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Consider the linear multistep methods (LM methods)
Vst Yaskat. ot Va=h(BiSrsst. . .+ Bof)

for solving initial value problems of ordinary differential equations. In many of the methods, the signs of o’s and #’s are mix-
ed. However, the methods satisfying the conditions

—a;z0,j=0,1,..., k=1,
Biz0,j=0,1,...,k

are preferable to others because these conditions prevent the cancellation of significant figures during the computations. In
this paper, we consider the existence of the implicit LM methods satisfying these conditions, for each of the three types; these
types consist of the Adams type, the Milne type, and the Radial type. It is found that the highest orders of such LM methods
are 2, 4, and 8, for the Adams, for the Milne, and for the Radial, respectively. In particular, the Adams type includes the A,
and A-stable methods. For the Milne type, it is found that the methods of order 3, 4 are unstable, and consequently only the
one of order 2 is useful. For the Radial type of order from 3 to 5, the optimal parameters are obtained which minimize the
round-off error propagations of the methods. The numerical example shows that these optimal methods are more accurate

than the Adams-Moulton methods.

1. Introduction

A great number of methods have been derived for
solving the initial value problem

Y =fx, ), y(x0)=Yyo. (.

These methods are classified into the following types of
methods:

(1) Runge-Kutta (R-K) methods

(2) Linear multistep (LM) methods

R-K methods are, in general, more accurate and stable,
compared with LM methods of same order. Moreover
R-K methods are self-starting procedures while LM
methods are not so. However, LM methods are
superior to R-K methods in that LM methods require a
fewer number of function evaluations per step. Most-
commonly used LM methods are the Adams-Bashforth
(A-B) and the Adams-Moulton (A-M) methods, which
are frequently implemented in various steps and various
orders (VSVO) mode [1]. Hull et al [2] concluded, from
a number of experiments, that the VSVO method based
on Adams formula is the best general purpose method,
if the function evaluations are relatively expensive.
The k-step Adams method is denoted by

Yk~ Yn+k=1t =H(BiSurxF Be-1 fosx-1t. . . +Bofo),
(1.2)
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[ Bl + 1801 >0,
f]=f(x/'vyj):
x,-=x0+jh,

In this formula, the coefficients 8’s are determined so
that the method have maximal order [3]. The signs of
the coefficients are, however, mixed for £>1, this
means that the method (1.2) is vulnerable to the
cancellation of significant figures.

In this paper we shall be concerned with the implicit
LM method

Yntktok-1Ynex-1+. .. T aoyn
=h(Bxfosct. .. +Bofn), (1.3)
with the following properties:
—a,;20, j=0,1,...,k—1, 1.9
B;=0, j=0,1,...,k—1,8>0. (1.5)

We say that the method (1.3) is weakly nonnegative
method (WNM) if only the conditions (1.4) is satisfied,
and that the method is strongly nonnegative method
(SNM) if both of the conditions (1.4) and (1.5) are
satisfied. For example, the Adams method for k>1 is
WNM while Simpson method is SNM. In Sec. 2 we will
discuss the stability properties of nonnegative methods.
From Sec. 3 to Sec. 5, we will derive the SNM of follow-
ing types:

(1) k-step Adams type correctors of order k(k>0),

(2) k-step Milne type correctors of order k(k>1),
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(3) k-step Radial
k+1(k>1).

correctors [4-5] of order

2. Stabilities of Nonnegative Methods

In this section we discuss the zero-stability of WNM
and the relative stability of SNM. To discuss the
stabilities of the LM method (1.3), we define the two
polynomials p({) and g({) in the usual way:

PO= oL+ L ta,
a(O)=Bel B+ L+ B0 @.1n

Here we assume that the method (1.3) is consistent, i.e.,
the polynomials associated with the method satisfy the
conditions

p()=0,
p(M=a(l).

The method is said to be zero-stable if it is stable, as
h—0[6]. This condition is equivalent in that no zero of
p(¢) has modulus greater than one and every zero of
modulus one is simple [6]. The next Theorem shows
that if the consistent LM method is WNM then the
method is zero-stable.

2.2)

Theorem 1.

Assume that the LM method is consistent, and that
the polynomials p and ¢ have no common factors. Then
the method is zero-stable, if it is WNM.

