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This paper proposes a method of software development tool generation suit-
able for instruction set extension of existing embedded processors. The key idea
in the proposed method is to enhance a base processor’s toolchain by adding
plugins, which are software components that handle additional instructions and
registers. The proposed method can generate a compiler, assembler, disassem-
bler, and instruction set simulator. Generated compilers with the plugins pro-
vide intrinsic functions that are translated directly into the new instructions.
To demonstrate that the proposed method works effectively, this paper presents
an experimental result of the proposed method in the study of adding SIMD
instructions to the embedded microprocessor V850. In the experiment, by using
intrinsic functions, the compiler generated good code with only 7% increase in
the number of instructions against the hand-optimized assembly codes.

1. Introduction

Application specific instruction set processors (ASIPs) are increasingly em-
ployed in embedded systems for multimedia and mobile wireless applications
because they are programmable and provide better performance for applications.
The flexibility of software allows designers to make late design changes or ad-
ditions, and the instruction sets tuned for target applications improve perfor-
mance. To design ASIPs, people recently use design tools to generate hardware
description language (HDL) source codes or software development tools. There
have been many previous approaches in terms of exploring both the processor
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architecture and instruction set architecture (ISA) for ASIPs using architecture
description languages (ADLs) such as nML, LISA, and EXPRESSION 1)–4).

One of the main challenges in making the best use of ASIPs is to provide soft-
ware development tools such as assemblers and C compilers at the early stages
of architecture design. To enable a good C compiler to be provided at the early
stages of architecture design, most ASIPs consist of application specific func-
tional units and a base processor, which has a fundamental instruction set. Such
ASIPs consisting of application specific functional units and a base processor are
accepted in the market and are commercially available from several sources such
as Tensilica. The design tools for the ASIPs have also been released by CoWare
Inc., Target Compiler Technologies, and ASIP Solutions.

Looking closer at tool generation processes, most of these ASIP design tools
and previous related works have focused on generating whole part of the tools
from scratch and have not considered reusing existing tools for base processors
or manually improving the generated tools. If existing processors are used as
the base processors for the ASIPs, a complete set of tools is already available.
The tools would include a hand-optimized compiler or a simulator equipped with
features such as particular performance profiling. These features may not be
always available on the tools generated by using the conventional methods.

Another important aspect on the tool generation for ASIPs is fundamental
toolchain used for the tool generation. While most of ASIP design tools and
previous related works 3)–5),8) have been developed based on their own compilers,
simulators, or binary tools, some of the conventional approaches 6),7),9),10),12) have
used the GNU toolchain, which is an open-source and a de-fact toolchain in the
field of embedded software development. Since the GNU toolchain supports many
kinds of processors, it is very suitable to generate software development tools for
the ASIPs based on existing embedded processors. However, excepting the tool
generation method for the Xtensa 12), the conventional tool generation methods
targeted at the GNU toolchain have mainly focused on part of the toolchain like
GNU Binutils not the whole part. Although the tool generation method for the
Xtensa can generate all the tools based on the GNU toolchain, its target processor
is limited to the Xtensa and does not support any other processor architectures.
Therefore, we determine that a new method of generating tools based on the
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GNU toolchain is required.
This paper proposes a new method of software development tool generation for

instruction set extension of existing embedded processors. The key idea behind
our method is to enhance a base processor’s toolchain by adding plugins, which
are software components that handle additional instructions and registers added
to the base processor. Plugins are generated from the specification information
of the additional instructions and registers. The only modification that needs to
be made to the base processor’s toolchain is to provide the sockets to accept the
plugins. This paper overviews our approach in terms of how the specifications for
additional resources are described, what plugins are generated to handle the ad-
ditional resources, and what modifications need to be made to the base toolchain
to accept plugins. In addition, the experimental results on the study of adding
SIMD extension to the V850 microcontroller are presented.

The rest of this paper is organized as follows. Section 2 introduces our pro-
posed tool generation method. Section 3 gives an outline of the ISA description
language for the proposed tool generation. Section 4 describes an experimen-
tal result. Section 5 discusses the difference between the proposed method and
related work. Finally, Section 6 conludes this paper.

2. Software Development Tool Generation Using Plugins

Our goal is to provide an efficient way of generating the software development
tools for instruction enhanced processors, which are based on existing micropro-
cessors. To achieve this goal, we chose a method using plugins, where software
components are added as plugins to the existing toolchain to handle additional
features, e.g., for parsing, encoding, or decoding new instructions. The plugins
allow us to continue to use the existing toolchain and to enhance its functional-
ities for new instructions by adding more plugins. As a result, our method can
generate a compiler, assembler, disassembler, linker, and simulator for instruction
enhanced processors.

2.1 Tool Generation Flow
Figure 1 shows the concept flow underlying the proposed method for tool

generation. The flow begins with a specification document written in extensible
markup language (XML). The XML document contains an additional ISA specifi-

Fig. 1 Concept flow underlying tool generation.

cation for the target processor. Here, we have assumed that the target processor’s
ISA consists of the base processor’s instruction set and the additional instruction
set which is written in the XML document. The additional ISA specification in-
cludes the base processor’s name, the base processor’s register information, and
the specifications for new registers and instructions added to the base processor.
However, it does not include the definition of the base processor’s instruction
set. Designers write this XML document for their target processor and feed the
document to the tool generator.

The tool generator, then, generates the plugins to be added to the software
development tools of the base processor (base tools). The base tools are modified
once in advance so that they have sockets that can be connected to the plugins,
the plugins can be integrated with the base tools, and the integrated software
can become enhanced tools for the target processor. The enhanced tools with
the plugins have four main features of assembling, disassembling, relocating,
and executing the new instructions, and they also provide intrinsic functions
translated by the enhanced compiler directly into the new instructions.

