totαlly orde何ddelivery，
all the messages are delivered in every common des-
tination of the messages in the same order. That is
a pair of messages rnl and m2 are totally delivered
iff m 1 and m2 are causally delivered if m 1→ m20r
m2→ ml， and ml and m2 are delivered in a same
order in every common destination of ml and m2 if
m} and m2 are causally concurrent.

Pl P2 P3

m

tl.me

Fig. 1: Causally ordered delivery.

Messages received are ordered by every proc倒 sin
the distributed approach. 1n order to causally de-
liver messages， each process Pi manipulates a vector
clock V = { vし…， Vn} [3]. Initially， every ele・
ment in the vector (V) is zero. Each time a process
Pi sends a message， vi :=只+1. Then a message
m carries the vector clock m. V (= V). On receipt
of a message m， ¥う:=max(Vj， m.lう)(j = 1，…， n，

-88-

j利)in a process Pi. A message m 1 causally precedes
another message m2 (112 1→ m2) iff 'ml. V < m2. V.
Thus， the procωs can causally deliver messages by
using the vector clock under an assumption that the
under1ying net.work is reliable. ~lessage gaps cannot
be detected by using the vector clock.
Nakamura and Takizawa [4-6] discuss a vector
of sequence llumbers色o.detect message 10弱 and
causally order messages. Each message m sent by
a process Pi isωsigned a sequence number m.seq.
The sequencenumber seq is incremented by one each
time Pi sends a message. The process Pi manipulates
variables rsql，…， rsqn to correctly receive messages.
Each variable rsqj shows a sequence number seq of
message which Pi expects to receive next from an-
other process Pi (j = 1，…， n). A message m sent by Pi
carries the receipt confirmation m. T，勾j(=TSqj)(j=1，
…， n). Suppose a process Pi receives a message m
from another process Pj・IfTSqj = m.seq， the proce邸
Pi accepts the message m. Otherwise， there is some
message m' from Pj where rsqj ::; m '.seq < m.seq， i.e.
Pj fails to receive m '. If Pi accepts a message m from
a proc白sPi' the receipt confirmation information
carried by m is stored in a matrix Ack， Ack[j，k] :=
m.r.勾k(k=l，…，n). Ame邸ageml caωαlly precedes
another message m2 (m 1→m2) iff ml.Tsqく m2.rsq
[6J. Suppose a process Pi accep臼 amessage m from
another process Pj. After receiving messages， the
messages received are tested by using Ack if the pro-
cess Pi accepts them. A message m received from a
process Pj is referred to as re-acknowledged bya pro-
cess Pi if m. seq <間川Ack[l，j]，…，Ack[n，j]). Here，
the process Pi is sure that m is received by every
process. Here， there still might be another process
where m is not re-acknowledged. A message m from
a process Pj is referred to asαcknowledged i百mis re-
acknowledged and there is one re-acknowledged mes-
sage mk仕omevery process Pk where m → mk. That
is， the process Pi is sure that m is 1・e・acknowledged
in every process， i.e. every proc邸sknows that every
other proc田ssurely receives the message m. Here，
the process Pi can deliver the message m.

4 Functions of Group Protocol
4.1 Control
There are following types of control schemes [Fig.

21:
1. Centralized control.

2. Distributed control.

(1) Cenlroliled∞n加 12)0協同bulGdcontrol

Fig. 2: Control scheme.

In the centralized control， there is one centralized
controller in a group. A process first sends a message

to the controller and then the controller forwards the
message to the destination processes. Each destina-
tion process sends receipt confirmation to the con-
troller if the process succe部fullyreceives the mes-
sage. Then the controller sends receipt confirma-
tion of the message to the sender if the controller
receives the confirmation message from a11 the desti・
nation processes. Most distributed systems like cur-
rent teleconference systems take this approach. It
takes at least two rounds to deliver messages since
every message is forwarded by the controller. On
the other hand， there is no centralized controller in
the distributed control scheme. Each process makes
a decision on correct receipt and delivery order of
messages received by itself. The vector clock [3] can
be used to causally order messages in each proce邸.
4.2 Transmission
There are following schemes to transmit a message
m to multiple processes [Fig. 31:

1. Direct transmission.

2. lndirect transmission.

In the direct transmission， each proc田sdirectly
sends a message to each destination， and directly re-
ceiv，ωmessages from other processes [Fig. 3 (1)].
Thus， a message can be delivered色oevery destina-
tion by one round.
In the indirect transmission， messages are first sent
to some proce回. The process おrwardsthe message
to another process and finally delivers the message to
the destination processes. The tree routi時 [6]is an
example of the indirect transmission. In the central-
ized control， the indirect transmission is adopted. It
takes more than one round to deliver a message in the
indirect one. The direct scheme is preferable in real-
time communication because of shorter delay time.
In the direct transmission， each proce回 isrequired
to make a decision on correct receipt and ordered de-
1ivery of messages by itself， i息 distributedcontrol.
4.3 Confirmation
Thereareおllowingschemes to confirm the m田sage
receip色[Fig.4]:
1. Centralized confirmation.