Proof

For the proof we use a well known result [7] that the
magnitudes of the zeros of p({) are no greater than the
only real positive zero of the auxiliary polynomial

PO=C = lag 1 EF T~ T2 1 2= .. = lal.
2.3)

If the condition (1.4) holds, then the polynomial 5(¢{) is
identical with p({), and consequently p({) has the only
real positive zero {=1. This means that all the zeros of

p(¢) satisfy
IZl=1 2.4)

Next we show that any zero of p of modulus 1, if they
exist, cannot be multiple. Let w(=exp (v —16) be any
zero of p located on the complex unit circle. Then, it
follows, from (1.4), that

0=lp(w)l
=lw*l 1+ ar-10 ' +ar 20 2 +. .. +aow ¥l
zl—lapo = lar-20™ 2 —. .. —laol 2.5)
=l4+ai-1tar-2+... +ao
=p(D)=0

which means that

arg a,—;w ~/=7x (mod 27),

for all j satisfying a-;<0. Since arg ox-;=n (mod 2n),
we have
- i =, (2.6)
Because of that the relation (2.6) is valid even if
ax—;=0, this relation is valid for all j. From the (2.2)
and (2.6), it follows that
p(w)=ko* '+ (k— Do 0" 2+. .. +a
=w""(k+(k— l)ak_lcu"+. . +0£1w-k+|)
=* Y k+(k—Dag-1+... +a)) 2.7
=w*'p’(1)
=w* a(1).
Using the assumption that p and ¢ has no common
zeros, we can conclude that p’(w)=0, implying that
none of the zeros of p located on the unit circle should
be multiple.
Q.E.D.
Next we discuss the relative stability of the non-
negative method. The LM method (1.3) is said to be rela-

tively stable for a given complex z if each of zeros of the
polynomial

n(&; 2)=p()—20(0) (2.8)
satisfies
|Cj|<|{||, j=2,3,...,k—l, (29)

where {, is a zero which approaches the principal zero
of p(¢), as 20, i.e.,

lim {,=1. (2.10)
=0

For the relative stability of the LM method Hull and
Newbery [5] gave the following theorem:

Theorem 2, (Hull and Newbery [5])
If we attempt to solve the test equation

y'=Aiy, A>0, 2.11)

by the LM method (1.3), then the conditions
Pe<1, (2.12)
ZBi>ai, i=0,1,...,k—1, (2.13)

z=hi

guarantee the relative stability.
From this Theorem, the following Theorem is easily
derived:

Theorem 3.
Let the method (1.3) be SNM, then it has relative sta-
bility for small enough 4 unless

o;=p,=0,

Above results indicate that SNM is superior to the
others in the sense that, during the computation, it
prevents not only the loss of significant figures by
cancellation but also the growth of the round-off error.

for some i.
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3. Adams type SNM Correctors

In this section we derive the k-step Adams type SNM
of order k. We call the method (1.3) Adams type, if the
first polynomial p({) associated with the method is of
the form

pY=C =, k=l 3.

For the k-step Adams type corrector of order &,
Rodabaugh and Thompson [8] proved that Ao-stable
method (see [11]) exists for k<4 by using the result of
Hall [9]. Feinberg [10] also derived the same result in a
elegant way.

To find the k-step Adams type SNM correctors, we
put

P)=C*R(D),

a(Q)=¢*s(n), (3.2
t=1-¢"

then from (3.1),
R(t)=t. 3.3)

Henrici [3] proved that the method (p, &) has order k if
and only if the expansion

R(1)
log (1—1¢)
holds, where ¢, is a constant independent of ¢. As is

shown in [3], since the function —¢/log (1—1) is ex-
panded into the series

t
log(1—1)

. ° (—s .
b2 =(—1)/§-l<j )ds, j=0,1,..., 3.6)

—S()=cit*+. .. (3.4)

=yp¥+y¥e+..., (3.5

in order that the method has order &, S(¢) should be of
the form

S(O)=yF+yft+. .. +yia v " +art, 3.7

where a is an arbitrary constant. It should be noted that
if a=y¥ then the method (p, o) is k-step Adams type
corrector of order k+1, i.e., k-step A-M method,
which satisfies only the weakly nonnegative condition.
Next we determine the coefficients #’s from (3.7). To
do this we first determine the second polynomial g({).
Substituting the series (3.7) into (3.2), we have

a({)=¢* [;, y.-*(l—l/C)‘+(0—7i’)(1—l/C)k]

=c*(O)+(a—yENS— 1, (3.8)
where

oM O)=BEHPE- L+ BT,
ﬂ?-1=(—1)‘zk]<j,)y;', i=0,1,...,k.  (3.10)
!