2.2 Structure of the Generated Plugins
What distinguishes our proposed method from conventional methods is to pro-

pose plugins produced from templates and parameters and to easily add the
support for new instructions to existing toolchain for base processors. This work
is a very complicated task and requires deep knowledge about the GNU toolchain
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if you do manually the same things. Since the templates are designed so as to
support a variety of instructions, the specification of desired new instructions can
be described in a simple format. In addition, generating plugins from templates
and parameters increases readability of the plugins and decreases possibility of
involving errors in the plugins.

Each command of the GNU toolchain such as gas has an internal flow in which
it identifies one instruction and another extracted from input programs and per-
forms particular operations on the instruction. The operations performed to in-
structions can be composed of several fundamental sub-operations. Field struc-
tures and syntaxes of instructions determine which sub-operation is used and
how sub-operations are mixed. The proposed method represents a combination
of sub-operations as a template and parameters, which will become a plugin.
Templates are code fragments commonly used for every instruction, and param-
eters are a variety of information items on instructions. The parameters drive
the templates to perform particular operations. Such generation scheme allows
us to easily understand the structure of the generated plugins and to verify if
the generated plugins work correctly. If different control code fragments were
generated for different instructions, it could make the tool generator complicated
and make it difficult to verify the generated plugins since the generated plugins
would differ greatly depending on instructions.

Figure 2 shows the process to generate the plugins for the GNU toolchain
in detail. The tool generator generates the plugins by adding data arrays and
code fragments into pre-described template files. While the template files are
commonly used, the data arrays and code fragments vary depending on XML
documents and instruction behavior description files.

Template files have common functions used to handle any new instructions
and registers. For example, the common functions include functions for encod-
ing, decoding, assembling, and disassembling new instructions. These common
functions perform their operations according to the information on new instruc-
tions and registers. The information is generated into plugins as structure data
arrays, which are used as a database on new instructions and registers.

For GNU Binutils and GDB, instruction information and register information
required for assembling, disassembling, linking and executing are generated as

Fig. 2 Generating plugins for GNU Binutils, GDB, and GCC.

data arrays, and the body of instruction behavior functions are generated as
code fragments. The information for each of instructions includes a name, syn-
tax in assembly language, pointer of the method to execute the instruction, and
the information on the instruction fields. Each of the instruction fields infor-
mation further includes its length and position in the instruction codeword, a
filed type to specify what the field represents (register, immediate, or operation
code), a default value expression of the field, and three pointers to methods for
encoding/decoding/parsing.

For the GCC, register macros and instruction information are generated as code
fragments. On the GCC, the register-related macros give the registers informa-
tion such as their usage, names, classes, and letters to represent registers. The
instruction information includes machine description, prototype definitions of the
intrinsic functions, and functions to check operand types for the instructions.
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Fig. 3 Tool internal flow for enhanced assemblers, disassemblers, linkers, and simulators
working with plugins.

2.3 Internal Tool Flow Working with the Plugins
The base tools and the plugins work together on the enhanced tools for the

target processor, as shown in Fig. 3, which is a simplified flow chart on how the
plugins are employed to process each of instructions for the target processor. On
the enhanced tools for the target processor, instructions are processed through
either a conventional procedure or an additional procedure. First, the enhanced
tools determine whether a given instruction is of new instructions added to the
base processor or not. Then, the enhanced tools process the instruction through
an approriate procedure. The conventional procedure is a path to handle the
instructions of the base processor, and the additional procedure, which is a feature
provided by the plugins, is a path to handle the new instructions added to the
base processor. In order to make the enhanced tools behave in this way, the base
tools need to be modified at once so as to work with the plugins.

2.4 Assembling and Encoding New Instructions
Here, how the enhanced assemblers process new instructions is outlined. The

parser plugin built in the enhanced assemblers can handle any one of three in-
struction syntax styles in assembly language: a mnemonic style, a function style,
and an algebraic style. In the mnemonic style, a mnemonic comes first and is
followed by several operands. In the function style, input operands and an out-
put operand are denoted respectively as function arguments and a return value.
In the algebraic style, operators such as ‘+’, ‘-’, and ‘*’ denote instructions’
operations and ‘=’ is used to specify a destination operand.

Fig. 4 Assembling instructions on the plugins.

Mnemonic style: add3i r4,r5,0x22

Function style: r4=add3i(r5,0x22)

Algebraic style: r4=r5+0x22

The mnemonic style is the most major syntax style, and the latter two styles
are used favorably for digital signal processors to make it easy to understand
their assembly codes. Supporting these three styles contributes to increasing the
freedom to choose syntax styles for readability.

The parser plugin processes new instructions as shown in the following five
steps and Fig. 4. After assembling a new instruction, if any of operands refers
to an unresolved symbol, the enhanced assemblers make relocation information
for the unresolved symbol.
1. Token decomposition: The parser plugin breaks the input string into to-

kens, which are classified into either a symbol token, expression token, or a
code token. In Fig. 4, there are 6 tokens.

2. Candidate selection: The parser plugin chooses instruction candidates
which have the same number of tokens as in the input instruction. In Fig. 4,
three instructions are selected as candidates.

3. Token comparison: For each of candidates, the parser plugin compares to-
kens at the corresponding position of the input instruction and a candidate,
and find the instruction X which fits to the token pattern of the input in-
struction. In Fig. 4, the instruction add3i has the same token pattern as of
the input instruction.
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4. Operand calculation: The tokens corresponding to operand variables like
%xxx in the instruction X are operands. The parser plugin calculates operand
values from those tokens of the instruction X. For example, if a token cor-
responding to an operand variable represents a register name, the assembler
translates the name to an operand value.