2. Decentralized confirmation.

3. Distributed confirmation.
In the centralized confirmation， every process sends
l'eceipt confirmation message to some process， e.g.
centralized controller. After receiving confirmation
messages from a11 the destination proc凶 ses，the pro・
cess sends a receipt confirmation to the sender pro-
cess. ln the decentralized one， a sender process plays

~
(1)αreellJar削指sion

(2) Inditeel岡聡刷sslon

Fig. 3: Transmission.

-89-

(1) Centrafized (2) D也centrallZed

(3) D縦刷lIed

ー一一ー..: message ー:contirmation

Fig. 4: Confirmation schemes.

a role of the centra1ized controller. That is， each des-
tination process sends a receipt confirmation to the
sender.

In the distributed confirmation scheme， each des-
色inationprocess sends a receipt confirmation to not
only the sender proc回sbut also all the other destina-
tion processes. Since a group includes n processes， a
sender process Pi sends (n -1) instances of a message
in the one-to-one network and one message instance
in the broadcast network. Then， each destination
process sends (n -1) confirmation messages in出e
one-to-one network and one confirmation message in
the broadcast network. Hence，ωtally (n -1)2 and
(n -1) messages are transmitted in the one-to-one
and broadcast networks， respectively. Thus， in the
one-to-one and broadcast networks， communication
overheads are O(n2) and O(n) for number n of pro・
ces民s，r回pectively.In order to reduce the number
of messages transmitted in the network， confirma-
tion information of message receipt is cαrried bαck
by other messages. In addition， a process does not
send a confirmation message錨 soon部 theprocess
receives a message if the process does not have data
to send. If the proc邸sreceives some number of mes-
sages or it takes some time since the process h舗
most recently received a messaεe， the process sends
the confirmation of every m回sagewhich is not con-
firmed yet. Thus， the delayed confirmation strategy
is adopted to reduce the number of messages trans-
mitted.

Suppose a proce間的 sendsa message to proc回ses
Pl，…， Pn. In the centralized confirmation， every
destination proc倍 sPi sends a confirmation message
to one controller process Pk if Pi is succeeded in re-
ceiving the message m. If the controller process Pk
receives confirmation messages from all the destina-
tion proc邸 ses，the process Pk sends a confirmation
message to the sender Pi. In the decentralized confir-
mation， each destination process Pj sends a confirma-
tion message back to a sender process Pi of message
1n. Each process Pi does not send only confirmation
message each time the process receives a message. If

there is no data to be sent， the procωS Pi sends a
confirmation of the message to each destination pro-
ce鉛 ofthe message after Pi receives some number of
messages. Tachikawa and Takizawa show that the
overhead of distributed way can be reduce to O(n)
by using these ways.

4.4 Detection of me8sage 1088
M飴 sagesare lost due to buffer overrun， unexpected
delay， and congestion in the network. Message loss
can be detected by checking sequence numbers邸
pr白entedin the preceding section. On receipt of a
message m from another proc回sPj， a proc邸SPi ac-
cepts m if rsqj = m.seq. Then， rsqj is incremented
by one. Otherwise，. Pi finds there is some me弱age
m' from Pj where rsqj~ m'.seq < m.seq. Now sup-
pose that a process Pi sends a message m. The mes-
sage m carri田 asequence number m.seq and receipt
confirmation m.何 q(=(m.rsqlい ..，m.rsqn)). Here，
suppose a procωS Pl sends a message ml to a pair
of processes P2 and P3・Here，P2 fails to receive ml
although P3 accepts ml・Theproc邸SP3 sends a mes-
sage m2 to P2 a此erreceiving ml ・ Here，m2. rsq 1三
ml.seq. Now， P2 receives m2・Here，rsql < m2. rsq
in P2 since P2 expects to receive ml from Pl i.e. r，勾1
= ml.seq2・Thusa proc回SPi can find loss of mes-
sage ml from a proce邸 Pjon receipt of a m邸sage
m2 from another process Pk if rsqjく m2・rsqj(j#= k).

Fig. 5: Detection of message loss.

