
A Middleware Architecture for Community Computing
with Intelligent Agents

Seungwok Han and Hee Yong Youn

School of Information and Communications Engineering

Sungkyunkwan University, Suwon, Korea
donny@devg.org, youn@ece.skku.ac.kr

ABSTRACT

The applications for ubiquitous system require not only to
use the resources distributed in the environment but also to
provide intelligent services to the users. In order to satisfy
the requirement, the applications need to be developed using
intelligent agents providing optimized services to each user.
Furthermore, the platform itself needs to be able to support
platform-level service optimization with self-growing
capability.

In this paper we propose an intelligent middleware
architecture displaying high flexibility and scalability with
reconfigurable and self-growing elements by adopting a
hybrid architecture and dynamically configurable reflective
ORB. It consists of two internal layers, one external layer,
and various tools forming an efficient agent-based
application platform. It also provides a development toolkit,
agent management system, and context-oriented interface
definition language for context awareness, which are
important for developing efficient agent-based applications.
The effectiveness of the proposed architecture is
demonstrated using an office service scenario.

Keywords: Agent platform, community computing, context
oriented, middleware, self-growing.

1. INTRODUCTION

Nowadays, developing large-scale distributed applications
has become one of the main tasks for capitalizing the
ubiquitous computing environment. The middleware
platforms enabling interoperability of diverse components
and abstracting from the details of execution environments
are increasingly important for software development because
ubiquitous systems are getting more and more complex and
heterogeneous. The applications developed using the
middleware platform are expected to be autonomous,
scalable, intelligent, and adaptive to the environments.

Recently, advanced technologies in the wireless
communication, mobile computing, intelligent agent, and

 This research was supported by the Ubiquitous Autonomic
Computing and Network Project, 21st Century Frontier R&D
Program in Korea and the Brain Korea 21 Project in 2005.
Corresponding author : Hee Yong Youn

real-time system, etc. have enabled a new class of
applications that require ubiquitous access to the information
anywhere and anytime. These distributed applications for
ubiquitous system require not only to use the resources
distributed in the environment but also to provide intelligent
services to the users. In order to satisfy the requirement, the
applications for the distributed system need a high degree of
flexibility and adaptability in order to deal with
heterogeneous platforms and dynamic ubiquitous
environments. Also, they need to be developed using
intelligent agents providing optimized services to each user.
Furthermore, the platform itself needs to be able to support
platform-level service optimization with self-growing
capability.

In this paper we propose an intelligent middleware
architecture displaying high flexibility and scalability with
reconfigurable and self-growing elements by adopting a
hybrid architecture and dynamically configurable reflective
ORB. We describe the operational mechanism of the
proposed intelligent middleware architecture using an office
service scenario of ubiquitous computing.

The rest of the paper is organized as follows. Section 2
describes the related work and Section 3 presents the
proposed middleware architecture for ubiquitous computing.
An experiment using an office service scenario is presented
in Section 4. Section 5 concludes the paper with some
remarks.

2. RELATED WORK

An important requirement of a middleware system in
ubiquitous computing environment is a highly configurable
and adaptive execution environment that dynamically reacts
to the changes in the context and goals. To satisfy the
requirements we need an agent platform providing
intelligent, reflective, and adaptive services. Furthermore,
the platform requires to support the community computing
concept that allows optimizing services between the devices
and agent groups.

2.1 Agent Platform

 Agents can be defined to be autonomous, problem-

solving computational entities capable of effective operation
in dynamic and open environments [1]. The characteristics
of the agents are autonomy, intelligence, mobility, and social

研究会temp
テキストボックス
社団法人　情報処理学会　研究報告IPSJ SIG Technical Report

研究会temp
テキストボックス
2005－UBI－8（14） 　2005／6／9

研究会temp
テキストボックス
－79－

ability. Additional characteristics are reactivity for reacting
to the change of environment, veracity for prohibiting wrong
information, and rationality for supporting rational method.
The agents can be classified into multi-agent and mobile-
agent. The multi-agent is for handling complex operations
requiring collaboration between the agents to be completed.
The mobile-agent moves itself through the network to
process the operations. For this reason mobile agent is used
for mobile computing in wireless network.

