2007—CSEC—38 (31)
2007./7,/°20

HEEA fHAEES s
IPSJ SIG Technical Reports

MICKEY O A Y 2 —Y v F7)3V X LD

N EER KR MRt RBF Bt Y Bnt

T fP RFEREGE ARHE AR
T 657-8501 fF il X /S AT 1-1
tt M RZERER TEMARN
T 657-8501 M X /N GHET 1-1
E-mail: {{y.fujikwa,ohigashi}@stu.kobe-u.ac.jp, 11{kuwakado,mmorii }@kobe-u.ac.jp

HBFEL MICKEY RU MICKEY-128 i3 eSTREAM IZIEIHhTWB A MU —LBEETHD, ThFhs0LC v b
RU 128 €y b OBERZAVS. eSTREAM {3 Phase 3 ¥ TFRMEANEA TV 54, MICKEY RU MICKEY-128
T BHMARRBHRIEZRRENTES T, RELZSERESFI SN TWVS. £ T3, MICKEY RU
MICKEY-128 DfIR T ¥ a—U Y F 7TV XA (KSA) ICBIT 248, KT KSA O—AHHEC DWW TERTS. ¥
Tz, 2BEFHREL D KECHRWHER TERIRED S RER 2B TTHEYR meet-in-the-middle attack (T EI - Fik
EZRETH. BRFEZM ST L T MICKEY Tid 24, MICKEY-128 Tl 268 O BB CHEREHITTES
LERT.

*—0—F AFU—LES, eSTREAM, MICKEY, BRy Va—YF70dU XL, —Fiatt

Analysis on the Key-Scheduling Algorithm of MICKEY

Yoshiaki FUJIKAWA', Toshihiro OHIGASHI!, Hidenori KUWAKADO", and Masakatu MORII'

1 Graduate School of Science and Technology, Kobe University,
1-1 Rokkodai, Nade-ku, Kobe-shi, 657-8501 Japan.
1t Graduate School of Engineering, Kobe University,
1-1 Rokkodai, Nada-ku, Kobe-shi, 657-8501 Japan.
E-mail: t{y.fujikwa,ohigashi}@stu.kobe-u.ac.jp, }1{kuwakado,mmorii}@kobe-u.ac.jp

Abstract MICKEY and MICKEY-128, which are stream ciphers submitted to the ECRYPT Stream Cipher
Project (eSTREAM), use a 80-bit secret key and a 128-bit one, respectively. MICKEY and MICKEY-128 are
candidates on Phase 3 of eSTREAM. However, no critical attack against MICKEY and MICKEY-128 have been
proposed, and the security evaluation against them is continued now. In this paper, we study the one-wayness of the
key-scheduling algorithm of MICKEY and MICKEY-128. We propose a method based on the meet-in-the-middle
attack for recovering a secret key from a given initial state. The computational complexity of proposed method is
less than the computational complexity of the brute force attack. We show that the computational complexity of
recovering a secret key from a given initial state is about 2% in MICKEY and about 258 in MICKEY-128.

Key words stream cipher, eSTREAM, MICKEY, key-scheduling algorithm, one-wayness

1. Introduction formed by XORing of a ciphertext and the same pseudo-

random sequence. The body of a stream cipher is generating

Stream ciphers[1], [2] are one of the classifications of the
symmetric-key encryption. In stream ciphers, encryption is
performed by XORing of a plaintext and a pseudo-random
sequence (called a keystream), which is generated by a se-
cret key and an initialization vector (IV). Decryption is per-

the keystream from the secret key and the IV. It consists of a
key-scheduling algorithm (KSA) and a pseudo-random gen-
eration algorithm (PRGA). The KSA initializes the internal
state with the secret key and the IV. The PRGA generates
the keystream from the initial state, which is an internal

-217-

state when the KSA finished.

