
IPSJ SIG Technical Report

Intuitive Performance Visualization Techniques

for Topological Analysis on Capability Machines

Todd Gamblin,†1 Martin Schulz,†1 Timo Bremer,†1

Joshua A. Levine†2 and Valerio Pascucci†2

The largest modern supercomputers are increasingly built using high-
diameter networks with scalable topologies such as meshes and tori. These
networks are cost effective in that they reduce the cost of switching hardware
and are easily expandable. However, these topologies also make application
performance sensitive to the placement of application processes on the phys-
ical network. Existing techniques to optimize applications for networks such
as these do not take complex internal communication structure or application
phases into account. However, these features could significantly reduce the
complexity of the search for an optimal mapping. Moreover, they allow for
more intuitive attribution of performance data to application constructs.
This paper describes a communication measurement framework to record per-

formance data pertaining to application phases and application communication
structure using instrumentation provided by application developers. We show
that visualizing data collected using our framework can provide valuable in-
sights into the performance of large-scale application codes, and that such data
may eventually be used to guide automatic node-mapping for future petascale
and exascale applications.

1. Introduction

Modern supercomputing systems have high-diameter interconnection networks

connecting tens to hundreds of thousands of nodes. To build networks of this

size affordably, hardware vendors have adopted scalable network topologies such

as meshes and tori. Compared to commodity network topologies, such as fat

trees, this reduces the cost of switching hardware and allows the network to

be expandable. However, these topologies also increase the network diameter,

†1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
7000 East Avenue, Livermore, CA, USA 94550

†2 Scientific Computing & Imaging Institute (SCI), University of Utah
Salt Lake City, UT, USA 84112

and they make application communication performance sensitive to the layout of

application processes on the physical network.

Finding an optimal node mapping for a given interconnection is an NP-

complete problem, and it has been studied extensively since the early days of

parallel, distributed-memory computers6)–8),13). Recently, the trend towards high

diameter networks and the trend towards on-node NUMA communication topolo-

gies has once again brought the node mapping problem to the forefront of high

performance computing, and several models have been devised for application

node mapping3)–5),11).

Several key problems remain to be addressed:

(1) Existing node mapping techniques typically use application-agnostic heuris-

tics based on a simple communication graph, and they attempt to globally

optimize this structure11). Many HPC applications have distinct commu-

nication phases, and optimizing an aggregate communication graph over-

estimates the necessary bandwidth because not all phases’ communication

takes place at the same time.

(2) Solving the general graph problem does not take advantage of communica-

tion structure that may be known a priori by the application developers,

further limiting potential optimizations.

(3) While machines such as the IBM BlueGene series present complete, reg-

ular meshes/tori to the application, other large supercomputers do not

not necessarily give each job a complete mesh. On these machines, there

may be holes in the network topology, or the application may be given an

irregularly shaped partition, further complicating the mapping problem.

(4) As we move towards larger petascale and exascale machines, vendors are

beginning to introduce networks with more complex topologies. Machines

such as the newly released K supercomputer1) and the soon-to-be-released

IBM BlueGene/Q use higher-dimensional mesh/tori to reduce diameter,

but mapping applications to these topologies is not well understood.

The first two issues are measurement-related. Attempts to address the node

mapping problem have measured running applications, but they have done so

across entire runs, aggregating communication that occurs in separate phases.

Real applications often have many distinct communication phases and commu-

1 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.51
2011/7/28

IPSJ SIG Technical Report

nication structures, and developers must expose these, to allow tools to measure

and present network performance data in an intuitive manner. The third and

fourth issues are analysis problems. Application developers have devised “sim-

ple” schemes to map their applications onto regular topologies, but mapping onto

high-dimensional, possibly incomplete meshes will require automated, dynamic

analysis to achieve optimal performance.

This paper describes measurement tools and visualization techniques that we

are currently developing to help application developers understand how their

applications are affected by the above problems. We have developed:

(1) a framework to measure and display application-semantic communication

on the physical network topology, enabling intuitive visualization of net-

work performance data across phases and communication structures;

(2) techniques to predict network bandwidth consumption and to visualize hot

links in the network for poorly laid out applications;

(3) visualization techniques using our tool data that display particular appli-

cation communication patterns in their host network domain, allowing us

to differentiate between slow and fast communicators; and

(4) we are currently developing techniques for more detailed attribution and

scalable collection of communication performance data.