The agent platforms have to support agent communication
language such as ACL and KQML to allow collaboration
between the agents residing in different agent platforms. The
agents provide designers and developers with a way of
structuring an application around autonomous,
communicative elements, and lead to the construction of
software tools and infrastructure to support the design
metaphor [2]. In these days, there exist two common agent
platforms, which are JADE [3] and Aglet [4].

2.2 Reflective Middleware

In the reflective model, the middleware is implemented as

a collection of components that can be configured at
application startup time. The middleware interface is
unchanged and can be used by the applications developed
for traditional middleware. In addition, the system and
application code may also use meta-interfaces to inspect the
internal configuration of the middleware and, if needed,
reconfigure it to adapt to the changes in the environment. In
this manner, it is possible to select networking protocols,
security policies, encoding algorithms, and various other
mechanisms to optimize the system performance for
different contexts and situations.

In general terms, reflective middleware refers to the use of
a causally connected self-representation to support
inspection and adaptation of the middleware system. Unlike
traditional middleware constructed as a monolithic black
box, reflective middleware is organized as a group of
collaborating components. This organization permits
configuration of very small middleware engines that are able
to interoperate with traditional middleware.

There exist several different types of projects in this
regards such as OpenORB (Lancaster Univ.) [5], 2K Project
(UIUC) [6], and so on.

2.3 Adaptive Middleware

The ultimate objective of the adaptive middleware

architecture is to control application-aware adaptation
behavior and optimize the adaptation strategy towards
application-specific performance criteria. In order to
accomplish the goals, the middleware architecture consists
of adaptors, tuners, configurators, and negotiators. The
components cooperatively monitor the application and
system states, control the applications to carry out adaptation
decisions, and eventually meet the pre-specified
performance criteria such as tracking precision.

The major responsibilities of the adaptive middleware
architecture are the followings [7].

- The adaptive middleware architecture interacts with the

underlying operating system, and accurately observes the
current state of the system and application mainly with
respect to the resource availability. This feature is
implemented in a component referred to as the observation
task.

- The middleware architecture needs to decide the
adaptation choices and actions to be carried out in the
application so that the adaptive behavior can be both stable
and fair to other concurrent applications in the same end
system, and highly configurable in terms of adaptation
agility. The agility represents the sensitivity or
responsiveness of the application when adapting itself to
external disturbances. These responsibilities of the adaptive
middleware architecture are integrated in a component
referred to as the adaptation task. Since it depends on
accurate observations produced by the observation task, we
refer to the combination of both the components as the
adaptor.

- In order to balance between globally optimized and fair
control decisions and the requirements of meeting diversely
different critical performance criteria in different
applications, we introduce the tuners and configurators.
These components translate the output of the control
algorithms in the adaptors into actual parameter-tuning
actions or reconfiguration choices to be carried out during
the execution of applications.

- In extreme cases, in order to deal with prolonged period
of limited resources and degraded qualities, negotiators are
activated to coordinate with other end systems. In the case of
the tracking application, the negotiators are responsible to
locate the new active camera server via the gateway.

2.4 Community Computing Middleware

The goal of PICO [8] is to provide autonomous and

persistent services to the users composing dynamic
community of software objects which autonomously process
the jobs instead of them or their devices. It creates mission-
oriented dynamic computing communities that perform tasks
for users and devices. It consists of autonomous software
entities called delegents (or intelligent delegates) and hardware
devices called camileuns (or connected, adaptive, mobile,
intelligent, learned, efficient, ubiquitous nodes). It can
represent the interrelation between the delegent and
camileun resources using community operation.