If a proc白sselectively sends m邸sagesto a subset
of processes， noもnecessarilyall the proc関ses，addi-
tional subsequence numbers ssql，…， ssqn are used.
Here， s勾'jis incremented by one each time a pro-
cess sends a message destined to a process Pj (j=1，
..， n). Each process manipulates variables rssq.， …，
rs勾non receipt of a m白sagem from a process Pj， a
process Pi accepts m if m.ssq = rssqj・Thenrssqj:=
rssqj + 1. If m. ssqj > rssqj， Pi fails to receive a mes-
sage m' from Pj when rssqj < m匂勾'j< m.ssqj・A
sender process can detect message loss of destination
process by timeout mechanism.

4.5 Retransmission
If a process Pi fails to receive a message 1n， m is
required to be retransmitted. There are following
retransmission schemes with respect to which process
ret即 lsmitsa message m [Fig. 6]:

1. Sender retransmission.

2. Destination retransmission.

Suppose a proc邸SPj sends a message m to prか
cesses and one destination process Pi fails to receive

-90-

m. The first way is that the sender proc回sPj re-
transmits the message m to Pi・Thisis the sender
retransmission， which is adopted by most protocols.
Another way is the destination retransmission. Here，
one or more than one destination process which has
safely received the message m forwards m to the pro-
cess Pi・Inthe distributed confirmation， not only a
sender process but also every destination process re-
ceives receipt confirmation of a message m from ev-
ery other destination process. Hence， each process
can know if every other destination process safely re-
ceives a message m. If a destination process Pk finds
that another destination process Pi has not received
the message m， Pk forwards m to Pi・Here，if mul-
tiple destination process forward the message， the
network traffic is increased. One process has to be
selected. One way is that destination process nearest
to Pj forwards the message.

5 Flexible Protocol
5.1 Architecture
The classes of the protocol functions for transmis-
sion， confirmation， retransmission， detection of mes-
sage loss， and the control schemes are stored in a
protocol module base (PMB). The flexible group pro-
tocol module (FGPM) takes one way for each type
of group communication functions from PMB， which
can support an application with necessary and suι
ficient QoS， given QoS supported by an underlying
network. The FGPM is distributed in every prか
cess. The FGPM monitors QoS supported by the
underlying network. The network QoS information
monitored is stored in a QoS base (QB). If QoS is
detected to be changed， the FGPM reconstructs a
group protocol module (GPM) by selecting protocol
function in the protocol base.
5.2 Retransmission
5.2.1 Cost model

First， we discuss which retransmission scheme the
group protocol takes， i忠 senderand destination re-
transmission ones. Suppose a process Ps sends a mes-
sage m to processes in a group G and then a pair of
process白 Ptand Pu receive the message m while an-
other process Pv fails to receive m.. We use following
parameters:

1. dij = delay time of channel Cj between a pair
of processes Pi and Pj [msec].

2; fij = probabi1ity that a message is lost in a chan-
nel Cj.

sヘ-' m J 戸r
n m/' Pi ~
p・ 3YL.2J~m -.Pk .o二mEo ~と。

司 、〉尽も m 、・もt:.
、Tちこ Pi ・R¥、 t

、o op，
(1) Sender retransmission. 一

持ー failto receive

・・静 retransm熔sion

(2) Destination
retransmlsslon.

Fig. 6: Retransmission scheme.

PMB

Fig. 7: Flexible group protocol.

3. bij = bandwidth of the channel Cj [bps1.
4. Iml = size of message m (bit] .
First， let us consider the sender retransmission.
The sender Ps detects that a d回tinationprocess Pv
has not received the message m. It takes (2dij+ Iml/
bij) (msec1 to detect message loss a此erPs sends the
message m. Then Ps retransmits m to Pv・Here，the
m倒 sagem may be lost again. The expected time
STsv and expected number S Nsv of message to be
transmitted to deliver a m邸 sagem to a destination
Pv are given as follows:

1. STsv = (2dsv + Iml/ bsv)/{1ーんv).
2. SNsv = 1/{1ーんv)'
In the destination retransmission， some destination
process forwards the message m to the process Pv
[Fig. 8]. Suppose the proce回 Ptforwards the mes-
sage m to Pv. The expected time DTsv and expected
number DNsv of messages to deliver m to Pv are
given舗 follows:

1. DTs旬 =(dst + Iml/ bst) + (dtv + Iml/ btv)/(1
-~ω) .
2. DNsv = (2ーん)/(1ーん).

Ps Pt PU PV
m

「
DT"..，.

L
Fig. 8: Destination retransmission.

