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Abstract This paper studies router algorithms in the context of executing them on multiprocessor systems, which
are becoming increasingly common in modern high-speed Internet routers. By modelling the unique environment
that is provided by such multiprocessor systems, we identify a couple of design issues for the successful parallel
execution of router algorithms, especially by exploring flow-level parallelism. The successful execution depends on
the level of concurrency in algorithms, and concurrency is restricted by access contention for shared data resources.
We show how flow-level parallelization can reduce access contention, and how we can design multiprocessor-oriented
router algorithms. As an example, we describe the MXQ algorithm, an flow-based AQM algorithm, that is efficiently
realized on a multiprocessor system. The real implementation on a real high-speed multiprocessor-based router, and
the results of the experiments in a laboratory testbed show that the algorithm can scale well up to tens of thousands
of flows at the line rate of 10 Gb/s.
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Consider the fact that we have only 8ns for processing

L. Introduction an 40-byte packet at 40 Gb/s link rate, and typical IP

To meet the conflicting requirements for high perfor-
mance and flexibility, most of modern IP routers are
designed to use, what is called, packet processors or
network processors. The packet processor is a special-
purpose VLSI chip in which a number of processing el-
ements or purpose-built CPUs are embedded by utiliz-
ing advanced SoC (System-on-Chip) technology [3], [5].

packet processing requires about 500 instructions. It is
highly possible that such multiprocessor systems con-
tinue to be used for the next decade[2].

IP router algorithms are originally designed for a sin-
gle processor system. Obviously, it is not straightfor-
ward to implement them onto such a multiprocessor sys-
tem. Because they contain considerable amount of task
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and data dependencies and conditional branches. How-
ever, if we view from a different perspective, focusing
on the dependency among arriving packets, we can ex-
plore parallelism based on the granularity of “a flow”,
which is the stream of packets that share its source and
destination.

The common wisdom in the Internet says that per-flow
state at routers must be avoided because maintaining
such a state in an environment as dynamic as the In-
ternet would limit the speed of the routers. In practice,
however, various types of flow-based algorithms are im-
plemented onto modern routers, and are used in every
segment of the Internet. Examples include flow-based
policing and shaping, filtering, and so forth. The router
architecture has been evolving for those decades utilizing
the advancing VLSI technology. Therefore, the router
algorithms must be reviewed in order to understand the
state of the art.

This paper studies router algorithms in the context
of executing them on multiprocessor systems, especially
by exploring the flow-level parallelism. By modelling the
unique environment that is provided by such multipro-
cessor systems, we identify a couple of design issues for
the successful parallel execution of router algorithms.

The successful execution depends on the level of con-
currency in algorithms, and concurrency is restricted
by access contention for shared data resources, which
need some form of arbitration. In this paper, we design
the parallel version of an AQM algorithm, called MXQ
[6], which is designed for not only providing fair band-
width distribution, but also regulating high-bandwidth
flows, and show how flow-level parallelization can re-
duce data access contention, and how we can design the
multiprocessor-oriented router algorithms.

We have developed a prototype system by using a real
packet processor, and evaluate this performance in a
large scale laboratory testbed. The result shows that
this parallel algorithm is feasible up to tens of thousands
flows at the speed of 10 Gb/s.

2. Execution Environment

This section describes the simplified execution envi-
ronment for router algorithms to explore the flow-level
parallelism, and clarifies the issues for their successful
parallel execution.

2.1 Hardware Architecture

Most of the packet processors in modern IP routers are
designed to be software programmable. This is because
routers must evolve to support emerging new standards
that reflect diversified and ever-changing user require-
ments. If we assume that the standard IP forwarding
algorithm is implemented as a software code, it requires
about. 500 instructions. Tt is difficult for a single proces-
sor system to satisfy the processing time requirements,

even though it could use high clock frequency around
1GHz. Therefore, most of packet processors are designed
as multiple processor systems to increase throughput by
exploring parallelism [1], [2].