=i
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Note that ¢*(¢) is the second polynomial of the k-step
A-M method. From these relations, we find

|k
ﬁk—i=ﬂ"‘i+(_l)'( i )(a“)’t), i=0) 19~",k'
3.11)

One can see, from the above expression, that if

k -1
L=max {yt—( ) ) 7(—,'}
t=even l
k -1
=min {VZ‘+< ) ﬂi-,}=U, (3.12)
i=odd I
then the free parameter g which makes 8,(j=0,1, ...,
k) nonnegative exists in the interval [L, U].
) k!
Agk):y:-i-(—l)wl ( ' ) Bi-,, i=0,1,...,k
i
(3.13)
then the inequality (3.12) can be rewritten as

max A% < min 4.
i=even i=odd

(3.14)

The following Lemma indicates the properties of 4%:

Lemma 1.

B A¥P<o0, k=1,2,...,

) A®>0, i=1,2,...,k—1,k>1,

(i) AP=0, k=1,2,...,

(iv) Fori>0, A is monotone decreasing as a function
of i.

Proof

(i) Substituting (3.10) into (3.13), we have
k -1 k-1 /
A}“=—(_) Z(j,)yj‘, i=0,1, ..., k—1.
i j=i \'i
(3.15)

From this expression and from the results given by
Henrici [3],

k=1

AP == yr==y-1, (3.16)
Jj=0
where y; is a positive constant given by
o =s
r,=(—1)’5 ( . )dS
o\ J
ts(s+1)...(s+j—1
=§ D jv( 7Dy 0. aam)
o !

The positiveness of y;, j=0, means that Ay <0.
(i) It follows, from (3.6), that y* can be expressed by

0 s(s+1)...(s+j—1

r,’=§ (s+1) . (s+Jj )d
- J!

From this one can see easily that y} <0. Therefore the

s, Jj=1,2,... (3.18)
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assertion 4A%>0, (i=1, 2, ..., k—1) is obtained.
(iii) Using (3.10) and (3.13), we can easily obtain
AP=y+ (=D pE
=yE+(=D*yt
=0. (3.19)
(iv) Using (3.10) and (3.13) again, we have

' o\ K\
A?'i’l—Aﬁ“=(—l)’ [( i+1 ) ﬁ’(-i—l+< i ) 57(-:]
e k=i
_,;;—_k!(j—i)! (k=i)y},
i=1,2,...,k—1. (3.20)

Since y?<0 for j >0, the assertion A¥,—A <0 is
established.
Q.E.D.
From this Lemma, the following result for L and U is
derived:

G k=1
L=A{'=-1,
U=A{P=0,
(i) k=2
L=AP=0,
U=AP=1/a4,

(iii) k=even>2

AR, =U<L=AP,
(iv) k=o0dd>1

AP=U<L=A%.

Thus, we have proved the following Theorem:

Theorem 3.
The k-step Adams type SNM corrector families of
order k exist only for k=1, 2, and the families are

Al yori=y.thl(1+a) fori—afs], —1<a=0,(3.20)

error constant: C,=—a—1/2,
and

A2: )’n+2=.Yn+1+h[(l/2+a)fn+2
+(1/2-2a) for1t+aful,

error constant: C;=—1/12—a.

The resulting family Al is the well-known ‘‘6-
method’’, and is A-stable for a=—1/2 [6]. When
a=—1/2, the method is just the trapezoidal rule. In
this family, the trapezoidal rule is optimal because of
that the order of the method increases to 2, and that the
coefficients B, and B, are those which can be expressed
exactly in any binary or hexa-decimal floating-point
systems.

The family A2 is Ao-stable for a=0 [8]. In the range
of a in which the methods are SNM, the error constant

O<axl/4, (3.21)

takes minimum in absolute value at a=0. Since the
method corresponding to a=0 is trapezoidal rule, after
all, also in this family, trapezoidal rule is optimal.