5. Instruction encoding: The parser plugin encodes the input instruction by
using the operation code of the instruction X and the operand values of the
input instruction.

2.5 Machine Description of New Instructions
The tool generator generates machine description of the new instructions. The

machine description is the instruction patterns of the new instructions, and is
used in the processor-dependent components of the GCC. The instruction pat-
terns are written in the GCC’s intermediate representation called the register
transfer language (RTL). Figure 5 shows an example of the generated machine
description.

Normal instruction patterns usually have behavior description specified in their
contents. With the behavior description given in the pattern, the GCC recognizes
what kinds of operations the instruction performs. The generated instruction
patterns, however, do not have well specified meaningful behavior, but just simple
information that gives input and output operands. With the information on
input and output operands given for machine description, the GCC can recognize

1: ;; syntax: myadd reg1, reg2, reg3
2: (define_insn "builtin_cpu_MYADD"
3: [
4: (set
5: (match_operand:SI 0 "cpu_gpr_regs_operand" "=r")
6: (unspec:VOID [
7: (match_operand:SI 1 "cpu_gpr_regs_operand" "r")
8: (match_operand:SI 2 "cpu_gpr_regs_operand" "r")
9: ] UNSPEC_BUILTIN_MYADD))
10: ]
11: ""
12: "myadd %1, %2, %0"
13: [(set_attr "length" "4")]
14: )

Fig. 5 A generated instruction pattern.

which operand is used in which instruction and can also schedule instructions
without meaningful behavior in machine description. Therefore, we decided to
omit meaningful behavior from generated instruction patterns.

If a target processor has move instructions for new registers which do not exist
in the base processors, the tool generator generates move instruction patterns
from and to the new registers. The generated move instruction patterns have
meaningful behavior description, so that the GCC can recognize that they per-
form move operations and the GCC can use them in code generation process.

2.6 Adding Intrinsic Functions on the GCC
In order to add intrinsic functions on the GCC, two macro functions

TARGET_INIT_BUILTINS and TARGET_EXPAND_BUILTIN are used.
TARGET_INIT_BUILTINS represents the name of a function that performs initial-
ization for intrinsic functions. For each of intrinsic functions, the initialization
function makes registration of the information such as a return value type, argu-
ments types, a function name, and an ID number. The tool generator generates
statements for this registration of intrinsic functions. The generated statements
are inserted into the function represented by the macro TARGET_INIT_BUILTINS.
TARGET_EXPAND_BUILTIN represents the name of a function that generates in-

struction patterns from given intrinsic functions. The function corresponding the
macro TARGET_EXPAND_BUILTIN determines which instruction pattern should be
used for a given intrinsic function and how arguments of the given intrinsic func-
tion should be translated into operands of the instruction pattern. The tool gen-
erator generates tables used for retrieving instruction patterns and their operand
types from given intrinsic functions.

On the GCC, instead of intrinsic functions, there is another way to use new
instructions added to the base processors, that is, inline assembly can also exploit
the new instructions in C codes. Intrinsic functions, however, is better than inline
assembly in terms of the following points.
• There is possibility that the GCC can schedule the instructions corresponding

to intrinsics and optimize them if information on the instructions such as a
latency and code size is given to the compiler. Inline assembly, however, has
no means for better scheduling and optimization.

• The GCC can check types of output and input operands for intrinsic func-
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tions. Inline assembly, however, can not do that.
• Although inline assembly is available only for its target processors, intrinsic

functions could be emulated on non-target processors if emulation functions
for the intrinsic functions were provided.

These reasons made us to choose intrinsic functions rather than inline assembly.
Several methods 14)–16) for automated instruction set extension have been re-

ported so far, which generate compilers that can exploit the extended instructions
without the need for modifying source codes of applications. Contrary to this, on
the proposed method, the enhanced compiler does not automatically exploit the
new instructions and programmers have to invoke intrinsic functions if they want
to make the compilers to use the new instructions. However, changing algorithms
or rewriting source codes for more speed is still important in many practical sit-
uations. Therefore, using intrinsic functions to accelerate target applications is
a practical method.

3. Instruction Set Description Using XML

This section explains the additional ISA specification in our proposed frame-
work. Our proposed tool generation flow begins with an XML document, which
contains an additional ISA specification for the target processor. The XML pro-
vides a flexible and extensible framework for representing and structuring all
kinds of data. In addition, XML is widely used in the World Wide Web commu-
nity as a means of structured information exchange, and there are many software
components and libraries that handle XML documents. In our case, an XML
document is used to describe the specification of new registers and instructions
to be added to the base processor.

The XML of the proposed method can describe not only ISAs of general RISC
processors but also the following complex instructions:

( 1 ) instructions that have an operand with a restriction, e.g., the
operand must be an even number register.

( 2 ) instructions in which an operand value is separated and placed
into two different instruction fields. This tricky field arrangement
might be used when there is not enough instruction field space for
additional instructions.

( 3 ) instructions in which a value calculated from an operand is placed
into an instruction field. This calculation might happen when the
least significant n-bits of an immediate operand is trimmed off be-
fore the operand is placed into an instruction field.

( 4 ) instructions that use pair registers that consist of two contiguous
registers.

( 5 ) instructions that have two or more output operands or have many
input operands (The number of total operands must be less than
or equal to ten).

( 6 ) instructions in which any combinations of the above ones are used.
Although these complex instructions do not appear in general RISC processors,
in fact, they are used in our experiment based on the V850 processor described
afterward. In addition, since the behavior of instructions is written in C lan-
guage apart from XML documents, any kinds of operations of instructions can
be described.