The goal of key recovery attacks against stream ciphers is
recovering the secret key from the keystream. Since stream
ciphers consist of the KSA and the PRGA, the key recovery
attack is divided into two steps: an internal state reconstruc-
tion method and a key reconstruction method. The internal
state reconstruction method recovers the initial state from
a given keystream. The key reconstruction method recov-
ers the secret key from a given initial state. The key re-
construction method was not been discussed while internal
state reconstruction methods against stream ciphers (e.g.,
SNOW1.0[3], SOSEMANUK [4], and Polar Bear|5], etc.)
have been proposed [6}~[9]. If the internal state reconstruc-
tion method succeeded against one keystream, the internal
state can be obtained and the ciphertext generated by the in-
ternal state can be deciphered. However, this deciperment is
effective for only the IV, because the initial state is generated
by the secret key and the IV. Thus, it is necessary to obtain
the secret key for generating the keystream of other IVs. If
the secret key can be easily recovered from the initial state,
it any ciphertext can be deciphered when the internal state
reconstruction method succeeded. Therefore, to prevent the
secret key from being recovered from the initial state, the
KSA should have one-wayness.

We have been analyzed the one-wayness of the KSAs for
Dragon [10}, Grain-128 [11](Grain-1.0 [12]), HC-256 {13] (HC-
128{14]), Trivium [15}, LEX [16] and SOSEMANUK in[18].
These stream ciphers are candidates on Phase 3 of the
ECRYPT Stream Cipher Project {(eSTREAM) [17] which is
project that selects next generation’s stream cipher. As a
result of analysis, we showed that the KSAs for Dragon,
Grain-128(Grain-1.0), HC-256(HC-128) and Trivium are not
one-way and the KSAs for LEX and SOSEMANUK are one-
way.

In this paper, we analyze the one-wayness of the KSAs for
MICKEY [19] and MICKEY-128 {20] which remain as candi-
date on Phase 3 of eSTREAM. And we propose a method
based on the meet-in-the-middle attack [21] for recovering the
secret key from a given initial state. The computational com-
plexity of recovering the secret key from a given initial state
is about 2** in MICKEY and about 2% in MICKEY-128.

2. MICKEY

MICKEY and MICKEY-128 have been proposed by S.
Babbage and M. Dodd. In MICKEY, the 80-bit secret key
and the variable length IV are used, where the IV length is
between 0 and 80 bits. In MICKEY-128, the 128-bit secret
key and the variable length IV are used, where the IV length
is between 0 and 128 bits. There is no major difference in the
KSAs of MICKEY and MICKEY-128. Therefore, we discuss

the KSA of MICKEY in below sections.

2.1 Operations of the KSA

MICKEY consists of two registers R and S. Each regis-
ter is 100 stages long, each stage containing 1 bit. Let rq:
and s;,; (0 £ ¢ £ 99) be the bits in the registers, respectively,
where ¢ is time of clocking registers. The registers are clocked
with three operations: CLOCK _KG(R,S,MIXING,IB),
CLOCK R(R,IB_R,CB_R) and CLOCK .S(S,1B.S,CB.S).

The operation CLOCK _KG(R,S, MIXING, I1B), which
is an operation for clocking the overall generator, is defined
as the following equations:

CB.R = 834, D Tar,t, (1)
CB.S = sg7,: ® 33,1, (2)
IB.R = { IB® 0 (MIXING =TRUE), @
IB (MIXING = FALSE),
IBS=1IB, (4
R=CLOCK_R(R,IB.R,CB-R), (5)
§ = CLOCK_S(S,IB.S,CB.S). (6)

The operation CLOCK_R(R,IB_R,CB_-R), which is an
operation for clocking register R, is defined as the following

equations:
FB R=rop:®IB.R,)
0 i =0),
1‘2,:+1 = () (8)
ric1e (% 0),
" .41 ® FBR (i € RTAPS),
Tit+1 = , . (9)
Tit+1 (i ¢ RTAPS),
4 i CB_.R=1),
T4l = { r:;'“ Orie |) (10)
Ti,t41 (CB._R = 0),

where RTAPS is a set of feedback tap positions for R. The
detail of RTAPS is shown in Appendix 1. Figure 1, 2 show
clocking the register R with CB.R=0and CB R=1.
The operation CLOCK_S(S,IB_S,CB.S), which is an
operation for clocking register S, is defined as the following

equations:
FB.S = 399, ® IB.S, (11)
3;.!+1 =
0 (¢=10),
8:i-1,t ® ((8i,: ® COMPO;)- (12)
(5i+1, ®COMPL)) (140, 99),
S98,¢ (i=99),

A FBO;-FB_S CB.S =0},
Siopt = { e @ () ()(13)

8.1 @ (FB1,-FBS) (CBS=1),

where z -y is the AND operation of z and y, COMP0; and
COM P1; are input masks and FBO; and FB1; are feedback

-218-

1B_R

FB R
T T Y (o
Figure 1 Clocking the R register with CB.R = 0.
IB_R

Figure 2 Clocking the R register with CB_R = 1.

