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1. Abstract

It is shown that most of the systematic codes using binary shift
register sequences can be treated with in a unified manner, and their
algebraic properties are clarified, from which the basic theory of encoding
and decoding is derived.

Further, a new class of systematic codes, denoted by II,-type code
hereafter, is introduced, which has a remarkable feature as will be stated
below. Let C denote the cyclic shift operator. For any two error vectors
¢ and ¢, if there exists an integer p such that ¢'=C?¢, we define that
they belong to the same error-pattern. Then, I7,-type codes are defined
to be the systematic codes with the following property:

If a code S can correct an error e, then S can always correct all errors
of the error-pattern including e through a suitable choice of decoding
procedure.

Since even in the case of non-independent errors most members of an
error-pattern have a common probability of occurrence, it may be reason-
able to treat with error-patterns rather than to treat with errors one
by one. '

This paper presents the necessary and sufficient condition of Il,-type
code, from which all I7,-type codes with a given odd code length can
explicitly be obtained. This class contains several new efficient sodes as
well as the cyclic Hamming codes and the the cyclic Golay codes. Also,
the codes of I7,~type may be instrumented in a simple fashion.

2. Basic Theorems

Let V, be the space of binary n-tuples (%, 2y, ---,,.,); let S, the
code, be a k-dimensional subspace and let C, the cyclic shift operator,
be defined as

C' (xo’ P xn~1)z(xn~1; Loy =+ *y xn—Z) .

A code S is called a cyclic code if for each vector x in S, the vector
Cx is also in S. Some cyclic codes have been studied by Prange from a
different point of view”. Also, the Abramson codes®, the Fire codes®
and the Melas codes™ are all cyeclic. '

In the mathematical versions, the definition of I7,-type code follows
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such that:

If for any vector 2¢S, z, Cx, -+, C*" 'z all belong respectively to %
distinet coset of V, modulo S different from S, then S is defined to be
Il -type.

From this definition, it follows that II,-type codes are of the cyclic
codes. In what follows, S is assumed to be a cyclic code except for
Section 5. For two vectors z and y, if there exists an integer p such
that « and C?y belong to the some coset of V, modulo S, then we denote

r~1Y.

This relation ‘“~” classifies the vectors of V, uniquely into disjoint
clases, denoted by I'W(=S), I'y, -+, I",. I, consists of 7, cosets and is
invariant under C. If a member of an error-pattern P is included in
I', all members of P are also included in 7I",. Then we denote Pel’,.
If S is a Il,-type code,

PASLESS|

ry=n; 1t=1,2,.-+, r= -

Lemma: For any set of ' error-patterns {P,} such that P;e7", (i,<
GgL » v 0 <4,) and 7., ="M, S can correct all errors belonging to P,’s through
a suitable decoding procedure. If S is of Il,-type, S can correct just #
error-patterns.

Let R, denote the set of all polynomials of degree less than » with
coefficients from GF(2). Let x=/(x,, %, -+, %,-,) correspond to the poly-
nomial z(u)=x,+xu—+ .-+, ,u"", and let I denote the subset of R
corresponding to S.

The following theorems are proved.

Theorem 1: The necessary and sufficient condition that S is a cyclic
code is that there exists a polynomial g(u) of degree m (=n—k) such
that

(i) u"+1=0 [modd 2, g(w)],
and (ii) a polynomial z(u) in R, is in I, if and only if
a(u)=0 [modd 2, g(u)].

The polynomial g(u) in Theorem 1 will be called the characteristic poly-
nomial of S and a cyclic code whose characteristic polynomial is g(u)
will be designated as S(g(w)).

Corrollary: Suppose that

wel;, yel'y,
then i=2j, if and only if
y(u)+uPe(u)E£0 [modd 2, glw)]; 0<p<n—1.
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Theorem 2: A cyclic code S(g(u)) is a IT,-type code, if and only if the
characteristic polynomial g(u) is an irreducible polynomial or a product
of distinet irreducible polynomials having the common period .

Based on this theorem, all of Il,-type codes with any given odd # may
be formed by referring to the table of irreducible polynomials over
GF(2)®,

In what follows, S is assumed to correct at least any single error.
Hence, n is the least integer such that

u*+1=0 [modd 2, g(u)].

3. Ewmncoding and Decoding

Let SR,(f) denote the m-stage linear feedback shift-register with the
characteristic polynomial®

Fw= st

let 5,=(&,i-1, ***, &) denote the state vector of SR,(f) at the 4-th
clock-time, and let delay operator D be defined such that

D'(Eﬂ-m—l’ ) Si)E(Eier—m Sty 51"1) .

From the definition of the characteristic polynomial, it follows that

Ej: gfm~¢$j—i .

The state diagram of SE,(f) consists of a cycle of 1l-cycle length, K,
and r eycles K, K,, -+, K,.

Theorem 3: Let the initial state vector £, be equal to (1,0, ---,0),
and let A denote the # X m matrix whose i-th row is equal to the state
vector Z, of SR(g). Then the transposed matrix of A is a parity-check
matrix of the eyclic code S(g(u)).

Let us designate the parity-check sequence corresponding to an error
vector e as 7(e), i.e.

ne)=e-A.

Theorem 4: By appropriate numbering of K, a one-to-one corre-
spondence between /', and K, holds in such a manner that:
if ecl’;, then 7(e)e K, and

7(C?e)=D"?1(e) .

Based on Theorems 3 and 4, a cyclic code S(g(%)) may be instrumented
in a simple fashion by employing SE,(¢9) and the reverse shift-register
of SR, (9).
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4. Examples of II,~Type Codes

Several efficient codes of I/ ,-type have been found. Let E,, E,;, Ey, « -
denote a single error, a double-adjacent error, a three-binit-wide double
error, - -- respectively.

By forming the state diagram of SR,(g), the following results (i) and
(ii) are easily ascertained from Lemma and Theorems 3 and 4.

(i) The (21, 15) code with g(u)=u’+u*+u’+u+1 corrects error-pat-
terns E,, E,; and E;,. This code is a quasi-perfect code.

(ii) The (17,9) code with g(u)=u*+u"+u’+u*+u*+u-+1 can correct
error-patterns Kiy, E1015 Erorors Eroro001s Eroor0001s Eroooross: besides all single
and double errors. This code is also quasi-perfect, and has the least
redundancy among the known double-error-correcting systematic codes
with 8 check-digits.

(iii) A simple consideration shows that a perfect cyclic code is neces-
sarily of II,-type. Hence, the cyclic Hamming codes and the cyclic Golay
code found by Prange are of I7,-type. A simple proof that S(u''4u'~-
wt4ui+ut+uz+1) is perfect is presented.

5. FEuxtension

Now, let C' denote the noncyclic shift operator such that C"*-x or
C'-t.x is defined only when no nonzero digtis are lost by the shift opera-
tion. A code S will be called a II'-type code if for any vector # in S,
every vector that has the form C*-x is also in S. Clearly, a cyclic code
is of IT’-type. Some similar theorems to those in Sections 2 and 8 hold
with regard to this class of codes. For example, the following theorem
is obtained.

Theorem 1’: The necessary and sufficient condition that S is of II'-type
is that there exists a polynomial g(u) of degree m such that

(1) 9(0)=1,
and (ii) a polynomial x(u) in R, is in I, if and only if
x(u)=0 [modd 2, g(u)] .

This theorem implies that every II'-type code may be formed by omitting
some leading information symbols from code vectors of a suitable cyeclic

code.
The Reiger codes®, the Fire codes® and the codes considered by the

author” are of II’-type.
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