4. Milne Type SNM Correctors

In this section we derive the k-step Milne type SNM
correctors of order k. We call the method Milne type, if
the first polynomial p({) associated with the method is

pPO=C =02 kz2. “.1

As in the case of Adams type, the coefficients #’s of
the Milne type can be expressed by

 k
Be-i=B%-i+(—1) ( ; )(a—x“,i), 4.2
where a is a free parameter, and 8%-; is the coefficient

of the generalized Milne-Simpson method [3]. The
coefficient f%-; is given by

c 7
Bi-=(—1Y ] (j ) k' 4.3)

j=i \1

where « ! is defined by
o [ —s
Kf=(-1)’§ ( . )ds, Jj=0,1,..., 4.4)
-2 J

and has the following properties:

Kk¥=0,
k<0, j>3, 4.5)
kd+xt+... +xr=xk; j=0,1,... 4.6)

x,=(—1)f§l (-is)ds, j=0,1,..., (@47
a\J

x,=0,

k;>0, j#l. 4.8)
It follows from (4.2) and (4.3) that if the inequality

k -1
L=max {x;}'—-( ) ﬂ‘l‘r—i}
i=even I
e\
= min {K/}"F( ; ) ﬂ':'(—,}=U 4.9

holds, then the coefficients 8’s of the method are all non-
negative, for any a in the interval [L, U]. We find the
range of k in which the inequality (4.9) is valid. We first
set

A
M?“:x:-l—(—l)"” ( . ) 7(_,‘, l=0, ..., k.
]

(4.10)

Then the following Lemma holds for M*:

Lemma 2.
i MP=o0, k
(i) M¥P=0, k

2,3,...,
2

)
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MP <0, k>2,
(iii) For k>4, and for i satisfying k—1=i=4,
M -MP <0,

i.e., MY is monotone decreasing as a function of i.
Proof
(i) We immediately see from (4.3) that
ﬂ 0=(— l)kK l? )
and consequently the assertion holds.

(ii) From (4.3), (4.10), and the property (4.6), we have

k—1

k) — * _
MP=—3 k= —Kc.
=0

This means that
MP=0, for k=2,
<0, for k>2.
(iii) As in the case of Adams type, we have
k=l jlk—i=1)!
MK —MO =S (k—j)K?, 4.11
+1 i ;k!(j—i"l)! (k—Jj)«; ( )

and, applying the property (4.5) to this relation, we
have
M, -MP<0,

for k>4, iz4.
Q.E.D.
From the property (iii), we immediately see that

LzM$>ME,,2U

for any j=2 and k >4. This means that the Milne type
SNM does not exist for kK >4. However, whether or not
the SNM exists for k<4 is not clear from this Lemma.
Therefore, to clarify this we calculate L and U practical-
ly for k=4.

Let k=2, then

L=max {M{, MP}=0,
U=MP=—x}/2=1.
Consequently the SNM family exists, and the family is
the following:
M2: yns2=ynt+hiafor:+2(1-a) fori +afa},
O=ax=l1,
error constant: C;=1/3—a.

4.12)

For a=1/3 this family is just the Simpson method. By
the way, this family of the methods has a spurious zero
of modulus 1, i.e., {= —1. If we solve the equation

y'=Ay, A<O,

by one of the methods, parastic oscillations in the
numerical solution would increase exponentialy, unless
the growth parameter is positive (see [3]). This
parameter, say A, for the zero |{| =1 is defined by

K. Ozawa
a({)
= . 4.13
726 @1
Using this formula, we have for the family M2
A=2a—1. (4.14)

Therefore the free parameter a should be kept in the in-

terval
1/2<a, (4.15)

in order that the methods are numerically stable. After
all the family M2 is useful only for 1/2<a=<1.
Next, let k=3, then we have

L=max {M{, MP}=M=—1/9,
U=min {MP, MP}=MP=0. (4.16)

Therefore, 3-step SNM family exists, and the family is
the following:
M3: Yn+3=Vn+1 +h {(1 /3 +a)fn+3+(4/3 _3‘1).fn+2
+(1/3+3a) for1—afn},
-1/9=a=0, 4.17)

error constant: Cy= —a.
The growth parameter for this family is given by

A=4a—1/3, (4.18)
and consequently A is positive in the interval
1/12<a. 4.19)

Because this interval contradicts the one given by (4.17),
no stable SNM exists in the family M3.
Finally, for k=4, we have

L=max {MP, MP, M} =0,

U=min {MP, MP}=0. (4.20)

Therefore, only a=0 is permitted and then the method
is Simpson’s rule

yn+4=yn+2+(h/3){fn+4+4fn+3 +fn+2}-

This method is included in the family M2, and is
unstable [3].
After all we have proved the following Theorem:

Theorem 4.