FBO,

FBO,

FB0,,

COMPO, COMPO, COMPI, COMPO, COMPI,

|
COMPO,, COMPI,, COMPO,, COMPI,, COMPO,, COMPI,, COMPI\

Figure 3 Clocking the S register with CB_S =0.

masks. The details of these masks are shown in Appendix 2.
Figure 3 shows clocking the register S with CB_S = 0. The
figure of clocking the register S with CB_S = 1 is obtained
by substituting FB1; for FBO; in Fig. 3.

2.2 Generating the initial state

The initial state is generated with the 80-bit secret key K;
(0 £ j £ 79) and the variable length initialization vector IV
(0 £ k < IVLENGTH -1) as the following process. Firstly,
the registers R and S are initialized with all zero:

(14)

Secondly, the registers R and S are clocked by loading the
bitwise IV; (this step is called Loading IV Step):

Tio = 8,0 =0.

For 0Lk < IVLENGTH -1,

{R,S} = CLOCK KG(R, S,TRUE, IVy). (15)

On end, the registers R and S are clocked by loading the
bitwise K; (this step is called Loading Key Step):
For0<j5 £ 79,

{R,S} = CLOCK KG(R,S,TRUE,K;). (16)

Finally, the registers R and S are clocked by loading zero for
100 times (this step is called Preclock):

For0 £ £99,
{R,S} =CLOCK_KG(R,S,TRUE,0). 17)

The initial state is i ;v LENGTH+180 and 8i v LENGT H+180,
which are the bits in registers when Preclock finished.

3. Analyzing the KSA for MICKEY

The KSA for MICKEY is divided into Loading IV Step,

-219-

Loading Key Step and Preclock. Since the registers R and
S are initialized with all zero and the IV is the public value,
the internal states 7y ;vienery and sisvieneTH are ob-
tained easily. QOur purpose of analyzing one-wayness is to
analyze the possibility of recovering the secret key from a
given initial state. Therefore, we analyze Loading Key Step
and Preclock. Notice that if r; jvLEncTH and 8 ivLENGTH
correspond to the internal state which is obtained by tracing
Preclock and Loading Key Step, the secret key is recovered.

Let #:;¢ and &:,. be the internal state which is obtained
by tracing Preclock or Loading Key Step in the following
section.

3.1 One-wayness of Preclock

In Preclock, IB is constantly zero from Eq. (17). Sub-
stituting /B = 0 into Eqs. (3) and (4) always gives the
following equations:

IB_R = 350,t-1, (18)
IBS=0. (19)

Since ds0,c—1 is an unknown value, it is necessary to previ-
ously compute §;,¢—; from §;, and, next, compute #; (1 from
Fie.

We compute 38;:-1 from 8;;. Firstly, we notice that
§i,t—1 is independent of CB_S. From Egs. (12}, (13) and
FB0o = FBlg =1, FB_S is equal to 8p,.. Substituting Eq.
(19) and FB_S = 3o, into Eq. (11) gives

899,61 = do,t.

Next, we compute ;1 which is dependent on CB_S. From
Eqs. (12) and (13), the formula of §gg,:-1 is obtained as fol-

lows:

§98 599,g 9 (FBOQQ . §0':) (CB.S = 0),
-1 = .
390, @ (FBlgg - 80:) (CB.S=1).

Using the above equation, 3g¢g (-1 can be computed. From
Eqs. (12) and (13), the formula of 8g7_;,¢—1 for 0 £ 7 £ 97
is obtained as follows:

897401 = 8pa—i,t DO

((898-4,0—1 ® COM POgg_;) - (309-i,e-1 ® COM Plgg_;)),

where z is a value defined as the following equation:

z= FBOgs-i- FB.S (CB.S=0),
" | FBles_i-FB.S (CB.S=1).

Using the above equation, §;¢—1(0 £ i £ 97) can be com-
puted.

Using 850,t—1, we compute 7 ¢~1 from 7. Firstly, we dis-
cuss the case of CB_R = 0. From Eqs. (8)-(10), FB_R is
equal to fo.. Substituting Eq. (18) and FB_R = 7y, into
Eq. (7) gives

fo9,t—1 = To.¢ ® 830,¢-1.