The remainder of this paper is organized as follows. In Section 2 we discuss

our modular measurement framework and how we collect network measurements

from running MPI applications. Section 3.1 describes how this instrumentation

is applied to the AMG solver code and shows clearly how it aids in visualizing

phases. Section 3.2 describes our instrumentation of the pF3D Code to make it

aware of network topologies. Finally, in Section 4 we state our conclusions and

outline our plans for finer-grained attribution of performance to application data.

2. Application Semantic Measurement

Traditional performance analysis tools consider performance measurements in

terms of processes, source code, and sometimes time. Communication profilers

and tracers such as mpiP18) and Vampir NG12) attribute time spent in com-

munication routines to particular call sites and processes within the MPI rank

domain. While this approach is general and can be applied easily to any MPI

Fig. 1 Vampir trace showing communication as lines between MPI ranks.

application, such tools do not allow the user to attribute performance measure-

ments to particular aspects of application structure or particular parts of the

network hardware. This loses potential insight into communication costs and

congestion on the network. Figure 1 shows a trace collected from LLNL’s Al-

gebraic Multigrid (AMG) solver. Communication patterns are visible, but it is

not clear how they relate to the network hardware, because only the MPI rank

space is shown on the left axis. We are developing new measurement schemes

that attempt to address these problems.

In accordance with commonly available performance tools, existing approaches

typically approach the node mapping problem using aggregate communication

measurements over time. This aggregated, full-run data is then fed to graph

partitioning algorithms11),14) or other heuristic optimizers. Aggregating com-

munication over time can lose details about which communication patterns are

temporally separate from one another, and summing many temporally disjoint

communication structures into a single graph can also imply congestion where

there is none. This can degrade performance by moving load away from links

that are heavily used in all phases, but never saturated.

Other techniques take the application communication structure into account by

attempting to use simple generalized heuristics to detect communication patterns

in structured graphs3),5), but this approach can detect only regular patterns such

as stencils in the application’s communication structure. More complex commu-

nication patterns such as FFTs and multi-node collective algorithms are not yet

2 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.51
2011/7/28

IPSJ SIG Technical Report

detectable using these schemes.

To detect the subtleties of MPI application behavior, tools must take into

account underlying communication groups and analyze their behavior indepen-

dently. The MPI applications that most frequently run on large-scale supercom-

puters often have many distinct parallel phases that execute in sequence. These

may be numerical solvers, I/O schemes, or communication-intensive transform

algorithms. For many applications, there are also repeated communication pat-

terns within phases that execute concurrently on separate parts of the network.

Without insight into the application, automatic detection of such behaviors is

infeasible, and we can only apply a conservative set of optimization techniques

on the application to optimize its communication layout.

In contrast, by analyzing and optimizing phases and repeated structures in-

dependently, we can both reduce the size of the communication graph to be

analyzed (as each phase and/or structure can now be considered separately) and

we can present this data more intuitively to tool users. Reducing the communica-

tion graph size reduces the number of combinatoric possibilities we must consider

for node layouts, so this approach has obvious benefits for analysis. Considering

phases and substructures separately also makes things more understandable for

application developers. Typically, developers understand the phases of their own

application, and displaying performance data in terms of a domain that they

understand is intuitive.

We have found that application developers at LLNL are very willing to expose

information about their application’s particular phases to performance tools, es-

pecially if it results in higher-quality performance measurements. However, there

is no standard mechanism for exposing phases to performance tools, and perfor-

mance tool developers often work in isolation from application developers.

To address this issue, we have designed measurement tools using the PMPI tool

interface provided by MPI that allow us to achieve three new types of attribution.

Figure 2 shows a diagram of our framework.

At the top of the stack, we allow developers to specify semantic information

inside of applications in a form accessible to tools. Working with application

developers, we place MPI Pcontrol(int) instrumentation calls in in application

source code. These calls are then intercepted by our tools, and the single inte-

PNMPI Interception Framework�

MPI Library�

Torus/Mesh Topology Attribution�

Datatype Tracking�

MPI Communication Measurement�

Application�

MPI_Status Tracking�

MPI_Request Tracking�

Hardware Network Counter Measurement�

Existing, reused modules New code

Pcontrol Instrumentation�

Fig. 2 PNMPI tool architecture showing reused and new components.

ger passed to MPI Pcontrol(int) is used by the tools to determine that a new

phase is beginning. We can then use this information to account for each phase

separately.