It consists of four layers. First, the camileun (physical)
layer consists of the hardware, network, operating system
and drivers. Second, PICO-compliance software adapts
existing hardware devices to the PICO environment with
communication module. Third, delegents are created for
carrying out various tasks and services in the communities.
Last layer is community managing.

2.4 Event Service

The suppliers produce events and consumers receive them
in the Event Service server. Both suppliers and consumers
connect to an event channel or several event channels. An
event channel transfers events from suppliers to consumers
without requiring suppliers to have information on the

研究会temp
テキストボックス
－80－

consumer or vice versa. The event channel working as a
central mediator in the Event Service server. It is responsible
for supplier and consumer registration, clear, timely, and
reliable event delivery to all recorded consumers, and the
control of errors associated with unresponsive consumers.

The Event Service server provides two models for event
transfer: the push and the pull model. On the push model,
the suppliers push events to the event channel, and the event
channel pushes events to the consumers. Figure 1 shows the
push type event delivery. Note that the arrows originated
from the client side point the server side.

Figure 1. The push model.

For the pull model, the activation causing event flow

occurs in the opposite manner: the consumers pull events
from the event channel mediator, and the event channel pulls
events from theee suppliers. The pull model is shown in
Figure 2.

Figure 2. The pull model

Event channels allow multiple suppliers and consumers to

be coupled to them. Since some of them may want to use the
push model while the others want to use the pull model,
event channel supports four different models for event
delivery; push/push, push/pull, pull/push, and pull/pull
model for supplier and consumer, respectively. These four
models differ in the degree of activeness of suppliers and
consumers.

3. THE PROPOSED MIDDLEWARE

In ubiquitous environment, the middleware should
recognize not only the current situation but also the
environment by itself to provide optimal service to the users.
It has to provide seamless services to the users regardless of
the devices involved using group communication to
manipulate the recognized information and reconfigure
intelligently. The services need to satisfy the users using
intelligent agents. In this section we propose an intelligent
middleware architecture satisfying the requirements.

3.1 The Basic Concept

The proposed middleware adopts both the reflective

middleware and adaptive middleware concept to construct a
flexible platform for the agents and provide development

tools. It consists of two internal layers, one external layer,
and various tools forming an efficient agent-based
application platform as shown in Figure 3. The internal layer
consists of the communication platform layer and agent
platform layer. The communication platform layer is
composed such that it can provide various services based on
situation and location using efficient communication
protocols with light-weight devices in wire and wireless
environment. The agent platform layer is composed of the
components so that it can maximize the efficiency of the
service, adapt itself to the environment, and accommodate
the advantage of diverse agent systems. The external layer is
composed of self-growing engine and ontology-based
situation-awareness engine for providing intelligent services.

Figure 3. The proposed intelligent middleware architecture.

Additionally, the proposed middleware platform supports

context-oriented interface definition language (COIDL) for
representing the situation efficiently when developing an
agent development toolkit and components supplying
situation data.

3.2 The Communication Platform Layer with
Adaptor

The communication platform provides event service and

context-based naming service to support efficient situation-
awareness through ORB, transaction service for assuring
consistency and integrity of data and providing recovery
method when the data have an error, and dynamic protocol
binding to adapt to diverse network environment, load-
balancing, security, fault tolerant service, and etc. The
communication platform for embedded devices provides
MOM(message oriented middleware)-based service. The
service is composed using event service, and embedded
device can utilize the agents of the intelligent middleware
using an adaptor. Channel creation and management of
event service of the communication platform are
dynamically performed based on required context in the

研究会temp
テキストボックス
－81－

agent and agent group. Event service is composed so that it
can assure rebinding of a protocol and optimized
transmission according to the situation of the transmitted
data.

Figure 4. The adaptor and context-oriented channel
management.