From Egs. (8)-(10), the formula of #;,—; for 0 £ i < 98 is
cbtained as follows:

i { fis14 @Foe (i € RTAPS),
Tit=1 =

Fig1,e (i € RTAPS).

Using the above equation, #;.-1 for 0 £ i £ 98 can be com-
puted. Next, we discuss the case of CB_R = 1. From Egs.
(8)-(10), the formula of #;:—; for 0 £ i < 99 is obtained as
fotlows:

fo,. ® FB_R
Fit @ FB.R®fim1,-1

Fit © Fio1,e-1

(i=0),

(i +0,i € RTAPS),

(i +0,i ¢ RTAPS).
(20)

fie—1 =

From Eq. (20), #99,e—1 is computed as follows:

T99,t—1 = Fo9,t ® Fos,t—1 = Tog,t ® Tog,e © For,¢—1,

= 9,1 © Tos,t ® o7, © Tg6,-1 ® FB_R,

99 19 99
= ... == @f{,t$ @ FBR= @7"!’.2'
i=0

i=0 m=0
Substituting the above equation and Eq. (18) into Eq. (7)
gives

99
FBR= @f'i,c D 8s50,t-1. (21)
i=0
Substituting Eq. (21) into Eq. (20), fi,¢—1(0 £ i £ 98) can
be computed.

Actually, since CB_R and CB_S are computed using Eq.
(1) and Eq. (2), respectively, it is necessary to presume
CB_R and CB_S in computing ;-1 and 8;,¢—1. So, in each
step of tracing Preclock, it is necessary to try by four pat-
terns. Tracing Preclock is performed as follows:

Step Al CB_R and CB_S are presumed as any one of four
patterns and Step A2 is performed. If all patterns are per-

formed, all candidates of ;) and §;,._, are obtained.

Step A2 #;;—1 and §;,-) are computed with 7., §;: and
presumed CB_R and CB.S.

Step A3 CB_R' and CB.S’' are computed from ;1 and
8i¢~1 using Eq. (1) and Eq. (2), respectively.

Step A4 #;.-1 and §;,; computed in Step A2 are checked
with 2 bits data: CB_R’ and CB.S'. CB_R’ and CB.S' are
compared with presumed CB_R and CB_S. If corresponded,
7i,e—1 and &;:—1 computed in Step A2 are considered as can-
didates of f;,;—1 and 3;¢—1. Return to Step Al.

-220-

The above four steps are performed from ¢t = IVLENGTH+
180 to t =IVLENGTH + 81.

All computed f;,jvienGTH+s0 and &,1vLENGTH+80 BTE
candidates of r; ;vLENGTH+80 and 8 ;vLENGTH4+80 Which
are obtained when Loading Key Step finished. If checking
in Step A4 is not effective, then the number of candidates is
4% = 9200 However, CB_R’ and CB_S' in each patterns
are not necessarily corresponded with presumed CB_R and
CB_S. Thus, the number of candidates does not come up
to even 100. These are equivalent internal states which are
generated the same initial state. We will statistically show
the number of equivalent internal states in Section 4.

3.2 One-wayness of Loading Key Step

The method of tracing Loading Key Step is same as the
method of tracing Preclock. However, since IB is the bit-
wise secret key K, it is necessary to presume IB in com-
puting ;.1 and 8;:—1. So, in each step of tracing Loading
Key Step, it is necessary to try by eight patterns. As well
as the consideration of tracing Preclock; CB_R’ and CB_S’
in each patterns are not necessarily corresponded with pre-
sumed CB_R and CB_S. However, since it is necessary to
presume IB in each step of tracing Loading Key Step, the
computational complexity of tracing Loading Key Step is
2%, where « is the value that is approximated the number
of equivalent internal states in tracing Preclock. Therefore,
the computational complexity of tracing Loading Key Step
nearly equals to the computational complexity of the brute
force attack. Then, we will reduce the computational com-
plexity of tracing Loading Key Step by using a method based
on the meet-in-the-middle attack.