Here is a simple example in which the new instruction MYADD depicted in
Fig. 6 is added to a base processor. Figure 7 shows an XML document for the
simple example. The XML document contains:

( 1 ) the base processor’s nickname defined by the <nickname> tag,
( 2 ) the base registers on the base processor and new registers added to

it defined by the <register_bank> tag,
( 3 ) new instructions defined by the <insn> tag,
( 4 ) GDB register numbers defined by the <gdb> tag, and
( 5 ) the file name containing the behavior of instructions defined by the

<behavior> tag.
The behavior of the new instructions in the XML document is described in C
language in a different file.

Since new definitions of instructions are important for generating the enhanced
tools and they take up many lines in an XML document, we will explain how
instructions and registers are defined in an XML document in the following sec-
tions.

3.1 Register Definition
Register information is described using three tags: <register_type>,
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Syntax: MYADD reg1, reg2, reg3

Fields:
31 27 26 16 15 11 10 5 4 0

reg3 opc1 reg2 opc0 reg1

Name Type Bits Description
reg1 GPR 5 Register index of GPR registers
reg2 GPR 5 Register index of GPR registers
reg3 GPR 5 Register index of GPR registers
opc0 opcode 6 Bit pattern to distinguish it from other instructions
opc1 opcode 11 Bit pattern to distinguish it from other instructions

Fig. 6 Instruction field structure of MYADD.

<register_bank>, and <register_group>. The <register_type> tag defines
a register-type name and a register length in bits. The <register_bank> tag
defines a register bank, which consists of the same type of registers defined by
the <register_type> tag.

The <register_bank> tag has several attributes, which are ‘type’, ‘size’,
‘prefix’, ‘base’, and ‘letter’. The ‘type’ denotes a register type, which is one
of the register types defined by the <register_type> tag. The ‘size’ denotes
the number of registers included in the register bank. The ‘prefix’ denotes a
prefix of register names. The prefix and a register index in the register bank
become a register name. The ‘base’ denotes whether the base processor has the
register bank or not. The ‘letter’, which is not used in Fig. 7, denotes a letter
for the GCC to represent a register class.

The <register_group> tag, which is not used in Fig. 7, defines a register group
that consists of several registers. The registers in a register group must be a
register in any of the register banks and may belong to different register banks.
The register banks and register groups defined by the tags <register_bank> and
<register_group> are used as register operand types in <insn> tag.

3.2 Instruction Definition
Each new instruction is defined using the <insn> tag. The <insn> tag has

several child tags in its content. Here, we overview important tags to define a
new instruction. The <mnemonic> tag defines a mnemonic of the new instruction.
Since the mnemonic is used as an ID of the new instruction, it must be different
from other instructions’ mnemonics. The <syntax> tag defines an instruction
syntax, in which the operands of the instruction are denoted by names that

1: <Processor>
2: <nickname>cpu</nickname>
3: <register_type length="32">GPR_type</register_type>
4: <register_bank type="GPR_type" size="32"
5: prefix="R" base="true">GPR</register_bank>
6: <insn_length>32</insn_length>
7: <insn>
8: <mnemonic>MYADD</mnemonic>
9: <syntax>MYADD %reg1, %reg2, %reg3</syntax>

10: <field type="GPR" length="5">reg1</field>
11: <field type="opcode" value="0b11_1111" length="6">opc0</field>
12: <field type="GPR" length="5">reg2</field>
13: <field type="opcode" value="0b111_1100_1000" length="11">opc1</field>
14: <field type="GPR" length="5">reg3</field>
15: <input>
16: <operand type="GPR" width="32">reg1</operand>
17: <operand type="GPR" width="32">reg2</operand>
18: </input>
19: <output>
20: <operand type="GPR" width="32">reg3</operand>
21: </output>
22: <description>
23: This instruction calculates the sum of the contents of
24: registers reg1 and reg2, and stores the result into register reg3.
25: </description>
26: </insn>
27: <gdb>
28: <regnum name="R0">0</regnum>
29: <regnum name="R1">1</regnum>
30: ....
31: <regnum name="R31">31</regnum>
32: </gdb>
33: <behavior>cpu-isa.c</behavior>
34: </Processor>

Fig. 7 Example of an XML document with additional ISA specification.

begin from %, e.g., %reg1 or %reg2. The instruction syntax may be formatted in
any one of three styles: a style of mnemonic plus operands, a function style, or
an algebraic style. The plugins are constructed to be able to accept these styles.
The <length> tag defines the length of the new instruction in bits. If this tag
is omitted, the default instruction length defined by the <insn_length> tag is
used.

The <field> tag defines each of the instruction fields that are part of an
instruction code word. If the new instruction’s code word has many different
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fields, the designer writes <field> tags for all the fields. The <field> tags are
supposed to be listed from the least significant bit (LSB) to the most significant
bit (MSB). The <field> tag has several attributes, which are ‘type’, ‘subtype’,
‘length’, and ‘value’. The ‘type’ denotes an instruction field type, i.e., what the
instruction field represents. The field type may be either a register, an immediate
value, or an operation code. If the field type is a register, its register type name
is specified in ‘subtype’. The ‘length’ denotes the length of the instruction
field in bits. The ‘value’ denotes the numeric value of the instruction field for
immediate values and operation codes. The numeric value can be represented
as an expression, e.g., 0xF<<2, and the values of fields can be referred to in the
expression using field names.

When a field’s value is represented as an expression using the values of other
fields, the tool generator needs to know how to obtain the values of instruction
operands from the values of instruction fields. In this case, we use <disas> tag,
which is not used in Fig. 7. The <disas> tag denotes an instruction operand
type and how to calculate its value from the instruction fields. The <disas> tag
also has the same attributes that <field> tag has. The calculation expression is
represented in the attribute ‘value’. If we can obtain an operand value directly
from the corresponding field value, we do not need to use <disas> tag.