Next, our PMPI tools track communication structures by examining MPI com-

municators as they are created within application. We allow performance data to

be attributed to separate communicators, allowing for a more detailed accounting

for total time spent executing the same code on different subgraphs of the full

network.

Our tools provide a layer that allows us to attribute measurements not only to

particular MPI processes but also directly to particular coordinates on the phys-

ical network. This allows us to associate communication within the application

(i.e., between MPI processes through messages) with actual packet data moving

over the network. Where performance counters are available, we can measure

the network traffic directly with a final hardware counter module.

Our measurement techniques are implemented modularly using the PNMPI

tool virtualization environment16). PNMPI allows multiple PMPI tools to be run

3 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.51
2011/7/28

IPSJ SIG Technical Report

together by intercepting calls from the application to MPI and then delegating

to multiple tools organized as a stack before routing the function call to MPI.

Using this approach, we are able to combine a rich set of modules that collect

different sets of performance data depending on the application used and the host

architecture. In the next section, we detail how we have used this framework on

two applications, and we detail the performance visualizations possible with our

approach.

3. Case Studies

In this section, we describe the application of our measurement system to

two large-scale parallel applications at LLNL. We describe the instrumentation

we added to these applications and how it relates their semantics, and we show

visualizations that enable us to better understand the communication behavior of

these applications and its relationship with network topology on large machines.

In both cases, our visualizations revealed key performance characteristics of the

applications.

We use two machines in our case studies. The first is a single-rack, 4,096-

processor IBM BlueGene/P system called dawndev. Its network has a 1,024-node

torus topology, of which 512 nodes were available to us for these experiments.

Each processor in the network contains 4 PowerPC 450 cores running at 850Mhz.

On BlueGene/P machines, partitions of 512 or more nodes comprise a fully con-

nected torus, and all nodes in the partition must be operational for the partition

to boot. The second machine is Cielo, a Cray XE6 system at Los Alamos National

Laboratory (LANL). Each of Cielo’s nodes offers higher performance than a node

of the BlueGene/P machine, with 2 8-core AMD Magny-Cours chips and a higher

bandwidth network. Cielo has a total of 6,704 compute nodes in a torus/mesh

configuration, for a total of 107,264 compute cores. However, the Cielo scheduler

does not always give jobs regular partitions. Jobs may be allocated to irregularly

shaped slabs of processors depending on what is already running on the machine.

Further, the network is shared between jobs on the Cielo machine, so there can

be network contention between traffic from applications running concurrently on

the machine.

(a) 8x8x8, level 2. (b) 8x8x8, level 2, model. (c) 8x8x8, level 2, ratio.

(d) 8x8x8, level 6. (e) 8x8x8, level 6, model. (f) 8x8x8, level 6, ratio.

(g) 2x4x64, level 1. (h) 2x4x64, level 1, model. (i) 2x4x64, level 1, ratio.

Fig. 3 AMG network traffic measured in HW (left), MPI (middle), and MPI/HW (right).

3.1 Algebraic Multigrid Solver

Algebraic Multigrid (AMG)15) methods are used to solve large, sparse linear

systems in a number of production applications at LLNL. Here, we examine

the hypre9) library’s BoomerAMG10) benchmark, part of the Sequoia benchmark

suite, a set of acceptance tests for the upcoming BlueGene/Q system at LLNL.

This code will need to run efficiently on high-dimensional torus networks, so

we are particularly interested in its performance on current capability-class ma-

chines.

The AMG solver is structurally interesting because it has multiple levels with

very different communication patterns. Coefficients of AMG’s system of equa-

4 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.51
2011/7/28

IPSJ SIG Technical Report

tions are distributed over all processors. As the solve progresses, the coefficients

are coarsened so that the next level is consolidated to a smaller set of processes.

The larger the problem, the more levels of coarsening may be necessary. When a

the coarse-grained solve completes, its results are interpolated back to the finer

levels, and the solve progresses at the fine grain again. This process of iterative

coarsening and refinement is called the V cycle, because the solver’s progression

through the levels and back resembles a ’V’.

AMG’s levels can be considered as separate phases with very different com-

munication patterns. At fine grain, AMG communication is essentially nearest-

neighbor, as nodes message their immediate neighbors to get nearby fine-grained

coefficients. As the data is coarsened, however, AMG’s data is confined to a

smaller set of processors, and communication becomes sparser. Typically, nodes

have more neighbors at coarse granularity, so per-node bandwidth requirements

increase.