3.3 Proposed method based on

the meet-in-the-middle attack

Since the IV is the public value, ri;vrenvcrs and
8i, IvLENGTH are obtained from Eq. (15). Candidates of
FerviENcTH+s0 and & 1viENeTHs0, which are the inter-
nal states when Loading Key Step finished, are obtaind from
a given initial state by tracing Preclock. Thus, the meet-in-
the-middle attack is applicable, because the starting internal
states and the ending internal states in Loading Key Step are
known.

Tracing Loading Key Step applied the meet-in-the-middle
atack is performed as follows:

Step Bl 2" patterns of #,7v L ENGTH+40 80d 84,1V LENGTH 440
are generated from ri,7vLeENGTH, Si,iviENGTH and 2%° pre-
sume upper half keys uK; = K; (0 £ j £ 39).

Step B2 T:'i.IVLENGTHaMO and §';,IvLENGTH 440 BT€ com-
puted from #;1viENGTH+80, 8iIVvLENGTH+80 and & pre-
sume lower half key IK; = K;.40 (0 < j < 39).

Step B3 74,1V LENGTH+40 and & 1V LENGT H+40 aTe com-
pared with each #irviLencTH+40 and & 1viENGTH 0. If
there is corresponding one, the secret key K is obteind from
the concatenation of uK and !K. If there is corresponding
nothing, Step B2 is done with other (K.

In Step B1, 20 internal states are generated. Since the num-
ber of candidates of generated internal state are 229°, the
possibility of colliding in these internal states is low if inter-
nal states were randomly generated in the KSA of MICKEY.

In Step B1, 2*° computational complexity and 29° memory
are required. In Step B2 and Step B3, 8-2%° computational
complexity is required, where 8 is the value that changes be-
cause of the number of equivalent internal states generated
in tracing Preclock, We will show in Section 4. Tehrefore,
tracing Loading Key Step required (8+41)-2® computational
complexity and 2*° memory.

4. Evaluation of a proposed method

In this section, we show computational complexity of trac-
ing Preclock and Loading Key Step by a simulation. From
a problem of execution time, we simulate cut-down versions
of MICKEY and MICKEY-128 by using fixed IV. Cut-down
versions of MICKEY and MICKEY-128 are MICKEY and
MICKEY-128 to which the size of registers R and § is not
changed and the length of secret key is shortened. We simu-
late against four patterns of the length of secret keys: 16-bit,
24-bit, 32-bit and 40-bit. Trial number of secret keys is 10°,
respectively. And using IV in a simulation is IV=0x9¢53,
which is randomly selected. Table 1 shows the result of a
simulation.

Table 1 shows about the following four items: the num-
ber of equivalent internal states which is obtained in tracing
Preclock, the computational complexity of tracing Preclock,
the number of compared internal states (i.e. presumed keys)
which is obtained in tracing Loading Key Step against one
obtained equivalent state and the computational complexity
of tracing Loading Key Step which is required the compu-
tational complexity of Step B2 and Step B3. As a result of
a simulation, the computational complexity of Step B2 and
Step B3 is about 2/2*? in MICKEY and about 2¢/?+1 in
MICKEY-128, where [is the length of secret keys. That is,
B is about 23 in MICKEY and sbout 2* in MICKEY-128.
Thus, the computational complexity of tracing the KSA (i.e.
the recovering secret key from a given initial state) is about
2% in MICKEY and about 2%8 in MICKEY-128.

5. Conclusion

We have analyzed the one-wayness of the KSAs of

-221-

Table 1 The result of a simulation.

MICKEY MICKEY-128
The length of secret key 16-bit | 24-bit | 32-bit | 40-bit | 16-bit | 24-bit | 32-bit | 40-bit
The number of equivalent internal states 25-86 | 25.85 | 95.84 | 95.85 | 6.3 | 6.3 | 96.43 | 96.42
The computational complexity of tracing Preclock 2489 | 94.89 | 94.88 | 24.88 | 96.15 | 96.13 | 96.13 | 96.13
The number of compared keys 28.06 | 912.06 | 516.08 | 920.06 | 58.03 | 912.03 | 216.03 | 220.02
The computational complexity of tracing Loading Key Step | 211-32 | 215.32 [918.90 | 922.81 | 911.86 | 915.87 | 919.46 | 923.44
MICKEY and MICKEY-128. We have proposed the method able at

based on meet-in-the-middle attack for recovering a secret

key from a given initial state. Using the proposed method,

we showed that the computational complexity is about 241
in MICKEY and about 2% in MICKEY-128.

