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Searching a Hamiltonian Path in Giga-Node Graphs and

Middle Levels Conjecture

Manabu Shimada†1 and Kazuyuki Amano†1

The middle levels conjecture asserts that there is a Hamiltonian cycle in the
middle two levels of 2k+1-dimensional hypercube. The conjecture is known to
be true for k ≤ 17 [I. Shields, B.J. Shields and C.D. Savage, Disc. Math., 309,
5271–5277 (2009)]. In this note, we verify that the conjecture is also true for
k = 18 and 19 by constructing a Hamiltonian cycle in the middle two levels of
37- and 39-dimensional hypercube with the aid of the computer. We achieve
this by introducing a new decomposition technique and an efficient algorithm
for ordering the Narayana objects. In the largest case, our program could find
a Hamiltonian path in a graph with ∼ 1.18× 109 nodes in about 80 days on a
standard PC.

1. Introduction

LetQn denote the n-dimensional hypercube, i.e., Qn is a graph with 2n vertices,

each vertex is labeled by an n-bit binary string and two vertices are adjacent iff

their strings differ exactly in one bit. The i-th level of Qn is the set of vertices

labeled by strings with exactly i ones.

The middle levels graph is a subgraph of Q2k+1 induced by the middle two

levels k and k + 1, and is denoted by M2k+1 (see Fig. 1). The middle levels

conjecture asserts that the graph M2k+1 has a Hamiltonian cycle for every k. It

appears as an “exercise” in Knuth’s book3) [Exercise 56, Sect. 7.2.1.3], in which

the conjecture is credited to Buck and Wiedermann1).

In spite of considerable efforts, the conjecture remains open (see e.g., Johnson2)

or Shields et al.4) and the references therein). It was shown to be true for k ≤ 11

by Moews and Reid, and for 12 ≤ k ≤ 15 by Shields and Savage5) and 16 ≤ k ≤ 17

by Shields et al.4).
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Fig. 1 The hypercube Q5 and the middle levels graph M5.

In this note, we verify that the conjecture is also true for k = 18 and 19 by con-

structing a Hamiltonian cycle in the middle two levels of 37- and 39-dimensional

hypercube with the aid of the computer. We achieve this by plugging a new

decomposition technique and an efficient algorithm for ordering the Narayana

objects into a Hamiltonian path heuristic developed by Shields et al.4),5). In

the largest case, our program could find a Hamiltonian path in a graph with

∼ 1.18 · 109 vertices in about 80 days on a standard PC.

The organization of this note is as follows. In Section 2, we briefly review

the approach taken by Shields et al.4),5) for reducing the size of the problem.

In Section 3, we describe an additional reduction that decomposes the problem

into a number of smaller subproblems. In Section 4, we introduce an efficient

algorithm for ordering the Narayana objects which was helpful for reducing the

resource needed in the computation. Finally in Section 5, we summarize our

computational results. Throughout the paper, n = 2k+1 denotes the dimension

of a hypercube.

2. Reducing the problem

The Hamiltonicity of the middle levels graph, which has 2
(
n
k

)
vertices, can be

reduced to the problem for finding a suitable Hamiltonian path in a smaller graph
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Fig. 2 The graph R5 and its relationship to the vertices of M5.

with
(
n
k

)
/n vertices5).

For an n-bit binary sequence x = x1x2 · · ·xn, define the cyclic shift σ by

σ(x) = x2x3 · · ·xnx1. For every two vertices x and y in Mn, x and y are adjacent

iff σ(x) and σ(y) are adjacent. This naturally introduces an equivalence relation

∼ on the set of vertices of Mn such that x ∼ y iff x = σi(x) for some integer i. By

noticing that that σn(x) = x for every x, each equivalence class has n elements.

A further reduction can be made by considering the complement. The comple-

ment of an n-bit binary string x = x1x2 · · ·xn is x̄ = x̄1x̄2 · · · x̄n. Note that two

vertices x and y are adjacent iff x̄ and ȳ are adjacent. By considering these two

operations, the vertices of Mn is partitioned into |Mn|/2n classes, each of them

has 2n vertices (Fig. 2). Here and hereafter, we denote the number of vertices of

a graph G by |G|.
For an n-bit binary sequence x, let ρ(x) denote this equivalence class including

x, i.e., ρ(x) = {σi(x), σi(x̄) | 0 ≤ i < n}. Let Rn denote the graph whose vertices

are these equivalence classes and two vertices ρ(x) and ρ(y) in Rn are adjacent

iff there is an edge between u and v in Mn for some u ∈ ρ(x) and v ∈ ρ(y).