Each adaptor has a default channel to communicate with

other adaptors in the group. The transmitted data is related to
the specific conditions of the adaptors. The context
information uses context-oriented channel which is managed
by event channel manager within the naming service. The
context-oriented channel is automatically created, named
and deleted by channel messages from the adaptor. This
mechanism let the system administrator avoid unnecessary
task and waste of the system memory for unused channels.
Additionally, the adaptor has its own queue to support
reliable message transmission. The queue size is specified
by system resources, the size of context and transmission
frequency.
 The operational mechanism of Figure 4 is as follows.
When the adaptor establishes connection with the intelligent
middleware, it uses default channel to request channel
creation with certain properties, which consist of context and
specific adaptor information (Act 1). The default channel is
an adaptor group channel, which is managed by platform
administrator. The event channel manager creates an event
channel with adaptor properties to assign an appropriate
name (Act 2). Then the adaptor is treated as a context
supplier. The created event channel is monitored by the
manager along with the context supplier for dynamic
management. If other adaptors request a specific context
through the adaptor group channel, the naming service
provides the channel name related to the context to connect
to a context-oriented event channel (Act 3-4). The context
supplier transmits context information through context-
oriented event channel and the adaptor group receives the
context information (Act 5-6).

The adaptor has three interfaces; initialization, connection,
and transmission interface. Iinitialization interface consists
of uTAdaptorInit and uTAdaptorUninit method. The

uTAdaptorInit method has one argument indicating the
communication platform within the domain. The
uTAdaptorUninit method disconnects default channel and
destroys all the related threads.

Connection interface consists of three proxy methods,
which are related to the context-oriented event channel.
These methods do not require any arguments to connect any
specific channel because all the channels are managed
automatically. All the connect methods are for only deciding
whether the requesting object is a supplier or consumer. The
disconnect method of pull and push proxy is
uTProxyDisconnect requiring no argument.

Transmission interface consists of MessageSend and
GetMessage method. The MessageSend method is used by
suppliers and channels while GetMessage method is used by
channels and consumers. The GetMessage returns the
message received from the connected channel. Table I
summarizes the interfaces and methods of adaptor.

Table I. Adaptor interfaces and methods.

Interfaces Method

int uTAdaptorInit(char* pszChannel); Initialization
int uTAdaptorUninit();

int uTPushProxyConnect(bool bSupplier =
true);

int uTPullProxyConnect(bool bSupplier =
true);

Connection

int uTProxyDisconnect();
int uTMessage_Send(char * szMsg); Transmission
char* uTGetMessage();

3.3 The Agent Platform Layer

The agent platform provides component container service

so that the components can execute self-creation, self-
management, and self-destruction using context-awareness
service that passes filtering and compounding context
information collected by context monitor. It also contains
reconfiguration module which dynamically reconfigures
itself by looking up the agents, services, and components.
The agent management system (AMS) manages the agents
in the community. Moreover, the agent platform provides a
reliable and optimized service through real-time, QoS, and
security service.

The agent platform supports community computing by
dynamically creating and destroying agent groups using the
management system and agent discovery system. An
optimized service is provided through dynamic creation of
interrelated groups according to the agent that requests a
service, and exchanges and processes related context among
the groups. Priority of the context and agent, related context,
device, and service, is applied at this time. The context
created by the process is finally confirmed by the user, and if
the user is dissatisfied with the decision of the agent, the
service is reconfigured. Such approach is employed because
it is impossible that the users are always and fully satisfied

研究会temp
テキストボックス
－82－

with autonomic service provided by an engine lacking
context information.

Figure 5 shows the agent execution environment. The
community computing concept is supported by the master
agent in the master agent container with DF.

Figure 5. Agent and device management with the adaptor

and communication platform.

The agent and adaptor have property and unique ID
assigned by the naming service. The property consists of
service type, service ID, and service content. The service
content is a composition of the context for specific services
defining the action of the agent. Each agent has context
parsing algorithms abstracting the context of the service
content to reduce the load of server process. The ACP is a
package of the context parsing algorithms managed by agent
container. The DAC allows the devices to be used as an
agent. It encodes and decodes adaptor messages into
interoperable agent communication messages in the platform.
It is important that all the agents and devices are managed
by the master agent within master agent container through
the DAC component.