The k-step Milne type SNM corrector families of
order k exist only for k=2, 3, and the families are M2
and M3.

5. Radial SNM Correctors

In the previous sections, we derived the Adams and
the Milne type SNM families of order =4, and showed
that the stable SNM families of order>2 do not exist.
In practice, however, the methods of lower order are
not so useful but those of middle order are most fre-
quently used. Therefore, we derive the stable SNM cor-
rectors of middle order.
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Hull and Newbery [4], [5] have presented a series of
correctors. In each of the correctors, the moduli of the
spurious zeros of p({) are taken to be free. According to
the manner in which the zeros are located on the com-
plex plane, these formulas are termed a Westward, an
East-West, and a Radial formula. In these formulas,
the free parameters, i.e., the moduli of spurious zeros,
were used to minimize the size of truncation errors or to
improve the stability characteristics.

Among these formulas, the Radial methods are
WNM as long as they are zero-stable. Therefore, we
shall be concerned with the k-step (k> 1) Radial method
of order k+ 1, and search the optimal free parameter ex-
perimentally which makes the method SNM and
minimize the round-off error propagation. The zeros of
p(¢) of the k-step Radial method are located on the com-
plex plane in a ‘‘radial”’ manner, i.e.,

6Hi=1,
{/=r-exp (@%—Qﬁ) J=2,3, ..., k. (5.

From this, the coefficients a’s are uniquely determined
and given by

a=—(1—r)r*7" j=1,2, ..., k=1,
k=1, (5.2)
One can see easily from (5.2) that the method is WNM
if 0=r=1. Note that the method is the A-M if /=0 and
the Newton-Cotes type if r=1.

Here we determine the ranges for r in which the
methods are SNM. To do this we express the coefficients
B’s by r explicitly. In general, k-step LM methods of
order k+1 are derived so that the methods are exact, if
the solution of (1.1) is a polynomial of degree k+1.
This is done using the polynomial which interpolates
f(x,y) at the points (xo, fo), ..., (X, fx). Such a
polynomial P(x) is given by

o= —"r

P(X)=if/L_,‘(S), xX=xo+sh, (53)
j=0

where L;(s) is a Lagrangian interpolation polynomial
and is given by

(-1 .
L(s)= !s(s—l).. (s—j+])

Jik—=J)

X(s—j—=1...(s—k), j=0,1,...,k
Using the polynomials L ;(s), (/=0, 1, ..., k), #’scan
be represented by

(5.4)

k m
ﬂ,=2am§ Li(s)ds, j=0,1,...,k. (5.5)

m=0 0

Substituting (5.2) into the above, we have the
polynomial in r which represents §;.

k=1 k—m

Bi=2 ""'S

m=0 k—m—1

Li(s)ds, j=0,1,...,k. (5.6)
The error constant Ci:, of the method is also
represented by the polynomial in r, using the relation

[6]

1
=m(a1+2”+laz+. Lok )

p+l

1
—p—'(ﬂ.+2”ﬂz+. .. +kPBy), (5.7
where p=k+1, ax=1.

The coefficients of these polynomials are listed in
Table 1 for k=2, 3, 4 (a more detailed list is found in
[12]). One can find the range for r in which ;=0 for all
J, using the polynomial (5.6). However, it is difficult to
calculate the range analytically for large &, because §; is
a polynomial of degree k—1. Therefore, we determine
the range numerically by a root finder of algebraic equa-
tions. The result is shown in Table 2. In calculating
these ranges, it is found that the Radial method cannot
be SNM for k=8, 9.