The following lemma, which was shown by Shields and Savage5), guarantees

that we can lift a Hamiltonian path in Rn to a Hamiltonian cycle in the middle

levels graph.

Lemma 1. If there is a Hamiltonian path in Rn starting from the vertex

ρ(0k+11k) and ending at the vertex ρ(0(01)k), then there is a Hamiltonian cycle

ρ(0000111)

ρ(0001011)

ρ(0010011)

ρ(0001101)

ρ(0010101)

R7   (k=3)

1brun 2brun 3brun

Fig. 3 The graph R7 and the decomposition of Rn based on “brun”.

in Mn.

3. Decomposition based on Runs

Since the graph Rn is still huge (i.e., |R37| ∼ 4.8 · 108), we divide Rn into a

number of smaller graphs and search them individually and possibly in parallel.

A run of a binary string x is a consecutive appearance of 1’s or 0’s in x. For

example, we say that 000000 has one run and 001011 has four runs. We will

divide Rn into three parts depending on the number of runs of strings in a

vertex. Notice that ρ(x) may contain strings having different runs. We pick a

string with k one’s such that it starts with 0 and ends with 1 as a representative

of ρ(x), and the number of runs of this string is referred as the number of runs

of ρ(x). Since this number is always even, we introduce a new unit called “brun”

which is equal to two runs.

Note that, in Rn, only ρ(0k+11k) has 1 brun and only ρ(0(01)k) has k bruns. In

a preliminary experiment, we found that a decomposition based on the following

three intervals is plausible (see Figs. 3 and 4).

• Front part : 1 ∼ (⌊k/2⌋ − 1) brun(s)

• Middle part : ⌊k/2⌋ ∼ (k − ⌊k/2⌋+ 1) bruns

• Rear part : (k − ⌊k/2⌋+ 2) ∼ k bruns

Note that, when k = 18, these three intervals are {1, 2, . . . , 8}, {9, 10} and

{11, . . . , 18}.
We will find a Hamiltonian path in each of these three graphs and then connect

them to get a Hamiltonian path in Rn. In order to apply Lemma 1, we fix the

start vertex of a path in the front part to ρ(0k+11k) and the end vertex of a

path in the rear part to ρ(0(01)k). In addition, we should satisfy the additional
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requirements that (i) an end vertex of a path in the front part is adjacent to a

start vertex of a path in the middle part, and (ii) an end vertex of a path in the

middle part is adjacent to a start vertex of a path in the rear part.

After some considerations, we pick strings hc(k, r) := 0k−r+1(01)r1k−r as ter-

minals of paths. Note that ρ(hc(k, r)) has a maximum number of neighbors in

vertices with r − 1 bruns and with r + 1 bruns, respectively. In addition, (i)

hc(k, 1) = 0k+11k, (ii)hc(k, k) = 0(01)k, and (iii) for every i, ρ(hc(k, i)) and

ρ(Rev(hc(k, i + 1))) are adjacent in Rn where Rev(x) denotes the reverse of a

string x = x1x2 · · ·xn i.e., Rev(x) = xn · · ·x2x1. We also use the following fact

which can easily be verified.

Fact 2. Let {ℓ, ℓ + 1, . . . , r} be a subset of {1, 2, . . . , k}. Suppose that there

is a Hamiltonian path in an induced subgraph of Rn with vertices of at least ℓ

bruns and at most r bruns that starts from ρ(x) and ends at ρ(y). Then there

is a Hamiltonian path in the same graph that starts from ρ(Rev(x)) and ends at

ρ(Rev(y)).

For a Hamiltonian path P , let Rev(P ) denote a Hamiltonian path in a same

graph whose existence is guaranteed by Fact 2. In summary, our search procedure

is the following: First find a Hamiltonian path in each of three parts of the graph

starting from ρ(hc(k, ℓ)) and ending at ρ(hc(k, r)) where ℓ and r are the left-end

and right-end of each interval, and let denote these three paths as PF , PM and

PR. Then connect PF , Rev(PM ) and PR in this order to get a Hamiltonian path

in Rn which fulfills the condition in Lemma 1.