We worked with the AMG developers to mark the code for each level of AMG’s

V-cycle using our phase-marking MPI Pcontrol calls. We then measured com-

munication at the MPI level by recording the total number of bytes sent over

the network by each communication call intercepted by PMPI. Concurrently,

we recorded the low-level BlueGene/P hardware counters. On BlueGene/P, the

hardware counters give us the number of packets sent in each direction on each

of the 6 torus links out of every node.

To predict network traffic from our MPI message trace data, we used a simple,

congestion-free routing model, and we assumed an infinite amount of available

bandwidth per link. Clearly, this is not the correct model for the BlueGene/P

network. In reality, the links have a limited amount of bandwidth, and the ma-

chine will dynamically route packets around congestion. However, this model

will tell us how much bandwidth would pass through each link in an ideal sce-

nario, and we can use this in conjunction with hardware counter measurements

to detect where adaptive routing is happening, and to discover “hot” links for

the application. To do this, we simply divide the modeled bandwidth by the

measured bandwidth, and the resulting plot clearly shows which links are bot-

tlenecks in the MPI application. Saturated links will show higher modeled than

measured bandwidth in spots where traffic has been routed away.

We ran the test AMG problem on an 8×8×8 512-process 3D torus partition of

the dawndev machine. This test had 32.7 million coefficients, and the dimensions

of the AMG domain decomposition wee set to 8×8×8 to match the host partition

on the machine. For this problem size, there are a total of 8 levels of refinement.

We then ran the same problem with a 2×4×64 domain decomposition projected

onto the same 8 × 8 × 8 torus for comparison. Figure 3 shows these results for

selected levels of AMG.

In Figures 3(a-c), we see the fine-grained communication at level 2 of the AMG

solver. The communication is well balanced throughout the torus, as the only

communication is nearest-neighbor within the fine grid. Our traffic predictions

match our measurements very closely, as we see that the value on the ratio plot

is uniformly 1.

In Figures 3(d-f), we show the much coarser traffic at level 6 of AMG. At this

level, the number of nodes actually communicating has become sparse. We can

see this clearly on the torus, as most of the outer links have very little traffic.

Traffic volume increases as we move towards the center of the partition, and we

can clearly see a hot spot in the middle, along one of the vertical links within

the torus. At this level our predicted bandwidth values are very close to the

measured values, as well.

Finally, in Figures 3(g-i), our modeled and measured performance diverge, in-

dicating saturated links that the machine corrected for through dynamic routing.

These differences are small, but they clearly show the path that packets take in

the BlueGene/P network to achieve higher bandwidth when links become satu-

rated due to poor embedding of our problem in the host partition.

In all of these cases, application developers can clearly see where in the torus

hot links are, and they can use this insight to create better node mappings for

coarse levels of the AMG problem.

3.2 pF3D

pF3D2),17) is a laser-plasma interaction code used at LLNL’s National Ignition

Facility (NIF). The code is frequently run on hundreds of thousands of processors

on BlueGene/P machines at LLNL and LANL, with excellent weak scaling. pF3D

has also been run on the Cielo machine on up to 64K processes, but scaling there

is not as efficient as on BlueGene machines.

5 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.51
2011/7/28

IPSJ SIG Technical Report

(a) XYZT node mapping (b) Block mapping

Fig. 4 In (a), the torus is filled with planes but only links in a single direction will be used
for the FFT. In (b), tiling smaller boxes allows use of links in multiple dimensions.

pF3D’s simulated domain is decomposed into x× y × z grid of processes, each

of which models an equally sized chunk of the problem grid. In the simulated

space, a laser runs along the z axis, and large numbers of 2D FFTs are computed

within the xy planes transverse to the beam. Each 2D FFT in pF3D is entirely

independent of the others, and MPI Alltoall communication occurs only within

these xy planes. The 2D FFTs can consume up to 30% of the runtime of pF3D,

so it is important that they are mapped efficiently to the network.

On BlueGene machines, a simple layout of FFTs on the hardware maps xy

planes in the simulated application domain to xy planes in the BG/P torus.

Figure 4(a) shows one such plane in this configuration for the x direction of the

FFT, with communicators denoted by color. Here, only links in the x dimension

are used by the transform. When the slab of processes performs the y direction

of the transform, the directions flip, and only the y links are used for message

passing.

