Information Processing in Japan Vol. 17,1977

FORTRAN Check System Using a Small Scale Computer

Koji TOCHINAI*, Shizuo NAKAMURA** and Yuko WADA***

Abstract
In this paper, a program for pre-checking FORTRAN programs using a small scale
computer system is described. With the check program, the user is éapable of removing
syntactic errors from his program before processing it on the main computer, and
hence the increase in the job processing efficiency and the reduction of job turn
around time are expected. The check program has been developed and utilized at the
Hokkaido University Computing Center, and apparent improvements on the system

performance are observed.

1. Introduction

In university computing centers in Japan, many FORTRAN programs are processed
in every day. The considerable amount of them contain several syntactic errors and
are rejected from the computing system at the compilation step, and hence they
decrease the system performance.

If an appropriate sub computer system is available, the method of pre-checking
syntactic errors by using it before processing on the main computer system is useful.
The major benefits of this method are:

1) to increase the job processing efficiency of the main computer system,

2) to perform syntax checking more precisely than the compiler built-in checking
facilities, and

3) to present kind information of errors to the user.

Then the increase in the system performance and the reduction of the period for
debugging are expected.

Based on the point of view as mentioned above, the check program system has

been developed. The program has been utilized in the Hokkaido University Computing

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 18, No.2 (1977), pp. 135~141.

* Faculty of Engineering, Hokkaido University
** Research Institute of Applied Electricity, Hokkaido University
*** tokkaido University Computing Center

104

105

Center since November 1973, and apparent improvements on the system performance in

2. Main functions of the check program

The check program is designed to check the card punched FORTRAN program, and
implemented on a small scale sub computer system with 24KB of core memory, a 512KB
drum and two 5MB discpacks. It can check the syntax of each statement, the control

flow of the program, the definition and usage of statement numbers and names, and so

a) Source program listing.
C CHECK PROGRAM

1 DIMENSION A(100,100)+B¢30+30)
2 DO 400 1=1+20
3 LAMDA=((JALPHA/IBETA) #8#2-256#1GAMMA(1))) /180
4 JERR([+2)=LAMDA+1
5 300 GO TO 1+(301+302+3034304+305)
6 1C=€2.045,0)+1ALPHA
7 400 CONTINUE
8 STOP .
9 END Underlines show the place where the error exists.
b) Error messages.
ISN 1 ## ERROR NO.2007 Symbol error in array declaration.
1SN a we ERROR NC.2702 Incoincidence of the number of parentheses.
1SN 4 - ERROR NO, 2605 Undeclared array name.
ISN 6 ##% ERROR NO,2806 Illegal combination of types.
¢) List of statement numbers and names.
STATEMENT NUMBERS
NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER
400 300 301 N 302 N 303 N 304 N
305 N
NAMES
NAME TYPE KIND NOTE NAME TYPE KIND NOTE NAME TYPE KIND NOTE
LAMDA » I VAR, TALPHA 1 VAR. 1BETA N 1 VAR,
I N 1 VAR, 19 - I VAR,

Fig. 1 An example of the checking result.

on, As any error is found, an error message
corresponding with it is printed. An example of

the checking result is shown in Fig.l.

3. Program design
The check program consists of three phases
as shown in Fig.2. Various tables are used in

the program, and major three of them are:

1) the name table,
Fig. 2 General flow of the check program.

2) the statement number table, and

106

3) the control table.

¥r | Fp Oi‘t’:in 4
They are located in the drum and 1000 N L/
divided into pages. A page consists /
500 - -
of 512 16-bit words, and a software /
paging technique is used. . /)
200 =
The name and statement number . /
table are combined together based on 100 /
the investigation of user programs. . / M.
50 4 il
Fig.3 shows the result of it and the . I
/. ¢ n § number of source statements.
Np = N
correlation / * g : n\x;nbor of variables.
20 . . NL 3 number o‘I statement numbers.
Np v 0.65n (¢H) 20 50 100 200 500 1000 n

Pig. Relation between n and Np.
is recognized. 1. 3

According to the eq.(l), the name and statement number table has a capacity of
1100 entries corresponding with the program up to 1600 lines. To determine the

location of an entry in the table,
a) An example of the table. —the name table—

the hash technique is used. The

olc|d P A
structure of an element of the table ; A aclnL:{]qu HHJIJ;I"I"IO'
2
is shown in Fig.4 together with the 3 % X
4 X;_' X

16 bits/word g i1l bits for table handling.