Table 2 Range (4, v] for r in which k-step Radial method is SNM.

k u v
2 0.200 1
3 0.275 1
4 0.437 1
5 0.546 1
6 0.781 1
7 0.795 1
8 none

Table 1 Cefficients and error constant of k-step Radial Method.

k=2 o =—(1—r), o,=r

B=(5—-n/12, B,=(8+81/12, Bo=(—1+5n/12

C,=(—1+r/24
k=3 o0=—(1-n, ;= —(1=0r, ap=—r

Bi=0—r+r)/24, B,=(19+13r—5r2) /24, B,=(=5+13r+19r%) /24, Bo=(1—r+9r%)/24

Cs=(—19+11r—19r%)/720
k=4 a=—(1=r, ;==(1=7r, ;=—(1=0r?, qy=—r’

B=(251—19r+11r2=197%) /720, B,=(646+ 346r—T4r>+106r°)/ 720, B,=(— 264 +456r+456r*—264r°)/720
By=(106—"T4r+346r*+646r*) /720, f,=(— 19+ 11r—19r*+251r% /720

Ce=(—27+11r—11r*+27r%/1440
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To find the optimal r in the ranges of Table 2, we per-
forme numerical experiments. The equation to be in-
tegrated is

y’'=—4y+sin 4x,
y(0)=1, 5.8

V2 (4 _1>+2 _4
y(x)—8 sin | 4x 7 8exp( x),

and the methods to be used are the A-B-Radial predic-
tor-corrector pairs in PECE mode. We calculated the
round-off and truncation errors for k=2, 3, 4 at
x=4.125, and the results are shown in Table 3~5. All
calculations were made on a MELCOM-COSMO 700S
computer, which has a hexa-deimal mantissa of 6-digit
length.

We can see from each Table the magnitude of round-
off error is relatively small at r=0.5; it takes the
minimum for k=2, 3 and the second minimum for
k=4. This is due to the fact that, when r=0.5, the
methods are SNM and moreover the coefficients o’s are
all simple values represented by the reciprocals of 2’s
power. For example, if k=4, then a;=-—1/2,
a;==1/4, ay=—1/8, ap=—1/8; these values can be
expressed exactly on any binary or hexa-decimal
floating-point systems. On the binary systems the
probability that these coefficients incur the round-off er-
rors in multiplications is 0, while on the hexa-decimal
systems it is not 0 but considerably small.

On the other hand, the magnitude of the truncation
errors decreases as 7 increases but at r=1 it grows ex-
tremely. This is due to the fact that if r=1, i.e., if all
spurious zeros are located on the unit circle, then at
least one of the growth parameters is necessarily
negative (see [3], Theorem 5.16). One can deduce
qualitatively from this that the absolute stability region
of the method is smaller in the neighbour of r=1.

In view of the above discussions, the author recom-
mend r=0.5 as the optimal parameter for k=2, 3, 4. It
should be noted that, for each of the Radial families,
the method corresponding to r=0.5 improves the ac-
curacy of the A-M method (the method corresponding
to r=0), in spite of that the o’s of the Radial method
for r=0.5 is slightly complex, compared with those of
the A-M method. If we put r=0.5, the following
methods are obtained:

Lt R Gt 8o+ 59

R2: y,42= 2 2

1

C4= —Is‘

1 1 1 h
R3: Yne3=o Yuert g yanit g yatoe

X (35fn+3+ 97 fns2+25 i1 +1110) (5.10)

73

Cs=~2880
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Table 3 Round-off and truncation errors of Radial method for k=2

and h=27°,

16+r round-off truncation
0 —2.134E-07 1.167E-06
1 —4.207E-07 1.035E-06
2 —4.960E-07 9.168E-07
3 —4.075E-07 8.133E-07
4 —3.580E-07 7.192E-07
5 —3.351E-07 6.367E-07
6 —3.461E-07 5.620E-07
7 —3.455E-07 4.943E-07
8 —2.037E-07 4.308E-07
9 —3.528E-07 3.750E-07
10 —2.982E-07 3.227E-07
11 —3.448E-07 2.741E-07
12 —2.798E-07 2.294E-07
13 - 3.460E-07 1.880E-07
14 —3.364E-07 1.490E-07
15 —2.713E-07 1.132E-07
16 —4.186E-07 —8.164E-04