Figure 1 illustrates our packet processor model that
consists of M processors, on-chip shared memory, and
external memory banks. We assume that the suffi-
cient bandwidth is available for all data communications
among them. Most packet processors are designed to
use pipeline techniques. Those pipeline techniques can
be realized at various levels of tasks, such as the packet
level, the instruction level, and so forth. For simplicity,
our model assumes the whole tasks related to a single
packet are assigned to the same processor.
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1 Packet Processor Model

2.2 Definition of flow

There are numerous definition of “a flow” in the lit-
erature. In this model, the flow is defined as what is
called, the five tuple: Source IP address, Destination IP
address, Source port number, Destination port number,
and protocol number. In the case where the port num-
bers are not available (e.g. ICMP), the port numbers
can be regarded as zero. We assume the flow is uni-
directional throughout this paper, and do not consider
to associate two flows with opposite directions, which
actually related.

In addition, we mainly consider the flows identified
“on the fly” [4] from packet header fields. We assume
that the decision is completely local at the router, and
do not consider the issues such as the synchronization
of per-flow states among routers along the path.

2.3 Flow Table

Flow-based algorithms use a flow table to maintain
flow-specific attributes. We may assume an entry in the
flow table consists of a key and a set of attributes.

The key is a unique identifier in the flow table to ac-
cess the set of attributes for a certain flow. The set
of attributes may include not only the packet header
fields, but also quality of service parameters, statistics
counters, and algorithm-specific data.

In order to maintain the data consistency in a simple



manner, the flow-specific attributes must be locked at
the time when they are read until when they are writ-
ten back. However, each flow entry is independent by
nature, thus, the attributes for different flows can be
read and be written in parallel.

The size of the flow table must be sufficiently large to
support from 10,000 up to 500,000 flows. Therefore, the
flow table is stored on the external memory bank that
is shown in Figure 1.

2.4 Shared data structures

In addition to the flow specific attributes, flow-based
algorithms requires shared data structures such as the
number of flows, queue length, fair share bandwidth, ag-
gregated bandwidth, sorted lists of flows and so forth.
Such shared data structures are accessed by a number
of processing elements as well as the outgoing interface
at every packet arrival and departures. Those are stored
on the on-chip shared memory in Figure 1.

2.5 Structure of flow-based algorithms

The structure of flow-based algorithms consists of en-
queueing part and dequeueing part. Enqueueing part
includes all the steps until a received packet is placed in
a packet buffer. Dequeueing part includes all the steps
for transmitting packets to the switching fabric. Both
parts includes the steps that are specific to flow-based
algorithms.

Receive a packet
Generate the key

| Dispatch a packet to a processor |

no match

Read the flow entry

'Add a new entry

Procedura 573 pader
‘Update the flow entry’

Enequeue a packet

2 Enqueueing part

Figure 2 shows the flowchart of enqueueing part. Af-
ter receiving a packet, we first generate a key for ac-
cessing the corresponding entry in the flow table. This
key is first used for selecting the processor to dispatch
this packet in this model. At the selected processor, we
access the flow table entry with the key. If no match-
ing key found, we create a new entry. Note that we do
not write it into the flow table at this time. Then we
perform the main procedure of the algorithm as well as
standard IP procedure, such as forwarding table look
up, and write the updated flow entry back into the flow
table. Finally, we place a packet to a packet buffer.

The shaded boxes are the steps that we can parallelize

by scheduling tasks efficiently. Obviously, the other
steps must be designed so as not to limit the overall
performance.

Figure 3 shows the flowchart of dequeueing part. After
transmitting the previous packet, we select the packet to
transmit next. We may generate a key for accessing the
corresponding entry in the flow table if necessary, up-
date the flow attributes, and transmit the packet to the
switching fabric. The shaded boxes again are the steps
that we can parallelize by scheduling tasks efficiently.