To better exploit the BlueGene/P network, pF3D employs another mapping

scheme with each simulated plane folded into a block on the BlueGene/P network.

Figure 4(b) shows this configuration. Again, communicators are highlighted by

color, but with the remapping, multiple dimensions are used for communication

(a) Fastest Communicators (b) Slowest Communicators

Fig. 5 Layout within the Cielo network of the fastest and slowest 2D FFT planes for pF3D.
Slower FFT planes to be longer and have more holes.

within the transform. Instead of stacking xy planes along the z axis, blocks are

tesselated within the torus.

On Cielo, static node mappings like these are not as effective because processes

are not allocated in regular partitions. Rather, the lowest-ranked processors in

the system according to a linear node order are assigned to jobs as they are

allocated. There is thus no guarantee that all of pF3D’s planes will have the

same node mapping, because it is no longer possible to tesselate them within an

allocation. Further, in a BlueGene/P system, we could assume that all FFTs

would finish in the same amount of time due to their identical messaging rates

within the torus. On Cielo, some planes may take longer than others. Since

pF3D is a bulk synchronous application, this causes a load imbalance at the end

of the FFT phase, and fast planes may sit idle while slow planes finish running.

A simple mapping will thus not suffice for Cielo, because the shape of a job of a

certain size may change on each run.

We used our visualization techniques to verify this load imbalance between

differently shaped planes on the Cielo machine. We recorded the maximum time

spent in the FFT phase on all processes within the same FFT plane, and we then

ranked these times and plotted the shapes of the fastest and slowest FFT planes

6 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.51
2011/7/28

IPSJ SIG Technical Report

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

18

z-range (hops)

A
llt

o
al

l T
im

e
(m

s)

Fig. 6 Correlation of elapsed time to Z-range for FFT Alltoalls on Cielo

in their positions on the Cielo network. Figure 5(a) shows the fastest planes,

differentiated by coloring, and Figure 5(b) slows the slowest FFT planes. In the

figures, it is easy to see that the faster communicators have tight aspect ratios

and very few holes. Conversely, the slowest FFT planes were elongated along the

Z-axis, which allows fewer links to be used for all to all communication. Some

of the slow planes also displayed large holes, which would serve to increase the

time for messages within the plane to reach their destinations.

Having established this trend using visualization, we verified it by correlating

maximum time spent in MPI Alltoall with the maximum hops between any two

z coordinates within the communicator. Figure 6 shows a clear positive trend

between z elongation and time. The trend is more rigid among lower ranks, but

there is noticeably more variability in MPI Alltoall timing up to a z-range of

around eight. After eight hops, MPI Alltoall calls are slightly faster, but not as

fast as z-ranges of six or fewer.

4. Conclusions and Future Work

We have presented a framework that allows attribution of performance data to

application semantics. Our framework allows application developers to instru-

ment their code and to gather performance data describing its communication

patterns and structure. It also allows this data to be visualized on the same topol-

ogy as the host machine’s network, enabling developers to discover hot links and

slow structures in their application’s layout.

These are exploratory techniques, and we have developed these visualizations

to gain understanding of a complex domain. Currently, we have two future di-

rections. First, we are developing techniques for more fine-grained attribution

of performance data. This paper presented methods for attributing communi-

cation costs and bandwidths to inter-node links in network topologies, but we

would like to know more in particular about the types of communication going

over those links. Specifically, we would like to attribute communication to source

code regions and to parts of the application’s data model, and visualize this in-

formation on the network topology. We are currently investigating techniques

to preserve this information scalably and to display it intuitively. Second, we

are developing techniques to automate this type of analysis so that it can be ap-

plied to high-dimensional networks on future supercomputers. This will involve

taking the lessons learned from visualization of lower-dimensional topologies and

developing general approaches for more complex network topologies.

Acknowledgments Part of this work was authored by a contractor of the

U.S. Department of Energy under contract DE-AC52-07NA27344 (LLNL-CONF-

481092). Accordingly, the U.S. Government retains a nonexclusive, royalty-free

license to publish or reproduce the published form of this contribution, or allow

others to do so, for U.S. Government purposes.

References

1) Ajima, Y., Sumimoto, S. and Shimizu, T.: Tofu: A 6D Mesh/Torus Interconnect
for Exascale Computers, Computer, Vol.42, No.11, pp.36 –40 (online),
DOI:10.1109/MC.2009.370 (2009).