The DF supports for constructing agent groups with inter-
and intra-domain agents and adaptors. In this process the DF
compares the service type of the agents, and the service ID is
used to make a relationship among the agents.
 All the agents and devices have advertisement mechanism
to support discovery. The advertisement messages are
periodically generated depending on network connectivity
and system condition. Additionally, the master agent
requests heartbeat messages to check the system conditions
through default channel.

3.4 The Situation-awareness Layer

The situation-awareness layer provides history-based

context information collected by various devices in the
environment to the services and applications. It analyzes the
requirements of the system and services to provide
appropriate information. In order to satisfy the requirements,
it needs conceptualization, concretization, and structuring of

the context to be shared and reused among different domains
for inference and learning.

Situation modeling-based ontology and situation-aware
components provide high-level situation information to the
composite agent-based group community. Also, it makes
possible for the communities to effectively communicate
with each other by reducing network data. Additionally, the
self-growing component supports effective platform
reconfiguration based on dynamic policy determined by
learning/inference engine modifying static policy for
creating a new policy with the history of platform
reconfiguration.

3.5 Agent toolkit and Context-Oriented
Interface Definition Language (COIDL)

The agent developers should have knowledge on the
toolkits, standard specifications, and the agents already
developed in the ubiquitous environment. Therefore, at the
design level, we provide typical patterns for designing
agents, testing tool for performance evaluation, and agent
toolkits for automatically managing them at implementation
level.

To design and develop the agent that needs to represent
special contexts, the type of the contexts that has to be used
in the existing platform need to be identified. Moreover, the
agent must understand the properties of the context through
API’s references. At last, the existing programming
languages need to define and use the interfaces and
functions using Hungarian Notation with ORBA IDL.
However, it will be complicated to develop an application
with a large number of services. The COIDL can explicitly
define the role of the components by defining the prefix,
middle, and suffix using the Hungarian Notation and
CORBA IDL to efficiently manipulate the contexts.

4. The Operational Mechanism

In this section the operational mechanism of the proposed
architecture is demonstrated using a scenario. Here an urgent
e-mail arrives at the computer of User-A’s office while
he/she is going to the office. At this time, the agent on the
computer sends the information to the User-A’s PDA. (Act.
1) User-A requests the meeting management agent
reservation of a meeting room after reading the e-mail. (Act.
2) The meeting management agent reserves a meeting room
by adjusting the meeting schedule of the company
considering importance of the requested meeting. (Act. 3)
After the reservation, a reservation confirmation message is
sent to the User-A’s PDA. User-A sends a notification mail
to the coworkers regarding the urgent meeting after checking
the time and place reserved. (Act. 4) The e-mail
automatically includes the subjects, starting time, and place
of the meeting. When the PCs of the coworkers receive the
e-mail, the agents on them send it to their PDA or cellular
phone through a similar process shown above. User-A
recognizes that the data required in the meeting are at home,
and thus searches and finds them in the PC at home. (Act. 5)

研究会temp
テキストボックス
－83－

The selected data is automatically sent to the computer of
the meeting room and printed by the printer agent to supply
them to the attendees before the start of the meeting. (Act. 6-
7)

User community

Coworker community

Schedule

Person 1

Person 2

Person 3

Office community

Meeting room
manager

User mail

Group
communication

1

2

3

Meeting room 1

Meeting room 2

File transfer community

File

PrintingHome PC

4
3

1

2

5

6

7

Community

Action

4

Agent

Figure 6. The ubiquitous office service scenario.