I Select a packet for dequeue l

3 Dequeueing part

3. Concurrency of Algorithms

The successful execution depends on the level of con-
currency in algorithms, and concurrency is restricted by
access contention for shared data resources. The shared
data resources in our model are flow table and shared
data structures. Those shared resources may be accessed
both in enqueueing part and dequeueing part. In order
to maintain data consistency, once an entry or a shared
data structure is read by a certain processor, the ac-
cess must be postponed until the relevant procedure is
completed, and the resulting value is written back.

Therefore, the level of concurrency can be evalu-
ated by how much we can reduce access contention by
scheduling tasks. The next step is to revise an algo-
rithm to minimize the duration of processing over shared
data structures, or to emulate them with approximation
techniques, thus creating an multiprocessor-oriented al-
gorithm.

3.1 Access to Flow Table

The access to the flow table during the enqueueing
part can be arranged in a skewed fashion as shown in
Figure 4. The schedule of flow table access is skewed
aligned with the access time Tj,. We can guarantee
that different processors never access the same flow en-
tries by dispatching incoming packets to processors so
that packets belonging to a certain flow always assigned
to the same processor.

The skewed scheduling may work for the dequeueing
part, only if the selection of the packet transmission be
made in per-flow basis with regular intervals. However,
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the most scheduling algorithms does not provide regu-
lar schedule to achieve efficient link sharing. In such a
case, we would have to resolve access contention before
deriving transmission schedule. This means that access
contention of flow table may not be removed by this
technique.

[read [(add)] main proc Jupdate enq |
[read [(add)] main proc Jupdate ] enq |
[read [(add)] main proc [update ] enq |
[read J(add)] 'main proc Jupdate [ enq |
[read J(add)] main proc Jupdate ] enq |

4 Skewed Execution Schedule

3.2 Access to Shared Data

The skewed scheduling can not work well for the ac-
cesses to the shared data structures. This is because
they must be updated packet by packet. The overall
performance of algorithms is determined by the dura-
tion required for the task over a shared data and the
frequency of access.

For example, while queue length must be updated at
every packet arrival in enqueueing part, and at every
packet departure in dequeueing part, the link utilization
must be updated only at every packet departure. This
means there is the potential of performance improve-
ment at most twice by using link utilization instead of
queue length.

One of the shared variable frequently used in flow-
based algorithms is the number of active flows. It is the
number of flow entries whose packets has been recently
received. It is realized by using aging techniques that
utilize the flow attribute “the arrival time of the last
packet”. However, in order to maintain it accurately,
they require considerable amount of flow table accesses,
which might limit the overall performance.

4. Case Study

Packet Processor
(Egress)

5 Block Diagram of Parallel MXQ

The MXQ algorithm [6] has been proposed as the flow-
based algorithm that achieves efficient control of high-
bandwidth flows in addition to fair bandwidth distribu-
tion.

In this section, we describe the parallel version of the
MXQ algorithm. Our focus is on how the algorithm is
designed that is friendly to multiprocessor systems.

4.1 Parallel MXQ algorithm

Figure 5 illustrates the block diagram of the MXQ al-
gorithm. The following subsections describe each block
in this diagram. We show a couple of modifications to
allow us to reduce access to shared data structures.

4.1.1 Rate Estimation

When a packet of flow i arrives at time ¢, the flow rate
r;(t) is calculated as a moving average of instant rate
over a time period. For the computational efficiency, we
use the linear approximation as follows.

rit) = (1 - %) w it — At) + PL’“;“EE, )
where T is the time factor, which is set to 1 second, and
At is the interval from the previous packet. This step
is executed in enqueueing part, and only use the flow
attributes. Access contention is removed by the skewed
scheduling.