If the new instruction has an immediate operand in its syntax and if the name
of the immediate operand is defined by <field> tag or <disas> tag, the tool
generator creates a new relocation type for the immediate operand. A new re-
location type is also created if the attribute ‘value’ of the <field> tag includes
a variable named ‘cia’ (current instruction address) or ‘nia’ (next instruction
address).

The <input> and <output> tags define the input and output operands of
the new instruction. Each of the input and output operands is defined by the
<operand> and <memory> tags. The new instructions can have multiple input
operands and multiple output operands. The tool generator uses the information
given by these tags when generating the plugins of the compilers for the tar-
get processor. The prototypes of intrinsic functions and machine descriptions of
the new instructions are defined according to the definition of the <input> and
<output> tags. If a new instruction has an output operand, the intrinsic func-

1: /* MYADD is a mnemonic defined by <mnemonic> tag */
2: /* syntax: MYADD %reg1, %reg2, %reg3 */
3: behavior (MYADD)
4: {
5: /* GPR: register bank name. */
6: /* reg1, reg2, and reg3: register index */
7: int32_t val1 = REG_read32 (GPR, reg1);
8: int32_t val2 = REG_read32 (GPR, reg2);
9: int32_t val3 = val1 + val2;

10: REG_write32 (GPR, reg3, val3);
11: }

Fig. 8 Behavior description of instruction MYADD written in C language.

tion corresponding to it returns the output operand. If a new instruction has
multiple-output operands or no output operands, the intrinsic function corre-
sponding to it becomes a void-type function, and the output operands are passed
as arguments of the intrinsic function.

3.3 Instruction Behavior Definition
Designers describe the behavior of a new instruction in C language in a dif-

ferent file other than in an XML document. There is an example of a behavior
description in Fig. 8, which is the behavior description for the new instruction
defined in the XML document in Fig. 7. The behavior of a new instruction is de-
scribed in a single function. The function begins with ‘behavior (mnemonic)’
and has several unspecified arguments available in the function. The arguments
are the values of instruction fields other than those of operation codes. Each of
the arguments has the name defined by the <field> tag or <disas> tag.

There are three non-operational-code fields in Fig. 7: reg1, reg2, and reg3.
They are all register operands and the same named arguments are available in
the behavior function in Fig. 8. Designers can access registers and memory in
the behavior function through functions such as REG_read32(REGTYPE,IDX) and
MEM_read32(ADDR). We use the macro NIA_SET(ADDR) to modify the program
counter and the macro CIA to get the content of the program counter.

4. Experiment

Here, we explain the experiment on the tool generation using our method. The
base processor we use in this experiment is the V850 microcontroller. The V850
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Fig. 9 Block diagram of the V850 processor
with SIMD extension.

Table 1 Architecture summary of the V850
microcontroller with SIMD exten-
sion.

RISC processor for embed-
ded systems.

Base Harvard architecture.
architecture Single cycle instruction exe-

cution.
Compact code size allowed
by 2-byte insts.
32 32-bit general purpose
registers.

32 64-bit registers
Data types: 16 bits × 4,

32 bits × 2,64 bits × 1.
SIMD Packed arithmetic insts.
extension Load/store insts.

Data type conversion.
Logical operation.

is a RISC processor optimized for embedded systems 11). In the experiment, our
method generates a toolchain including a compiler for the target processor that
consists of the V850 microcontroller and an SIMD extension.

Using the generated compiler and intrinsic functions for exploting the SIMD
extension, we show code quality of the generated compiler. Note that in this
experiment the inline assembly cannot be an alternative means to exloit the
SIMD extension because the SIMD extension includes additional registers which
cannot be addressed on the base compiler without any modification. Adding the
plugins to the base compiler allows the compiler to handle the SIMD extension.

Figure 9 and Table 1 show the target processor’s block diagram and the sum-
mary of its SIMD extension. The SIMD extension includes 32 64-bit registers,
an SIMD instruction set, and an SIMD functional unit which addresses 64-bit
wide packed data. Available data types are 16 bits × 4, 32 bits × 2, and 64 bits ×
1. The SIMD instruction set includes logical operations, data interleaving oper-
ations, data type conversions load/store operations, and packed arithmetic oper-
ations such as addition, subtraction, multiplication, and comparison.

4.1 Generated Toolchain for SIMD Extension
We translated the specification of the SIMD extension into an XML document

and instruction behavior description, which are input files to our tool generator.

Table 2 The code amount of the generated plugins for the SIMD extension.

Base tools GNU Binutils 2.17
GDB 6.6
GCC 3.4.6

Number of instructions 179
Number of lines of the input XML file 5,934
Number of lines of the input behavior description 4,436

Number of lines of the assembler plugin 8,903
Number of lines of the simulator plugin 7,699
Number of lines of the compiler code fragments 13,496

Then, the tool generator generated a toolchain with the plugins in it for the
target processor. Table 2 shows the code amount of input files and the generated
plugins. The number of SIMD instructions added to the V850 microcontroller is
179, and the input files to the tool generator have 10370 lines in total (XML: 5934,
*.c: 4436). Although the code amount of the input files is not so small compared
with the output files, which have 30098 lines in total, generating several tools such
as a compiler, assembler, and simulator from simple specification documents is
very beneficial.

4.2 Code Generation Using Intrinsic Functions
In order to investigate the compiler efficiency in terms of code generation us-

ing intrinsic functions, comparison between hand-optimized assembly codes and
compiler-generated codes is discussed. For a number of basic signal processing
functions such as filtering, sorting, and FFT, we developed two kinds of pro-
grams: (1) hand-optimized assembly codes using the SIMD extension, and (2)
compiler-generated codes using intrinsic functions for the SIMD extension. Then
the programs were profiled in terms of the number of executed instructions by
using the generated simulator.