U
(2l

]

[4

8

(6l

(7

8

(o

f0]

(11]

[12]

References

R. A. Ruppel, Analysis and Design of Stream Ciphers,
Springer-Verlag, Berlin, 1986.
R. A. Ruppel, “Stream ciphers,” Contemporary Cryptol-
ogy, ed. G. J. Simmons, pp.65-134, IEEE Press, New York,
1992.
P. Ekdahl and T. Johansson, “SNOW - a new stream ci-
pher,” NESSSIE, available at
http://www.cosic.esat.kuleuven.ac.be/nessie/
workshop/submissions/snow.zip.
C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert,
L. Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M.
Minner, T. Pornin, and H. Sibert, “Sosemanuk, a fast
software-oriented stream cipher,” eSTREAM, available at
http://www.ecrypt.eu.org/stream/p3ciphers/

I/ k_p3.pdf.
J.Hastad, J.Mattsson, and M. Nislund, “A New Version of
the Stream Cipher Polar Bear,” eSTREAM, available at
http://wuv.ecrypt.eu.org/stream/p2ciphers/
polarbear/polarbear.p2.pdf.
P. Hawkes and G. Rose, “Guess-and-determine attacks on
SNOW,” Proc. SAC'02, Lecture Notes in Computer Science,
val.22595, pp.2778-2791, Oct. 2005.
H. Ahmadi, T. Eghlidos, and S. Khazaei, “Improved guess
and determine attack in SOSEMANUK,” eSTREAM, Re-
port, 2005/085, 2005, available at
http://www.ecrypt.eu.org/strean/paperadir/086.paf.
Y. Tsunoo, T. Saito, M. Shigeri, T. Suzaki, H. Ahmadi,
T. Eghlidos, and S. Khazaei, “Evaluation of SOSEMANUK
with regard to guess-and-determine attacks,” eSTREAM,
Report 2006/009, 2006, available at
http://vwv.acrypt.eu,org/stream/papersdir/
2006/0608. pdf.
J. Mattsson, “A guess-and-determine attack on the stream
cipher Polar Bear,” ¢eSTREAM, Report 2006/019, 2006,
available at
http://www.ecrypt.eu.org/strean/papersdir/
2006/019.pdf.
K. Chen, M. Henricksen, W. Millan, J. Fuller, L. Simpson,
E. Dawson, H. Lee, and S. Moon, “Dragon: A Fast Word
Based Stream Cipher,” eSTREAM, available at
http://www.ecrypt.eu.org/strean/p3ciphers/
dragon/dragon.p3.pdf.
M. Hell, T. Johansson, A. Maximov, and W. Meier, “A
Stream Cipher Proposal: Grain-128,” eSTREAM, available
at
http://wwv.ecrypt.ou. org/strean/p3ciphers/
graini28.p3.pdf.
M. Hell, T. Johansson, and W. Meier, “Grain - A Stream
Cipher for Consistrained Environments,” eSTREAM, avail-

[13]

(14]

(18]

16]

07

(18]

19]

[20]

[21]

1.

http://www.ecrypt.eu.org/strean/p3ciphers/
grain_p3.pdf.

H. Wu, “Stream Cipher HC-256," eSTREAM, available at
http://www,ecrypt.eu.org/stream/p3ciphers/

hc266.p3. pdf.

H. Wu, “Stream Cipher HC-128," eSTREAM, available at
http://www.ecrypt.eu.org/stream/p3ciphers/
hc128._p3.pdf.

C. De Canni¢re and B. Preneel, “Trivium Specifications,”
eSTREAM, available at
http://wuv.ecrypt.eu.org/stream/p3ciphers/
trivium_p3.pdf.

A. Biryukov, “A New 128-bit Key Stream Cipher LEX,”
eSTREAM, available at
http://www.ecrypt.eu.org/strean/p3ciphera/
lex_p3.pdf.

eSTREAM, ECRYPT Stream Cipher Project, 1ST-2002-
507932, http://www.ecrypt.eu.org/strean/.

