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On the Aitken’s &*-process

Ken Iguchi*

Abstract

This paper is concerned with the Aitken'’s 62-pr0cess and similar process. The Ait~
ken’'s Gz-process is not always successful for the sequence converging linearly.

We develop the general theory of the Aitken’s 62-process, and we derive effective
process even when the Aitken's Gz—ptocess fails. As an example of these processes, we
consider an application to finding the absolutely largest eigenvalue by the power meth-
od. Some test matrices and its results are given.

1. Introduction

Let [xp} be a real sequence which converges to a limit x, where a suffix in xp takes

positive integer. Then xP denote the p-th value of the sequence.

Suppose that

o] P P
xp = x + cltl + c2t2 + O(t3), (1.1)
where cl and 02 are constants, and real numbers tl, tz, and t3 are supposed to be
> > >
1 ]tll lt2|=]t3|. (1.2)

Here we propose an accelerating process which is defined by
(n)

xp+2 = xp+2 + wn(xp+2- xp), {(1.3)
in terms of successive terms xp, xp+l, and xp+2, where
¥ o2i
w =)t an=1,2, ..., (1.4)
n
i=1
t = (xp+2 - xp+l)/(xp+l - xp)- (1.5)

(n)
The value xp+2

In practice, this process is used as follows; an iterative procedure with an initial

is considered to be an approximation to the limit x.

vector x. give successive iterates x

0 ’ xz, and x_, which are used to obtain a new ini-

1

tial value xén) by means of eq.(1.3). Replacing xén) by xo, that is, x0 = xén), we de-

duce xi , x!, and x; from X, by the iterative procedure. Replacing xi, x!, and x; by X,
: i ) R ; (n)

. x2, and x3 , that is, xl = xl, x2 x2 , and x3 x3 , use eq.(1.3) to obtain x2 .

and so on.

Now taking the limit as n » © of eq.(1.4), we obtain the formula as
w, = tz/(l - t2). (1.6)

This case of n > © of eqg.(1.3) is usually called the Aitken's 62- process( see [1],
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(41, (51, (6], (8], etc.).
in the case of itz/tli = 1, the employment of the Aitken's 52—process makes conver-
gence worse, and, in the worst, causes an oscillation far from the limit x. However,
the employment of eq.(l.3) for low number of n, say, n = 1, 2 results in the rapid con-
vergence when the Aitken'’s 62-process is failed.

Here we propose to use these accelerating processes as follows;
(1) if ]tz/tll < 0.4, we use the formula as
‘ XD ax o tux . -x), .7
pt2 p+2 o pt+2 o
(ii) if 0.4 ¢ ]tz/tll < 0.9, we use the formula as

(2)
= + - .
xp+2 xP+2 w2(xp+2 xp), (1.8)
(iii) if 0.9 : ]tz/tll, we use the formula as
xp+2 xp_'_2 + ml(xp+2 xp), (1.9)
where w = t2, w, = t2 + t4, (1.10)

and t is given by eq.(1.5).
The ratio of tz/t1 is estimated in the following way.

We evaluate t*, k = 1, 2, 3 from successive five terms as follows,

tr = ( ) k=1,2,3. (1.11)

k= Pokel T %prk!/ Fpak T Xprk-1

Then the ratio of tz/tl is estimated by means of the formula as

tz/tl = (t; -~ t;)/(t; - ti). (1.12)

It is sufficient to estimate only once the magnitude of the ratio of tz/t1 before
starting calculations.

Since eq.(1.3) is based on eq.(l.l), it is applicable to the power method for the
largest eigenvalue in magnitude, and the iterative methods, say, S.0.R method for so-
lution of a system of linear equations. In the later section, we consider the power

method as a typical example.

2. Accelerating process
We derive an accelerating process defined by eq.(1.3).

From eq.(l.1), we obtain the formula as

-x =ctP 2.1
xP+l xP ct1 + ep, ( )
where _ - P - P 2.2
c = cl(t1 1), Ep c2t2(t2 1) + O(tB)' (2.2)
It follows that ep tends asymptotically to zero as p tends to infinity, since |t2|
<1.