In order to build program (2), we developed a new C program using intrin-
sic functions from scratch for each of the signal processing functions. Since the
programs of the signal processing functions written in normal C language have
fewer lines than 100 lines, writing a new C program using intrinsic functions took
a day or less per one signal processing function. However, for sorting and FFT
which have more lines and require algorithm tuning suited to SIMD instructions,
writing programs using intrinsic functions for them took a month per each. Ta-
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Table 3 Lines of source codes: (a) original C code, (b) modified C code using intrinsic func-
tions, (c) assembly code generated from (b), and (d) hand-optimized assembly code.

Function (a) (b) (c) (d)
32-bit normalization (N=64) 30 55 38 32
16-bit normalization (N=64) 30 57 41 35
32-bit minimum search (N=64) 20 66 41 34
16-bit minimum search (N=64) 20 79 49 41
32-bit maximum search (N=64) 20 66 41 34
16-bit maximum search (N=64) 20 79 49 41
32-bit LMS adaptive FIR (N=1,T=16) 25 104 71 63
16-bit LMS adaptive FIR (N=1,T=16) 18 102 70 62
32-bit IIR with scaling (N=1, B=2) 30 50 29 26
32-bit IIR with scaling (N=8, B=2) 33 56 38 30
32-bit IIR w/o scaling (N=1, B=2) 29 43 28 23
32-bit IIR w/o scaling (N=8, B=2) 33 48 34 28
16-bit IIR with scaling (N=1, B=2) 31 47 32 26
16-bit IIR with scaling (N=8, B=2) 41 59 39 31
16-bit IIR w/o scaling (N=1, B=2) 30 46 29 22
16-bit IIR w/o scaling (N=8, B=2) 42 62 35 28
32-bit FIR (N=1, T=16) 22 62 45 40
32-bit FIR (N=16, T=16) 33 99 71 61
16-bit FIR (N=1, T=16) 17 56 44 39
16-bit FIR (N=16, T=16) 33 80 60 62
32-bit complex FIR (N=1, T=16) 34 69 46 41
32-bit complex FIR (N=16, T=16) 41 82 56 45
16-bit complex FIR (N=1, T=16) 26 81 55 47
16-bit complex FIR (N=16, T=16) 33 77 55 41
32-bit bitonic sort (N=64) 127 224 215 197
16-bit bitonic sort (N=64) 127 188 156 141
32-bit complex FFT (N=256) 330 320 242 274
16-bit complex FFT (N=256) 320 338 274 292

N: Number of input samples, T: Number of filter taps, B: Number of biquad stages

ble 3 shows lines of source codes: (a) original C code, (b) C code using intrinsic
functions, (c) assembly code generated from (b), and (d) hand-optimized assem-
bly code. Regarding all signal processing functions in Table 3, code (b) using
intrinsic functions has more lines than code (a) written in normal C language.

As an example, an FIR filtering function written in normal C language is
shown in Fig. 10 (a), its variant using intrinsic functions is shown in Fig. 10 (b),
an assembly code generated from Fig. 10 (b) is shown in Fig. 10 (c), and a hand-
optimized assembly code is shown in Fig. 10 (d). In Fig. 10 (b) and (c), intrinsic
functions such as _vxor() and _vld_dw_inc() are translated into their corre-

sponding assembly instructions such as vxor and vld.dw, respectively.
Figure 11 shows the increase in the number of executed instructions of the

compiler-generated codes against the hand-optimized assembly codes. The num-
ber of executed instructions increases by only 7% on average when using intrin-
sic functions. Since compiler-generated codes without using intrinsic functions
for the SIMD extension could increase to 900% on average against the hand-
optimized assembly codes, only 7% increase in the executed instructions is ac-
ceptable. By using intrinsic functions, the compiler will replace variables with
actual registers, ensuring better allocation, which is a bothersome work for pro-
grammers. In addition, the compiler-generated codes using intrinsic functions
are nearly as good as the hand-optimized assembly codes. The proposed tool
generation method made it possible to generate the compiler with such useful
intrinsic functions.

The 7% increase could be caused by the following reasons:
Range checking before loops Compiler-generated codes have range check-

ing before loops whether the condition to begin and continue the loops is
met or not. Hand-optimized codes do not usually have such range check-
ing because programmers know whether the range checking is unnecessary in
their programs or not.

Redundant register transfers Compiler-generated codes have redundant
register transfers on arguments and a return value of functions. Arguments
given to functions are copied to local variables, and a local variable having a
return value is also copied to a register at the end of functions. These regis-
ter transfers sometimes may not be optimized and they remain as redundant
move instructions.

A similar comparison we have done here was reported in the application note 17)

for IDCT on Pentium4. The application note compared elapsed time for two
types of IDCT implementation on Pentium4 with the SSE2 instruction set: one
is written in C language using intrinsic functions and the other written manually
in assembly language. The increase of the elapsed time when using intrinsic
functions was 9% over that of the hand-optimized assembly code. This is a
practical example of how to improve IDCT on Pentium4 using intrinsic functions
instead of assembly language. Therefore, 7% increase on average in our examples
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1: int32_t

2: fir16_single (

3: int16_t *sig, int16_t *coef, int T, int offset)

4: {

5: int i;

6: int32_t y = 0;

7: for ( i=0 ; i<T ; i++ )

8: {

9: int idx = i+offset;

10: if (T <= idx) idx -= T;

11: y += coef[i] * sig[idx];

12: }

13: return y;