If STsv > DTsv， the destination process Pt forwards
the message m to the prpcess Pv・
Each process Pt monitors delay time dtu， band-
width btu， and loss probability ftu for each process
Pu. For example， the process Pt obtains these QoS
informations by periodically sending ping messages
to all the processes in the group. The process Pt
maintains the quality of service (QoS) information
in a variable Q where Qtu = (btu，dtuJω)ゐru
1，…， n. If the process Pt receives QoS information
from another process Ps， Q su = (bsu，dsu，んu) for u
= 1，…， n. Each process Pt checks the retransmission
condition by using the QoS information Q.

-91-

5.2.2 Change of retransmission scheme

ln change of QoS， each process Pt in the group G
changes the type of retransmission function. Suppose

a sender process Ps sends a message m and all the
proc回sestake the sender retransmission scheme. As

shown in Fig. 8， a process Pv fails to receive the mes-
sage m. According to the change of QoS supported

by the underlying network， the sender Ps makes a
decision to change the retr剖lsmissionscheme with
the destination one， say a process Pt forwal'ds the
message m to Pv・However，the process Pt still takes
the sender retransmission. Here， no process forwards
the message m to Pv・lnorder to prevent this silent
situation， we take a following protocol:

1. A process Pt sends a message m if Pt is a sender
of m. If Pt is a destination process of m， Pt sends
a receipt confirmation of m to the sender and all
the other destir阻止ionprocesses in the group G.

2. The proc飴 SPt detects that P1J has not received
the message m.

3. The process Pt selects a retransmission scheme
based on the QoS information Q.

4. Suppose the process Pt takes the destination re-
tr・ansmissionscheme and Pt is a proc田stoおr-
ward the message m to a process Pv・

• Pt forwards m to Pv・
• Pt sends a message Retxt to the sender Ps
and a destination process， say Pv， which is
next best process to forward m.

5. If the process Pi is not a process to forward the
message m， Pt waits for receipt confirmation if
m from Pv・

6. Suppose proc回sPt is a sender of a message m.
If Pt takes a sender retransmission scheme， Pt
retransmits m to Pv・IfPt takes a destination
retransmission scheme， Pt waits for Retxt m邸・
sage from a destination. If Pt does not receive
ReTxT， Pt retransmits m to Pv.

Next， suppose all the processes take the destination
retransmission scheme in a group G. Here， a process
Ps sends a message m and a process Pu fails to receive
a message m. Suppose a process Pt is a process to
forward m. Here， suppose QoS supported by the
network is changed and Pt decides to take the sender
retransmission scheme. However， the sender Ps still
takes the destination retransmission scheme. Here，
no process forwards the message m to the process Pu.
In order to overcome the difficulty， Pt still forwards
the message m to the process Ptt.

1. Sender proc邸 sPs sends a message m. to all the
destination processes in the group G.

2. All destination proc邸 sesin G send receipt con・
firmation not only to sender process Ps but also
to other destination processes in group.

3. Process Pu fails to receive the message m.

4. A destination process Pt detects that Pu has not
received the message m.

5. The process Pt forwards m to the process Pu at
the same time， Pt sends Re TxT me鉛ageto the
sender proce.路 PS'

6. On receipt of the Re TxT message， the sender Ps
retransmits the message m to the process Pu・

[Theorem] At least one process forwards a message
m to a process which fails to receive the message m.
口

6 Concluding Remarks
In this paper， we made clear what types of func-
tions to be realized in group communication protocol.
We are now discussing how to select other functions

so鎚 tosatisfy application requirements in change of
network.

References
[1] K. Birman and T. Joseph. Reliable Communication
in the Pr回enceof Failures. A CMηuns. on Computer
Systems， 5(1):47-76， 1987.
[2] L. Lamport. Time， Clocks， and the Ordering of
Events in a Distributed System. CACAf， 21(7):558-
565， 1978.
[3] F. Mattern. Virtual Time and Global S句協 of
Distributed Systems. Parallel and Distributed Algo-
rithms， pages 215-226， 1989.
[4] A. Nakamura and M. Takizawa. Reliable Broadcast
Protocol for Selectively Ordering PDUs. Proc. 01
IEEE ICDCS・11，pages 239-246， 1991.
15] A. Nakamura and M. Takizawa. Priority-Based Total
and Semi-Total Ordering Broadcast Protocols. Proc.
olIEEE ICDCS-12， pages 178-185， 1992.
16] A. Nakamura and M. Takizawa. Causally Ordering
Broadcast Protocol. Proc. 01 IEEE ICDCS・14，pages
48-55， 1994.
17] R.Pr路町1.8asic Concept of Personal Area Networks.
lVl-iノRF，Kick ofJ Meeting， 2000.
18] M. Rey. Transmission Control Protocol. RFC799，
1981.
[9] X. Zhω， C. Castelluccia， and M. Baker. Flexible
Network Support for Mobile Hosts. MON町 ¥6(2)，
2001.

-92-