The eq.(2.1) can be rewritten as follows;

xp+l = xP + ctp, (2.3)

for any positive integer p, where ¢ is constant, and t tends asymptotically to tl as
p tends to infinity.
The repeated application of Lemma 1 yields the following Lemma 2.
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Lemma 2

X = %o * ctP( iéotl), (2.4)
for any positive integer p and m.
The application of Lemma 1 and Lemma 2 yields the following Lemma 3.
Lemma 3
p+m-1

X = + ct

p+m _ Xpm-1 (2.5)
for any positive integer p and m.
The eg.(2.5) corresponds to eq.(2.3) which is the case of m = 1 in eq.(2.5).
The repeated application of Lemma 3 yields the following Lemma 4.
Lemma 4 n-m+l,
%en = Xoum * ctP™®( iZO £ty (2.6)
for any positive integer p, m, and n.

From eq.(2.4) and eq.(2.5), we obtain the formula as

Y = (xp+m - xp)/(xp+m - xp+m_l) (2.7)
mel
= Yty (2.8)
i=0

The eq.(2.8) can be rewritten in the form as

m-1 m:2 i

Qa-nt -+ Jt =o0, (2.9)
i=0

where t is given by eq.(2.7).

By eliminating ¢ in eq.(2.4) and eq.(2.6), we obtain the following theorem.
Theorem

_ m. _ . n-m L m _
xp+n = xp+m + (£ (1 t )/ (1 t ))(xp+m xp), (2.10)

for any positive integer p, m, and n (n > m ; 2), where t is the unique real root with
magnitude smaller than unity of the equation of eq.(2.9) in term of Y given by eq.(2.7).
; - (@) _ ..
Taking the limit as n + © of eq.(2.10) with m = 2, and then putting xp+2 = %;g xp+n,
we obtain the following Corollary 1.

Corollary 1
x(m) =x
pt+2 p+2

for any positive integer p, where t is given by

2 2
+(t7/(1 -t ))(xp+2 - xp), (2.11)

t = (xP+2 - xp+l)/(xP+l - xp). (2.12)
. _ _ _ . (k) _
Taking m = 2, n = 2k (k = 1,2,...) of eq.(2.10) and then putting xp+2 = xp+2k' we
obtain the following Corollary 2.
Corollary 2
k-1
(k) _ 2i _
Xor2 = Xpea * i§1t )Xy = X ) (2.13)

for any positive integer p and k(; 2), where t is given by eq. (2.12).

3. Estimation of the ratio of t2/tl
We derive a formula for estimating the magnitude of the ratio of tz/tl'

From successive five terms xp, xp+l’ xp+2, xp+3, and xp+4, we evaluate t*, k =1,2,3

by means of eq.(1l.11).
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By substituting eq.(1.1l) into eq.(l1.11l), we obtain the formula as

= PR, gy alPtRTL g PRl
2

* A - /(AL
Kk 1 2 /Y

1.9 12 19 1y
1o D™ T Lg&kqIy \ded)

where . _ o (t, -1), B= e, (t, = 1). (3.2)

By evaluating approximately eq. (3.1), we obtain the formula as

= pt+k - ptk~1
tg = £, (1 + (B/A) (tz/tl) )1 - (B/A) (t,/t,) )
=t (1 - (B/A) (et )Py, k= 1,2,3. (3.3)
1 271
From eq. (3.3), we obtain the formula as
_ - ptk-1 _ p+k -
t;+l ti (B/A)(tz/tl) (B/A)(tz/tl) . 3 1,2, (3.4)

Then we obtain the eq.(1.12) from eq. (3.4).

4. Application to the power method

As a typical example of the use of the accelerating process described in the pre-
ceding section, we consider an application to the power method for the largest eigen-
value in magnitude. Then it is necessary to apply these processes to all the compo-
nents of the eigenvector., This can be done by the following way(see(2], [6], and (8],
etc.).