4. Ordering of Vertices

Each vertex of the graph Rn can naturally be stored using n bits of memory.

However, this can be reduced by using an efficient ordering of the vertices. Indeed,

since the number of vertices of Rn is less than 232 for n ≤ 39, we can store them

k is even

k is odd

Middle partFront part Rear part

Fig. 4 The decomposition of Rn. Each small circle represents an induced subgraph by the
vertices with a specified brun.

using a 32-bit integer par item. In this section, we give an efficient algorithm

for ordering the vertices of our reduced graphs. A bit surprisingly, plugging this

ordering scheme into a program gives a significant improvement of a running time

of the program that will be shown in the next section.

4.1 View Vertices of Middle Levels as Catalan Objects

The n-th Catalan number is the number of expressions containing n pairs of

parentheses which are correctly matched and is well-known to be

C(n) =
1

n+ 1

(
2n

n

)
.

Notice that the number of vertices in Rn is equal to the k-th Catalan number

C(k). This suggests that there is a bijection between the set of vertices of Rn

and the set of correctly matched n pairs of parentheses.

In the following, we identify a sequence of parentheses with a binary string

under a mapping “(” ↔ “0” and “)” ↔ “1”. In addition, by a technical reason,

we add one “0” to the top of the string. For example, we consider that “(()(()))”

represents the string “000100111”. An 2k+1 bit binary string starting with 0 is

said to be correctly matched if it is corresponding to a correctly matched n pairs

of parentheses.

Fact 3. For every vertex ρ(x) in Rn, there is a unique correctly matched string

in ρ(x).

Proof. We should only consider a string with k one’s since no string with k + 1

one’s is correctly matched.

Suppose that we represent a string by a path in the grid such that it goes

upward when we read 0 and downward when we read 1. For example, a path

for the string 0000111 is drawn as Fig. 5. It is clear that a string x is correctly

matched iff the starting point of the path for x is located at the lowest level in

the path and it is only the point on this level.

Recall that ρ(x) contains every string that obtained from x by applying the

cycle shift an arbitrary times. Note that, for every x with k one’s, a path for x

ends at one step higher than the starting point of the path. Hence if we draw

paths for x and σi(x) for some i, a path for the substring that shifted backward

in σi(x) is drawn at one level higher than the original level (Fig. 6).
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0 0 0 0 1 1 1

Fig. 5 A path for the string “0000111”.

cycle shift

(a)0110100
(b)0001101

Fig. 6 A path for x = 0110100 (a) and for σ5(x) = 0001101 (b). A dotted line represents a
path for the substring ‘01101’ which goes backward by the cycle shift in (b).

By this observation, it is easy to see that a correctly matched string in ρ(x)

can be obtained by (i) draw a path for x, and pick the rightmost point among all

points on the lowest level of the path, and (ii) shift x so that this point becomes

the top of the resulting string.

It is also easy to see that every other string in ρ(x) is not correctly matched.

This guarantees the uniqueness and hence completes the proof.

By this fact, there is a bijection from the set of vertices in Rn to the Catalan

objects, i.e., the vertices in Rn are uniquely mapped to integers {0, 1, . . . , C(k)−
1}.
4.2 Lexicographical Ordering for Catalan Objects

In our programs, we number vertices ρ(x) in Rn according to the lexicographical

ordering (starting from 0) of a correctly matched string in ρ(x).

Obviously, the ordering of a string x is equal to the number of strings lexico-

p

k

Fig. 7 Cw(k, p) is equal to the number of left-right paths in the grid.

graphically smaller than x. Hence if we can count the number of strings smaller

than x̃ for a given prefix x̃, then the ordering of x can easily be computed. For

example, the ordering of the string 0010101 in a set S ⊆ {0, 1}7 can be computed

as the sum of the numbers of strings in S starting from 000, 00100 and 0010100.

Let Pℓ ⊆ {0, 1}2ℓ+1 be the set of correctly matched strings of length 2ℓ + 1.