2) Berger, R.L., Lasinski, B.F., Langdon, A.B., Kaiser, T.B., Afeyan, B.B., Cohen,
B.I., Still, C.H. and Williams, E.A.: Influence of spatial and temporal laser beam
smoothing on stimulated brillouin scattering in filamentary laser light, Physics Re-
view Letters, Vol.75, No.6, pp.1078–1081 (1995).

3) Bhatele, A. and Kale, L. V.: Application-specific Topology-aware Mapping for
Three Dimensional Topologies, Proceedings of Workshop on Large-Scale Parallel
Processing (IPDPS ’08) (2008).

4) Bhatelé, A. and Kalé, L.V.: Benefits of Topology Aware Mapping for Mesh In-
terconnects, Parallel Processing Letters (Special issue on Large-Scale Parallel Pro-
cessing), Vol.18, No.4, pp.549–566 (2008).

5) Bhatelé, A., Kalé, L.V. and Kumar, S.: Dynamic Topology Aware Load Balancing

7 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.51
2011/7/28

IPSJ SIG Technical Report

Algorithms for Molecular Dynamics Applications, 23rd ACM International Confer-
ence on Supercomputing (2009).

6) Bokhari, S.H.: On the Mapping Problem, IEEE Trans. Computers, Vol.30, No.3,
pp.207–214 (1981).

7) Bollinger, S.W. and Midkiff, S.F.: Processor and Link Assignment in Multicom-
puters Using Simulated Annealing, International Conference on Parallel Processing
(ICPP) (1988).

8) Ercal, F., Rmanujam, J. and Sadayappan, P.: Task Allocation Onto a Hypercube
by Recursive Mincut Bipartitioning, Proceedings of the 3rd Conference on Hyper-
cube concurrent computers and applications, ACM Press, pp.210–221 (1988).

9) Falgout, R., Jones, J. and Yang, U.: The Design and Implementation of hypre, a Li-
brary of Parallel High Performance Preconditioners, Numerical Solution of Partial
Differential Equations on Parallel Computers (Bruaset, A. and Tveito, A., eds.),
Vol.51, Springer-Verlag, pp.267–294 (2006).

10) Henson, V.E. and Yang, U.M.: BoomerAMG: a Parallel Algebraic Multigrid Solver
and Preconditioner, Applied Numerical Mathematics, Vol.41, pp.155–177 (2000).

11) Hoefler, T. and Snir, M.: Generic Topology Mapping Strategies for Large-scale
Parallel Architectures, Proceedings of the 2011 ACM International Conference on
Supercomputing (ICS’11), ACM, pp.75–85 (2011).

12) Knüpfer, A., Brunst, H. and Nagel, W.E.: High Performance Event Trace Visu-
alization, Euro Workshop on Parallel, Distributed and Network-Based Processing
(PDP 2005) (2005).

13) Lee, S.-Y. and Aggarwal, J.K.: A Mapping Strategy for Parallel Processing, IEEE
Trans. Computers, Vol.36, No.4, pp.433–442 (1987).

14) Pellegrini, F. and Roman, J.: Scotch: A software package for static mapping by
dual recursive bipartitioning of process and architecture graphs, High-Performance
Computing and Networking, Lecture Notes in Computer Science, Vol.1067, Springer
Berlin / Heidelberg, pp.493–498 (1996).

15) Ruge, J. and Stüben, K.: Algebraic Multigrid (AMG), Multigrid Methods (Mc-
Cormick, S., ed.), Frontiers in Applied Mathematics, Vol.3, SIAM (1987).

16) Schulz, M. and de Supinski, B.R.: PNMPI Tools: A Whole Lot Greater Than the
Sum of Their Parts, Supercomputing 2007 (SC’07), Reno, NV (2007).

17) Still, C.H., Berger, R.L., Langdon, A.B., Hinkel, D.E., Suter, L.J. and Williams,
E.A.: Filamentation and forward brillouin scatter of entire smoothed and aberrated
laser beams, Physics of Plasmas, Vol.7, No.5, p.2023 (2000).

18) Vetter, J. and McCracken, M.O.: Statistical Scalability Analysis of Communication
Operations in Distributed Applications, ACM SIGPLAN Notices, Vol.36, No.7, pp.
123–132 (2001).

8 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.51
2011/7/28