4.1.2 Average Rate Estimation

MXQ needs to estimate the average rate F', which is

expressed as

Sisy rilt)
F — 2=l
TR @
where N is the number of active flows.
We sample the flow rate with the probability in-
proportional to the packet rate +;(t) as follows.
1 ¢;

— T —— 5 3
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where ¢; is the packet size of the arriving packet of flow
. Under this sampling technique, the expectation of the
sampled flow rates can be regarded as the average rate.

We derive the average of samples by using a moving
average method. The average rate F' is updated by the
following equation whenever a new sample is taken.

Fe(1l-w)yxFt+wxr, 4)

where r is the sampled flow rate, and w is a moving
average weight, which is set to ﬁ. Practically, the ex-
amination of sampling is done in a granularity of 64K
byte time in the system. In a 10 Gb/s link, we average
over the interval of approximately 6 ms.

This step is executed in enqueueing part, and use one
shared variable F. One multiplication and addition is
required to update it. Note that this technique removes
the use of “the number of active flows”.

_4_.
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4.1.3 Drop Probability

Let L denote the flow rate calculated for an arriving
packet. We define the moving shutout threshold T as
T = mF. Here, F is the average rate, and m is the
congestion indication that quantifies the level of conges-
tion. We will discuss how to derive m in the next section.
The drop probability B is described as in equation (5)
form > 1 (i.e. F <T), and equation (6) form <1 (i.e.
T<F).

B(L,F,mm > 1)

1 T<L
k
=4 (&5) Fsr<rT )
0 L<F
TLL
B(L,F,mm<1) = ! - (6)
0 LT

A simplified view of the drop probability B when
m > 1is shown in Fig. 6. When m > 1, the curve is di-
vided into three regions: zero region (0 £ L < F), oper-
ating region (F' < L < T'), and shutout region (T £ L).
When a packet arrives, B is calculated using its rate
estimate L. If the rate estimate L lies in the shutout
region, the packet is dropped with probability 1.0. If it
lies in the zero and operating region, the smaller the L
is, the smaller the B becomes.

The boundary of the shutout region is determined by
the moving shutout threshold T'. If congestion occurs
the value of m decreases, so the threshold T decreases,
and the shutout region is extended towards the zero re-
gion. When congestion is lasting for a long time, which
may be regarded as the existence of a unresponsive flow,
the shutout threshold T' moves further, and incoming
packets of high bandwidth flows are aggressively dis-
carded with probability 1.0. Note that in the case where
m < 1, the operating region disappears.

The slope in the operating region absorbs the tempo-
ral fluctuation of steady state flows. According to our
evaluation, the (k = 2) gives the optimum performance

for TCP flows.

4.1.4 Congestion Indication

The congestion indication m quantifies the level of
congestion to adapt the algorithm to the changing link
utilization. The queue length is used in the original
MXQ algorithm. However, it is in appropriate as de-
scribed earlier.

We used the output port utilization instead. The port
utilization is sampled every 64 K byte time. If the cur-
rent utilization exceeds the pre-determined target, we
divide m by k, which is set to 1.03. On the other hand,
it drops below that, we multiple m by k. Note that the
output port utilization is only updated only at packet
departures.

4.2 Platform of Implementation

Our implementation was built onto a high-end IP
router which supports interfaces up to 10 Gb/s[1]. The
architecture of this router was approximately matches
our model. It should be noted that the same packet
processors and memory banks are available both ingress
and egress forwarding path. On a line card, two cus-
tom ASICs, each with sixteen 300 MHz processors, and
1.5GB DDR memory for packet processing function were
embedded. They offered 25M packets per second pro-
cessing for line rate performance under varying flow
rates and the packet sizes ranging from 40 Byte. We
made the most use of on-chip microcode programmabil-
ity to customize packet processing functions to incorpo-
rate the parallel MXQ algorithm.

Since the MXQ was an AQM algorithm, we incorpo-
rated our code into the egress packet processor code.
The code amounted to slightly over 300 lines. Consider
that standard IP processing is mainly performed on the
ingress packet processor, and is roughly 500 instructions.
It is obvious that our implementation satisfied the pro-
cessing time requirements.