For a prefix x̃ ∈ {0, 1}t with t ≤ 2ℓ+1, the number of strings in Pℓ starting with

x̃ is shown to be

Cw(k, p) =
p+ 1

k + 1

(
2k − p

k − p

)
, (1)

where p = ♯0(x̃) − ♯1(x̃) − 1 and k = ℓ − ♯1(x̃). Here we denote the number of

0’s and 1’s in x̃ by ♯0(x̃) and ♯1(x̃), respectively. Intuitively, p denotes the height

of the end point of a path for x̃ and k denotes the number of “remaining” one’s

in a string (see Fig. 7). Note that these numbers are known as the Catalan

Triangle (see e.g., the sequence A009766 of7)). Using Eq. (1), we can calculate

the lexicographical ordering of a vertex ρ(x) efficiently. For example, the ordering

of ρ(0010101) is given by Cw(3, 2) + Cw(2, 2) + Cw(1, 2) = 3 + 1 + 0 = 4.

4.3 Runs and Narayana Numbers

Since we decompose the graph Rn into smaller parts, it is desirable to give an

efficient ordering algorithm for the set of vertices of these decomposed graphs.

By a similar argument to that in Section 4.1, the number of vertices of Rn with

r bruns is shown to be

N(k, r) =
1

k

(
k

r

)(
k

r − 1

)
,

which is known as the Narayana numbers. N(k, r) is the number of correctly

matched k pairs of parentheses that contains the subsequence “()” exactly r times.

Note that the Catalan numbers are represented by the sum of the Narayana
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numbers, i.e.,

C(k) =

k∑
i=1

N(k, i).

It is also shown that the lexicographical ordering of a string x in the set of

correctly matched strings with r bruns can be efficiently computed using the

following formula:

Nw(k, p, r) =
k + (p− 1)(r − 1)

k(k − p− r + 1)

(
k − p

r

)(
k

r − 1

)
,

that represents the number of correctly matched strings of which the meanings

of p and k are the same as in Eq. (1) and r denotes the ‘remaining’ number of

the subsequence “()”. A detailed discussion on how to compute the ordering for

such Narayana objects will be appeared in the full version of this note.

5. Computational Results

We develop a program for finding a Hamiltonian path for decomposed graphs

based on the algorithm proposed by Shields et al.5) in which we represent the

vertices of graphs by the ordering described in Section 4. Using this program,

we have succeeded to find a desired Hamiltonian path for every three parts,

i.e., the front, middle, rear parts of Rn for every 8 ≤ k ≤ 19, which shows the

Hamiltonicity of the middle levels graphs for k ≤ 19. Note that, for smaller

values of k, our decomposition schema would not work.

The computational results are summarized in Table 1. Our program is executed

on a PC with an Intel Xeon processor of 2.26 GHz and 24 GB of memory available.

Note that the maximum memory used in our experiments was about 23 GB. We

show the elapsed time in seconds, and the case that takes less than 1 second is

shown as 0.

The second column shows the elapsed time of a base program to find a path

in the entire graph Rn. In a base program, we don’t use our ordering scheme

and vertices are stored as n-bit strings. The third column shows the longest

elapsed time of a base program for finding a path in each of three decomposed

graphs. The fourth column shows the elapsed time of a program with the ordering

technique for the entire graph Rn. The later columns show the elapsed time of a

program in which both techniques, i.e., the decomposition described in Section

3 and the ordering described in Section 4.3 are included.

Table 1 Running time to find a Hamiltonian cycle in the middle levels graph

k Base w/Decomp. w/Ordering w/Decomp.+Ordering
Front Middle Rear Max

8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0
11 1 1 1 0 1 0 1
12 7 5 6 2 4 1 4
13 51 45 30 2 22 3 22
14 542 290 182 40 71 26 71
15 7,657 3,003 1,984 133 477 83 477
16 88,795 29,948 17,130 3,143 2,762 1,785 3,143
17 - 542,821 195,330 15,226 25,329 6,410 25,329
18 - - - 627,204 511,342 359,015 627,204
19 - - - ∼4.85M ∼ 7.01M ∼ 2.33M ∼ 7.01M

(56.1days) (81.1days) (26.9days) (81.1days)

A bit surprisingly, introducing the ordering into a search program gives a signif-

icant improvement of the running time. The combination of our two techniques

reduces the running time by a factor of about 30 when k = 16. For k = 19, the

number of vertices of the front, middle and rear parts of the graph is 291, 580, 993,

1, 184, 101, 205 and 291, 580, 993, respectively. Notice that the running time (per

one vertex) is the longest for the front part of the graph. This suggests that find-

ing a Hamiltonian path is harder for a graph consisting of vertices with smaller

number of runs than that with larger number of runs.

The source codes of the programs we used as well as some additional data are

available on the web page6).
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