Y. Fujikawa, T. Ohigashi, H. Kuwakado, and M. Morii, “On
Onewayness of Key-Scheduling Algorithms for eSTREAM's
Ciphers," IEICE Technical Report, ISEC2007-14(2007-05),
May 2007. (in Japanese)

S. Babbage and M. Dodd, “The stream cipher MICKEY
2.0,” eSTREAM, available at
http://www.ecrypt.eu.org/straam/p3ciphers/
mickey/mickey.p3.pdf.

S. Babbage and M. Dodd, “The stream cipher MICKEY-
128 2.0,” eSTREAM, available at
http://wwv.ecrypt.eu.org/strean/p3ciphers/
mickey/mickey128.p3.pdf.

W. Diffie and M. E. Hellman, “Exhaustive Cryptanalysis of
the NBS Data Encryption Standard,” Computer, vol. 10,
no. 6, pp. 74-84, Jun. 1977.

Appendix
RTAPS

RTAPS of MICKEY is defined as follows:

RTAPS =
{0,1,3,4,5,6,9, 12,13, 16,19, 20, 21, 22, 25, 28, 37, 38,
41, 42, 45, 46, 50, 52, 54, 56, 58, 60, 61, 63, 64, 65, 66, 67,

71,72, 79, 80, 81, 82, 87, 88, 89, 90, 91,92, 94, 95, 96, 97}.

RTAPS of MICKEY-128 is defined as follows:

-222 -

Table A-1 COMP0;, COMP1;, FBO; and FB1; of MICKEY.

i 0{1/2]|3)4|5|6|7|[8|9]|10[/12)12(13|14]|15|16|17]|18]19(20(21|22[23|24
COM POy ojojoj1f{r1jojlojo|r|oft|[1|1]2r|of|1|lafof1|fo|1]o|1]0
COMPY,; 1{foj1j1f{foejofrfojr|1|1frfofjo|f1foj1{o|o|o|1|1]|0O]1

FB0; 1j1f{r{1rjoflrjoj1f{r|r|1f1tfrfrjrjofo|1|fofj1]|r]|1f1]1]1
FB1; 1j1]1]0|1]1|1|0|O0]O tj1f1j0j1|0floj1|1]|]0fO|OfL]O

i 25126 |27(28129(30{31/32|33|34|35/36(37|38|39|40|41|42|43|44|45|46|47[48|49
coMPoil1lo]|1]|ofr|f1|lofj1|[o]|o|1]|o|ofjojo]o|o|o|l1fof[1]o]1]0]1
COMPLiJof1|1]|1fof1|r|1]1fofloof1|1rjo]1fo]ilaf1|[ofofo]o]|1

FB0; tif1j1j1f{ojJoj1fr1jojojofofojoj1|1]1]|o|lol1|ofo]1]0]1
FB1; oj1f{1fofol1fof1}1joflofo|l1|1]|0o]o]o|ofofj1]1]lo|1]1]0

i 50 515253 |54 55|66 (57 |68|69|60|61[62|63|64(65|66{67(68)60(70{71|72|73]74
coMpoJojojojo|1foj1fjoflo]1|1]1]1jofo]r]o}rfoflr{1|[1|1]1]1
COMPLy|ofojof1]|of1|1|1]ofo]of1j1|rfr]|1fr|ofr]|ofr]af1]o]f2

FBO; ofl1fofofr1foj1j1)1|1]|of1|/oj1]|]oj1]|oloflof(o]jojo|loo]oO
FBl; ojojrjojojoftr]|jojojr]jojo|1|o|l1]1|o|1|of1]ojof[1]0]1

i 75[76 (77|78 |79 |80|81|82)|83|84(85|86|87|88|89|90|91)92(93|94|95]|96(97]98]99
COMPO; |1 |1j1j0fl1jof1|r|1|1|1]1|lof1t]of1]oflo|lofoloflo]la]|1
COMPL |1 |1]|1jo0]|o|of1foflofofo]1|1|1|o]o|o]1loflofj1]l1|[0]0O

FBO; 1j1jojrjojojofr1f{1fo|1f|1)1|lofoj1]|1]1|0|o|1|1|oflo]oO
FBIl; oOjojof1f1frfr1foj1|1]rj1fr1|ojo|jojojofjofj1|ofo|lofo]1
RTAPS =

{0,4,5,8,10,11, 14, 16, 20, 25, 30, 32, 35, 36, 38, 42, 43, 46,

50, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 69, 73, 74, 76,

79, 80, 81, 82, 85, 86, 90, 91, 92, 95, 97, 100, 101, 105, 106,

107,108,109,111,112,113,115,116,117, 127,128, 129,
130, 131,133, 135, 136, 137, 140, 142, 145, 148, 150, 152,

153, 154, 156, 157}.