14: }

(a) C code written in normal C language

1: int32_t

2: fir16_single_simd_intrinsic (

3: int16_t *sig, int16_t *coef, int T, int offset)

4: {

5: int i;

6: int64_t w_3210, w_7654, w_ba98, w_fedc;

7: int64_t x_3210, x_7654, x_ba98, x_fedc, acc;

8: int32_t step_and_offset

9: = (8<<16) | (2*(offset - (3 & offset)));

10: int32_t buff_size = 2*T - 1;

11: int64_t mod_param

12: = _deposit_64 (buff_size, step_and_offset);

13: int32_t align_byte = 2 * (3 & offset);

14: short loop_cnt = T >> 4;

15: acc = _vxor (acc,acc);

16: /* load coefficients */

17: _vld_dw_inc (w_3210, coef);

18: _vld_dw_inc (w_7654, coef);

19: /* load input signals */

20: _vld_dw_mod (x_3210, mod_param, sig);

21: _vld_dw_mod (x_7654, mod_param, sig);

22: _vld_dw_mod (x_ba98, mod_param, sig);

23: _vld_dw_mod (x_fedc, mod_param, sig);

24: for ( i = 0 ; i < loop_cnt ; i++ )

25: { /* multiply and accumulate */

26: int64_t xx;

27: xx = _vconcat_b (align_byte, x_3210, x_7654);

28: _vld_dw_inc (w_ba98, coef);

29: acc = _vmsumad_h (acc, w_3210, xx);

30: _vld_dw_mod (x_3210, mod_param, sig);

31: xx = _vconcat_b (align_byte, x_7654, x_ba98);

32: _vld_dw_inc (w_fedc, coef);

33: acc = _vmsumad_h (acc, w_7654, xx);

34: _vld_dw_mod (x_7654, mod_param, sig);

35: xx = _vconcat_b (align_byte, x_ba98, x_fedc);

36: _vld_dw_inc (w_3210, coef);

37: acc = _vmsumad_h (acc, w_ba98, xx);

38: _vld_dw_mod (x_ba98, mod_param, sig);

39: xx = _vconcat_b (align_byte, x_fedc, x_3210);

40: _vld_dw_inc (w_7654, coef);

41: acc = _vmsumad_h (acc, w_fedc, xx);

42: _vld_dw_mod (x_fedc, mod_param, sig);

43: }

44: return _extract_lo_64 (acc);;

45: }

(b) C code using intrinsic functions

1: _fir16_single_simd_intrinsic:

2: mov -4,r10

3: and r9,r10

4: add r10,r10

5: mov r8,r11

6: add r8,r11

7: movhi hi0(524288),r0,r12

8: or r10,r12

9: addi -1,r11,r13

10: andi 3,r9,r9

11: add r9,r9

12: sar 4,r8

13: sxh r8

14: vxor vr3, vr3, vr3

15: vld.dw [r7]+, vr9

16: vld.dw [r7]+, vr8

17: vld.dw [r6]%, r12, vr7

18: vld.dw [r6]%, r12, vr6

19: vld.dw [r6]%, r12, vr5

20: vld.dw [r6]%, r12, vr4

21: cmp 0,r8

22: ble .L7

23: .L8:

24: vconcat.b r9, vr7, vr6, vr2

25: vld.dw [r7]+, vr0

26: vmsumad.h vr9, vr2, vr3

27: vld.dw [r6]%, r12, vr7

28: vconcat.b r9, vr6, vr5, vr2

29: vld.dw [r7]+, vr1

30: vmsumad.h vr8, vr2, vr3

31: vld.dw [r6]%, r12, vr6

32: vconcat.b r9, vr5, vr4, vr2

33: vld.dw [r7]+, vr9

34: vmsumad.h vr0, vr2, vr3

35: vld.dw [r6]%, r12, vr5

36: vconcat.b r9, vr4, vr7, vr2

37: vld.dw [r7]+, vr8

38: vmsumad.h vr1, vr2, vr3

39: vld.dw [r6]%, r12, vr4

40: loop r8, .L8

41: .L7:

42: mov.dw vr3, r10

43: jmp [r31]

(c) assembly code generated from (b)

1: _asm_fir16_single_simd:

2: mov r0, r10

3: andi 3, r9, r15

4: mov r15, r14

5: shl 1, r14

6: sub r15, r9

7: add r9, r9

8: mov r8, r11

9: sar 4, r11

10: movhi 8, r9, r12

11: mov r8, r13

12: add r8, r13

13: movea -1, r13, r13

14: vld.dw [r7]+, vr10

15: vld.dw [r7]+, vr11

16: vxor vr4, vr4, vr4

17: vld.dw [r6]%, r12, vr6

18: vld.dw [r6]%, r12, vr7

19: vld.dw [r6]%, r12, vr8

20: vld.dw [r6]%, r12, vr9

21: .L1:

22: vconcat.b r14, vr6, vr7, vr14

23: vld.dw [r7]+, vr12

24: vmsumad.h vr14, vr10, vr4

25: vld.dw [r6]%, r12, vr6

26: vconcat.b r14, vr7, vr8, vr14

27: vld.dw [r7]+, vr13

28: vmsumad.h vr14, vr11, vr4

29: vld.dw [r6]%, r12, vr7

30: vconcat.b r14, vr8, vr9, vr14

31: vld.dw [r7]+, vr10

32: vmsumad.h vr14, vr12, vr4

33: vld.dw [r6]%, r12, vr8

34: vconcat.b r14, vr9, vr6, vr14

35: vld.dw [r7]+, vr11

36: vmsumad.h vr14, vr13, vr4

37: vld.dw [r6]%, r12, vr9

38: loop r11, .L1

39: .L2:

40: mov.w 0, vr4, r10

41: jmp [lp]

(d) hand-optimized assembly code

Fig. 10 FIR filtering fuctions.

is acceptable overhead and enough efficient against hand-optimized assembler.
5. Related Work and Discussion

Here, we compare our approach with several related work for retargeting GNU
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Fig. 11 Increase in the number of executed instructions of compiler-generated codes using
intrinsic functions against that of hand-optimized assembly codes.