P~A pointer to the next entry.
AyB,--P j attributes of the name.
The control table is used for X1+X2,+--- § each character of the name.
b) Structure of the page.

paging and hashing system.

checking the control flow of the

. b
ome |y
program. The structure of an element e ‘,
2 D 3 used by the og:rntz.ng systen. t1s)
n 3 record number. (2 decimal digits
is shown in Fig.5. The location of . pz:‘»-e- umbor. (= vecord Ho. In b)
. text part 1¢ 3 control information.
an entry is determined sequentially. i1 505 words |
(101 ?ntriau);
As any syntactic error is found soq i
Sto] not used
during the processing on the check s11| not used

program, corresponding error message

tem.
¢) Paging eys Auxiliary memory (drum

is printed. The message consists of

conversion to binary number
the location,level and kind. (see

Fig.l) The kind of the error is p:[ﬁ-}(

expressed by a 4-digit integer A 7A
’ 4 rer e AN 74

because the memory capacity is rather *+3 . J

small to store precise explanations Main semory (cors)

Fig. 4 Table construction.
of errors in the memory.

107

Consequently, the user is necessary to refer the

oo [T ISN
error message manual. P p [m | =
2 [d]$ Rad
3[ais Rady
4. Results N : :
mealals]] Rede,

After the check program service has been

ISN ; internal statement number.

s',n ; attributes of the statement number.
available since November 1973, the increase in the d.Lm“ used in phase 2.

Red i Pointer to the control table
job processing efficiency and the reduction of the or the statement number table.

job turn around time are observed. Fig. 5 Control table.

4.1, Increase in the job processing efficiency

Fig.6 shows the variation in the ratio of the core time (uset) to the cpu time
(cput) of the processed jobs on the main computer system for job class A: the smallest
class and cput is limited shortly. The ratio clearly decreased after beginning of

the check program service. The considerable amount of class-A jobs are under

uset
cput
; I
mean value from Sept. 1971
to Nov. 1973 ; 2.73 ,
3 A t

— N
. . \/ g(vyAJi

mean value from Dec. 1973
to Oct. 1974 3 2.21.

|

has been available.

r_, Check program service

t

i —1
Q1011121 234567 8910111212345678410112123456783 %10
Litged b (a72 1L 1973 J e 1974 —

Fig. 6 Ratio of the use time to the cpu time for class A jobs.

debugging, and therefore this result can be interpreted that some of them has become
to be processed by the check program, the number of errorneous jobs has reduced in
the main system and then the cpu utilization has increased. Uset to cput ratio of
other job classes have not varied during these period. As the most of them are
considered the "debugged" jobs, the result supports the interpretation mentioned

above.

4.2. Reduction of the job turn around time
As the job turn around time reduces, users are capable of processing more jobs

in a given period. Therefore, suppose that the computer system has a sufficient job

108

3 ﬁ%

[\,-Lnthly data ’ I

T e

| I et
)l \/\/”"/‘*"" f* < | \\//
3 |

‘ "

i
I,_. Check program service
o has been available.

N\
Y

—t + —

T100121 236 5678%0111212345678910112123485678910
S ey ——— gy —— L Ly qge—

Fig. 7 Number of jobs processed in unit time.

processing ability, the increase in jobs processed in unit time is expected.
Because of the concentration of job processing for graduation studies at the end
of the semester, this value is varying periodically. However, by the smoothing
operation over more than 12 months, the apparent increase is recognized as shown in
Fig.7.

It is interpreted that users can perform syntactic debugging of their programs
rapidly by using the check program system effectively, and then are capable of

processing more jobs in a unit time. /

5. Conclusion

The design objectives of the check program system are well accomplished except
the processing speed is not so high: about 1 source statement in a second from card
reading to the end of checking. It is well utilized in the computing center, and
apparent improvements in the job processing efficiency are observed. Therfore, it
is concluded that the check program system developed in this study is valuable for

our computing center.