The agent discovery service in the proposed middleware

organizes community through the search of the agents
related to the current context while holding the features of
each application. For example, when reserving a meeting
room, the system needs the schedule of User-A and the
persons in charge of the company, and adjusts all the
schedules of the related agents after reservation.
(Community. 2,3) At this time, agent group is organized
using the relationship between the related agents. The agent
group and each agent can efficiently exchange messages
each other by sending data through group communication
channel and finally adjust the schedules. (Act 2, 4)

5. CONCLUSION AND FUTURE WORK

The importance of intelligent services in ubiquitous
computing environment need to revisit the design
requirements of future intelligent middleware to cope with
the diverse challenges of services over agent-based
community computing. In this paper we have presented the
overall architecture of the proposed intelligent middleware
system. The presented middleware architecture designed to
support active deployment of intelligent community service
is highly flexible and scalable with reconfigurable and self-
growing elements.

The proposed intelligent middleware system is
implemented and deployed in CORBA platform with agent
related services. The implementation of the intelligent
middleware provides us with a unique opportunity to
evaluate the system and service, important insights on the
complex interaction between agents and communities in
heterogeneous computing environment.

Three challenging tasks remain to be addressed as future
works. First, practical important applications such as well-

being health care in U-city environment and U-office need
to be implemented and tested based on our middleware
architecture. Second, the proposed architecture needs to be
evaluated in terms of the computational overheads in each
layer and service. Third, the overall services need to support
industrial standard and API reference to implement specific
intelligent agent service for the programmers.

REFERENCES

[1] Michael Luck, Peter McBurney, Chris Preist “Agent
Technology : Enabling Next Generation Computing”
AgentLink community. (2003)

[2] N.R. Jennings. “An agent-based approach for building
complex software systems” communications of the
ACM, 44(4), 35-41 (2001)

[3] JADE, Java Agent Development framework
http://jade.cselt.it

[4] IBM Japan Research Group “Aglets Workbench,” web
site: http://www.trl.ibm.com/aglets

[5] Blair, G. S., G. Coulson, et al. "The Design and
Implementation of Open ORB version 2"." IEEE
Distributed Systems Online Journal2(6), 2001

[6] Fabio Kon, Roy Campbell, M. Dennis Mickunas, Klara
Nahrstedt, and Francisco J. Ballesteros. “2K: A
Distributed Operating System for Dynamic
Heterogeneous Environments.” in 9th IEEE
International Symposium on High Performance
Distributed Computing. Pittsburgh. August 1-4, 2000

[7] Baochun Li, Won Jeon, William Kalter, Klara Nahrstedt,
Jun-Hyuk Seo., "Adaptive Middleware Architecture for
a Distributed Omni-Directional Visual Tracking
System," in Proceedings of SPIE Multimedia
Computing and Networking 2000 (MMCN 2000), pp.
101-112, January 25-27, 2000.

[8] Mohan Kumar, Behrooz A., Shirazi, Sajal K. Das, Byung
Y. Sung, David Levine, Mukesh Singhal “PICO : A
Middleware Framework for Pervasive Computing”,
IEEE pervasive computing magazine Vol 2, Issue 3,
pp72-79 (2003)

[9] Fabio Kon, Fábio Costa, Roy Campbell, and Gordon
Blair., “The Case for Reflective Middleware.”,
Communications of the ACM. Vol. 45, No. 6, pp. 33-38.
June, 2002.

[10] Chan, A.T.S., Siu-Nam Chuang. “MobiPADS: a
reflective middleware for context-aware mobile
computing”, Software Engineering, IEEE Transactions
on Volume 29, Issue 12, pp. 1072 – 1085, Dec. 2003.

[11] Object Management Group, “CORBA Components”
Version 3.0, formal/02-06-65, June 2002.

[12] Sai-Lai Lo and David Riddoch, “The omniORB version
4.0 User’s Guide”, AT&T Laboratories Cambridge,
October , 2004.

[13] M. Henning and S. vinosky, “Advanced CORBA
Programming with C++” addition-wesley, Boston, 1999.

[14] Foundation for Intelligent Physical Agents, FIPA Agent
Management Specification, SC0023J, 2002

研究会temp
テキストボックス
－84－