The number of elements of RTAPS of MICKEY-128 is 78.
Therefore, tracing Preclock and Loading Key Step is done
same as MICKEY.

2. Masks for CLOCK _S(S,IB_S,CB_S)

Table A-1 shows the details of four masks; COMPO;,
COMP1,, FBO; and FB1; of MICKEY. Table A-2 shows
the details of four masks for MICKEY-128.

-223 -

Table A-2 COMP0;, COMP1;, FBO; and FB1; of MICKEY-128.

i 0 1 2 3 4 5 6 7 8 9 | 10|11 |12 |13 [14| 15|16 | 17 | 18| 19 | 20 | 21 | 22
COM PO, 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 1
COMPY; 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 0 0

FBO; 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0
FBl, 1 1 0 1 0 1 0 1 1 1 1 [1 1 1 0 0 0 1 0 1 1 1

i 23 |24 (25| 28|27 |28 (29 | 30|31)|32|33|34|35)|36 |37 |38 |39 | 40|41 | 42|43 | 44 | 45
COMPO; | 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0
COMP1; | O 1 0 1 1 1 1 1 0 Q 0 0 1 1 0 0 1 0 0 1 1 1 1

FB0; 0 [0 1 0 0 0 1 1 [1 0 0 Q 1 0 0 1 1 0 0 0 1
FB1, 1 1 1 0 1 1 0 0 1 Q Q 0 0 1 0 1 0 [1 1 0 0

i 46 | 47 | 48 | 49 [50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 68 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68
COMPO; | O 0 0 1 1 0 Q 1 0 0 1 a 0 1 1 1 1 0 0 1 0 0 0
COMPL; | O 0 0 1 1 0 1 1 Q 1 0 1 1 1 1 1 1 1 0 0 0 0 0

FBO; 0 1 1 1 1 1 0 1 [0 0 1 1 1 0 0 0 0 1 0 0 0 0
FB1; 0 1 1 1 1 1 0 1 1 0 0 0 Q 0 1 1 1 0 0 1 1 0 1

i 6 | 70 | 71 | 72 | Y3 | T4 | v5S [76 | 77 | 78 | 79 | BO [81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 80 | 50 | 91
COMPO; | 1 1 0 0 4] 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1
COMPL1; | 1 1 1 1 1 0 Y 0 0 1 1 0 0 0 0 0 [0 0 0 0 1 1

FBO, (] 0 1 1 0 1 1 0 0 1 0 1 0 1 0 Q 1 1 1 0 1 1 0
FBl 1 0 1 0 0 0 1 1 Q 0 0 0 1 0 1 1 4 0 1 1 1 1 1

i 92 (93 | 94 | 95 | 96 | 97 | 98 | 99 | 1060|101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 169 | 110 | 111 | 112 | 113 | 114
COMPO, | 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1
COMPL; | L 1 1 0 1 0 1 0 0 (Y] 1 0 1 1 0 0 0 1 1 1 0 0 0

FBO; 0 1 1 0 1 0 0 0 1 a a 1 1 1 0 1 0 0 1 0 0 0 1
FB1; 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0

i 115 [116 [117 118 [119 {120 | 121 | 122 | 123 | 124 [125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 [134 | 135 | 136 | 137
COMPO; | 1 0 1 0 1 1 1 1 Q 1 1 0 0 0 1 1 1 1 1 0 1 0 1
COMPL | O 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1

FBO; 0 1 0 1 0 0 0 1 0 1 Q 1 1 1 0 0 0 0 0 1 1 1 1
FBly 1 0 0 1 Q 0 0 1 1 (] 1 1 0 1 1 1 1 0 1 1 1 0 0

[138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 [155 | 156 | 157 | 168 | 159
COMPO; | 1 0 1] 0 0 0 [} 1 1 1 1 1 0 1 1 1 1 1 0 0 0
COMP1;| 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1

FBO; 0 1 (] 0 0 0 1 1 Y] 0 0 1 1 0 1 1 0 0 0 0 Q 1
FB1; 0 0 (Y] 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 0

-224 -