4.3 Performance Evaluation

We evaluated the performance of the implementation
in an large scale laboratory testbed. Using a number of
real PCs, we created realistically randomized traffic, so
that we could get a valuable insight to predict how the
implementation would behave in a real environment.

4.3.1 Testbed Network

Two IP routers were connected with OC-192¢
(10Gb/s) link, and each router connected 14 PCs
through dedicated GbE (1Gb/s) links. One from right
hand side and one from left hand side were selected to
constitute a pair, and traffic were sent and received be-
tween the pair all through the experiment. All of the
PCs were not exactly the same: they were different in
the number of CPUs, CPU’s clock cycles, amount of
memory and so forth. But the pair were selected so
that they have the same performance. All of the PCs
had one or two GbE Network Interfaces. The operating
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system running on PCs were Linux.

4.3.2 Video Conferencing Traffic

One of the anticipated threats in the Internet is con-
gestion of the traffic generated by video conferencing
or video phone applications. The more the high-speed
broadband services are used, the more the volume of
such traffic will increase to cause congestion in access
networks, peering points and trans-ocean links. Because
such applications commonly use UDP for transporting
video and audio data, the capability to regulating high-
bandwidth flows will become necessary.

The video conferencing traffic consists of small
constant-rate audio flows and high peak-rate, but very
bursty video flows. The problem will occur when a burst
of video flows causes temporal congestion at a router.
It causes packet loss from any flows, including audio
flows. It is well-known that packet loss for audio flows
cause significant degradation in quality. Therefore, they
must be protected from congestion. If a router can ar-
bitrate flows based on their bandwidth, and regulate
high-bandwidth flows, we will obtain the following ben-
efits.

e Audio flow are protected from congestion. This
means that users are able to continue their sessions, even
though the quality of their video might be degraded tem-
porary.

e Packet loss in video flows can be regarded as an
indication to promote users to decrease the rate of video
flows. They can reduce the size or frame rate.
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7 Emulated Video Conference Traffic

Figure 7 shows how our algorithm can arbitrate emu-
lated video conference traffic. Each pair of PC generated
two types of UDP flows.

(1) Audio: Average = 25kb/s, packet size = 64k
byte,

(2) Video: Average = 1Mb/s, packet size = 1024k
byte.
Using 14 set of PCs, we generated 17,870 flows, which is
equivalent to 8,935 sessions. The total traffic is slightly
higher than the target utilization that is set to 90Each

point in this plot represents the sending packet rate
(Horizontal Axis) and the receiving packet rate (Ver-
tical Axis) of a flow. In total 17,870 points are plotted
in this figure.

Obviously, the audio flows, the group of points around
(55,55), are located on the no-loss line: They were com-
pletely protected from congestion. On the other hand,
the video flows, the group of points in the right top re-
gion, are located below the no-loss line: They suffered
from packet loss. In conclusion, it was confirmed that
our implementation had the capability to support about
9,000 video conferencing sessions.

5. Conclusions

This paper studied flow-based router algorithms in
the context of executing them on multiprocessor sys-
tems. We modelled the unique environment in mod-
ern multiprocessor-based system, and showed that flow-
level parallelization could greatly reduce data access
contention especially in enqueueing part of algorithms.
In addition, we showed the careful design was needed
for deriving multiprocessor friendly algorithms.

As an example, we described how the MXQ algorithm,
an flow-based AQM algorithm, was efficiently realized -
on the multiprocessor system. The real implementation
on a real high-speed multiprocessor-based router, and
the results of the experiments in a laboratory testbed
showed that the algorithm can scale well up to tens of
thousands of flows at the line rate of 10 Gb/s. It should
be noted that the number of flows created in our exper-
iment was limited by the capability of PCs, and not by
that of routers. The routers has the capability of over
500,000 flows.
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