Here we assume that the n x n matrix A is symmetrical and real with the eigenvalues
s A, 1i=1,2,...,n.

Further assume that
|A1| > |x2| > |A3| > |A4| LT N P (4.1)

We take an initial vector, u_ arbitraryly.

By successive premultiplicatgon of the matrix A form the sequence
w =Au, u =A%, u, =Aa%u. (4.2)
1 [ 2 0 3 0
Then the Rayleigh quotient is
X = (A3u0, A3u0)/(A2u0, Aauo). (4.3)
Dividing ul, uz, and u3 of eq.(4.2) by Xl' Xi, and Xi respectively, we again

denote these resulting vectors by Uy, Uy, and u,. Then we apply the accelerating pro-

2

cess of eqg.(l.3) to the iterated vectors, ul, u2, and u3 as
u = u, + wn(u3 - ul), (4.4)
where, as the value of mn, we take the one value among wl, w2, and w_ given by

eq.(1.10) and eq.(1.6).
Here we calculate the value of t for the only one component as follows;

(r) (xr)

t= @ -/ -, (4.5)

where r denotes the r-th component of the vectors, ui, i =1,2,3 which is the largest
component in magnitude.

Finally replacing u_ by u, that is, u_ = u, this procedure is repeated until the

0 []
desired accuracy is obtained.

5. Test matrices and numerical results

The following matrices demonstrate the effectiveness of the accelerating processes
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described in the section 2 according to the procedure of the section 3. The computa-

m s I raraliy A€ NMarcmua wlsb
VEeILrSl1iLy O1I Nayoya, wiln

tions were carried out on the FACOM 230-60 computer of
£

1
r

Uni
the single precisions of the significant figures of 7.8 in decimal.

We take ug = (1,1,...,1) as an initial vector for all the test matrices.

Example 1(3] Example 2[7]

Let 10 1 2 3 4 Let 0.45 0.55 0.40
1 9-1 2 -3 A2 = 0.55 0.45 -0.40

Al _ 2-1 7 3-5 0.40 -0.40 0.50

3 2 312 -1
4 -3 -5 -1 15
Then A, = 19.1754203, o1

Then Al =1,

= -0.9, t2/tl > -0,33.
t1(=A2/A1) = 0.82, tz/tl(=x3/x2) = 0.59.

We denote here the number of the iterations by N.I., and the number of the use of

the accelerating processes by N.A..

Table. 1 The abeolutely largest eigenvalue Table. 2 The absolutely largest eigenvalue
of the matrix Aj: A1=10.1754203 of the matrix As: 41=10

N.I. N.A. o [ 234 0/(1~em N.I. N.A. [o] I e a8)(1—¢1)
3 0 1583796 15.83796  15.83796 15.83796 3 0 1465038 1.465038  1.465038 1. 465038
& 2z 15,9539 16.35906  16.96523 15, 67066 6 i LIBiee4 120619  1.Z208i2 1. Z0612
9 9 16.23291 19,1541  19.16870 16. 02288 9 2 1111839 1.108536  1.106268 1.106283
12 3 16.86787 1917257  19,17508 16.41739 123 1057840  1.050494  1.049690 1. 049570
15 4 1780773 1917492 19.17503 18. 06301 15 4 1,030306 102233  1.021631 1.021249
18 5 1858001 19.17535  19,17538 17. 46909 18 5 1015985  1.009630  1.008476 1.007791
2l 6 1896264  10.17540  19.17541 16. 42896 21 6 1008462 1.004036 1. 1.002157
24 7 19.10557  19.17541  19.17542 18. 10049 2 7 100488  1.001573  1,000688 1.000350
21 8 19.13317 1917541 17.55771 27 8 10023682 1.000501 1.000242 1. 000018
30 9 19.16840  19.17542 16.54619 30 9 1001265 1.000216  1,000061 1.000000
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