Binutils and discuss how they differs. There have been a lot of works for gener-
ating tools from processor architecture description language. Table 4 shows a
comparison among several conventional methods using the GNU toolchain and
our approach.

Tensilica developed a configurable processor core, called Xtensa, in the late
1990s and provided a tool generator for the Xtensa 13). Although the target pro-
cessor architecture of the tool generator is limited to the Xtensa, it can generate
ports of both GNU Binutils and GNU Debugger, simulators, and compilers for
customized Xtensa cores. Unfortunately, according to the reference manual 13),
there is not any description on the capability of adding extra relocation types
used for extra instructions.

CGEN 6), which was released as open-source software from Red Hat in 2000, is
a tool to generate code fragments for assemblers, disassemblers, and simulators.
The generated codes can be embedded into GNU Binutils. Only for the MeP
processor, CGEN has a feature to add intrinsic functions to the GCC.

Abbaspour presented in 2002 a systematic approach to retarget GNU Binu-

Table 4 Comparison among tool generation methods using the GNU toolchain.

(a) The Xtensa tool generator by Tensilica 13)

(b) CGEN: Cpu generator by Red Hat 6)

(c) rbinutils by Abbaspour 7)

(d) ArchC by Baldassin 10)

(e) The proposed method

Target base-processor architectures
(a) Xtensa configurable cores

(b), (c) RISC CPUs
(d) RISC/CISC CPUs
(e) Existing CPUs which have ports of the GNU toolchain

Architecture description language (ADL)
(a) TIE (Tensilica Instruction Extension) language
(b) Lisp-like language
(c) Simple language
(d) Simple C-like language
(e) XML-based language

How to generate GNU Binutils
(a) Base binutils + dynamic link libraries (DLLs)
(b) Only opcode library

(c), (d) Templates + code fragments
(e) Base binutils + Templates + plugins + code fragments

How to define relocation types
(a), (b) N/A

(c) Explicit defitions written in instruction set description
(d), (e) Implicit defitions extracted from instruction set description

How to generate simulators
(a) Base simulator + DLLs
(b) Only libraries to execute/decode instructions
(c) N/A
(d) Templates + code fragments
(e) Base simulator + templates + plugins + code fragments

How to generate compilers
(a) Base compiler + DLLs + header files for intrinsics

(b), (c), (d) N/A
(e) Base compiler + templates + code fragments

+ header files for intrinsics and emulation libraries

tils 7). An experimental result to generate GNU Binutils was reported in Ref. 7)
for the SPARC architecture. In those years, the development of the ArchC
started, which is an open-source binary utility generator 10). Baldassin reported
in Ref. 10) that the ArchC can retarget GNU Binutils and generate simulators
for several processor architectures including the i8051 processor, for which there
was no reference ports in the original GNU Binutils.
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On the other hand, our proposed method can generate a set of the GNU
toolchain including a compiler for a target processor. Regarding the kinds of
tools that can be generated, i.e., compiler, assembler, simulator, etc., the pro-
posed method has the same capability as the tool generator for the Xtensa.
However, there is a difference between the tool generator for the Xtensa and the
proposed method, in which the main scope of the proposed method is to add
new instructions to existing base processors but not to modify the ISA of a base
processor. While the Xtensa’s tool generator can be used only for the Xtensa,
our tool generator can be used for the existing processors that have ports of the
GNU toolchain. There is also a difference in instruction syntaxes. The conven-
tional methods (a)–(d) in Table 4 has a rule that instructions be written in a
syntax of single mnemonic plus multiple operands. Our tool generator, however,
generates the assembler that can handle not only a mnemonic style but also a
function style and an algebraic style.

In terms of the amount of handwork necessary for generating toolchain, the
proposed method and conventional methods require similar amount of handwork
such as describing instruction specification. Although XML documents for the
proposed method are tend to have more lines than conventional methods, it does
not have that a big impact on the amount of handwork.

Regarding the time needed to generate toolchain, there is no big difference
among the proposed method and conventional methods. The proposed method
takes a couple of seconds to generate plugins, and takes several tens of minutes
to build the toolchain involving the plugins. The time needed to build toolchain
on the proposed method is the same as those of conventional methods such as
ArchC and rbinutils.

On the proposed method, programmers need source modification using intrinsic
functions in order to exploit new instructions and to make applications faster.
This is a negative point compared with auto-customization frameworks of ISAs
reported in Refs. 14)–16). While rewriting source codes for more speed is still a
practical method, exploiting new instructions without source modification on the
proposed method is one of our future works.

Our approach is not only dedicated to the V850, but it can also be applied to
other processors. In fact, our method can generate toolchains for processors with

a simple instruction extension based on the ARM and MIPS processors although
these trials based on the ARM and MIPS processors are very simple and not
mentioned in details in this paper.

6. Conclusion

We have proposed a new method to generate software development tools for in-
struction set extension of existing embedded processors. Our approach generates
a toolchain (assembler, disassembler, linker, simulator, and compiler) for a tar-
get processor, which is based on an existing processor and which has additional
instructions and registers, by adding software components as plugins to the base
processor’s toolchain to handle additional instructions and registers. We demon-
strated that our approach worked effectively through an experiment based on the
V850 microcontroller. As shown in this paper, by using intrinsic functions, the
generated compiler could give as good performance as that of hand-optimized
assembly codes.
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