Table 4 Round-off and truncation errors of Radial method for k=3

and h=275,

16#r round-off truncation
0 —2.829E-07 —4.506E-08
1 —4,318E-07 —4.145E-08
2 —4.466E-07 —3.784E-08
3 —3.601E-07 —3.493E-08
4 —2.435E-07 —3.238E-08
5 —3.353E-07 —2.997E-08
6 —2.483E-07 —2.754E-08
7 —2.309E-07 —2.636E-08
8 —1.279E-07 —2.504E-08
9 —1.809E-07 —2.417E-08

10 —2.271E-07 —2.359E-08
11 ~2.906E-07 —2.317E-08
12 —2.659E-07 —2.201E-08
13 —2.687E-07 —2.178E-08
14 —2.756E-07 —2.164E-08
15 —2.454E-07 —2.157E-08
16 —1.035E-05 —1.968E-06

Table 5 Round-off and truncation errors of Radial method for k=4

and h=2"5,

16%r round-off truncation
0 —8.845E-08 —1.092E-07
1 —2.021E-07 —9.978E-08
2 —1.814E-07 —9.067E-08
3 —1.901E-07 —8.197E-08
4 —1.377E-07 —7.483E-08
5 —1.427E-07 —6.610E-08
6 —9.700E-08 —5.964E-08
7 —8.273E-08 —5.156E-08
8 3.114E-08 —4.621E-08
9 —5.164E-08 —3.794E-08

10 —4.005E-08 —3.463E-08
11 —4.124E-08 —2.971E-08
12 —7.505E-08 —2.198E-08
13 —9.255E-08 —1.938E-08
14 —1.766E-08 —1.558E-08
15 —2.525E-07 —2.004E-08
16 —4.710E-05 —2.255E-05
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1 1 1 1 h
R4: yn+4=7yn+3+7yn+2+§yn+l+§'yn+m
X (1291, 44+ 4341013+ 2442+ 1261, 4, +712)
(5.11)

167

Co= ~11520

The absolute stability regions for r=0 and r=0.5 are
shown in Fig. 1~6.

Fig. 1 Absolute stability region of 2-step Radial method for r=0.

-9 0

Fig. 2 Absolute stability region of 2-step Radial method for
r=90.5.

2 i

Fig. 3 Absolute stability region of 3-step Radial method for r=0.

Fig. 4 Absolute stability region of 3-step Radial method for
r=0.5.

6. Conclusion

We have derived the SNM corrector families of the
following types:

(i) Adams type,

(ii) Milne type,

(iii) Radial formula.
It has been proved that the Adams type SNM families in-
cluding Ao- or A-stable methods exist for k<2, but for
k>2 the SNM families do not exist at all. For the Milne
type, it has been proved that SNM families exist for
k=3, but for k=3 the family is unstable. On the other
hand, for the k-step Radial formulas, it has been shown
that the SNM families exist for k<7. In the Radial
SNM families of middle order, the optimal parameter
which improve the accuracy have been selected.
Numerical example shows that these optimal SNM’s are
more accurate than A-M.
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Appendix

If the differential equation to be integrated is a sec-
ond order of the form

Y =fx, ), (A.1)

then the special kind of LM methods are effective. The
general form of such methods is

Ykt ak=1Ynex-1t. .. Foaoyn
=h(BiSfosst. .. +Bofu),
Si=f(x; ¥5)-

(A.2)

K. Ozawa

In these fomulas, Stromer and Cowell methods are
well-known.

In this Appendix, we show that the consistent LM
method (A.2) cannot be WNM. To do this, we define
the polynomials p(¢) and ¢({) in the usual way.

p(O)=C +aw L + L Fa,
()=l + P17+ +po. (A.3)

Using these polynomials, the conditions of consistency
[6] can be written as

p()=p’'(1)=0,
p"(1)=20(1).

When the first condition of (A.4) holds, one can see easi-
ly that

(A.4)

2 (N=kp(1) = (cx—1+200—2+. . . +kag)
=—a4-1—20-2—... —koag
=0. (A.5)

If the above relation is valid, either of the following two
conditions should be satisfied:

(i) «;=0, forallj,

(ii) The signs of a’s are mixed.
Since (i) contradicts p(1)=0, then (ii) has to be satisfied.
Therefore the consistent LM method (A.2) cannot be
WNM.



