自動車の内装デザインのための
立体視画像の物体位置把握に関する一考察

吉田 俊介†*, 星野 俊仁‡, 大関 徹‡, 宮崎 慎也†, 長谷川 純一†, 福村 晃夫†

† 中京大学 情報科学部
〒470-03 愛知県名古屋市千種区栄101
‡ トヨタ自動車株式会社
〒471-71 愛知県名古屋市名東区1
*e-mail: shun@grad.sccs.chukyo-u.ac.jp

本研究では、自動車の車内の様子を CG の立体映像により再現し、その中で運転席を含めた車内のデザインについて様々な角度から検討、評価できるシステムの実現を目指している。自動車の内装デザインにおいては、美観およびハンドルによる計器パネルの隠れなどの安全性を考慮する必要があるため、高い表示位置精度が要求され、これを実現するためには、両眼視差を用いた立体視における人間の知覚特性を明らかにする必要がある。
本報告では、特に視点から近い位置にある物体の知覚や、運転席に座って計器類を流し目で見た場合などの斜め方向の知覚を考慮した奥行き知覚に関する実験を行い、システムを実現する上で解決すべき問題点について考察を行った。

A Study of Depth Perception of Virtual Objects by Stereoscopic Images for Car Interior Designing

Shunsuke Yoshida†*, Toshihito Hoshino‡, Toru Ozeki‡, Shin-ya Miyazaki†, Jun-ichi Hasegawa†, Teruo Fukumura†

† School of Computer and Cognitive Sciences, Chukyo University
101, Tokodate, Kaizu-cho, Toyota, Aichi, 470-03, Japan
‡ TOYOTA Motor Corporation
1, TOYOTA-cho, Toyota, Aichi, 471-71, Japan
*e-mail: shun@grad.sccs.chukyo-u.ac.jp

We have been developing a car interior design system that enables one to examine and evaluate car interior in the virtual space. A scene in a cockpit of the car is displayed by stereoscopic computer graphics images that have the binocular disparity. Perception characteristics in the stereoscopic display are tried to research to obtain exact view that is important for car interior design with beauty and safety.
We measured characteristics of depth perception in the stereoscopic display, especially, in the case that virtual objects are located near from the eye and in the oblique direction which supposes to look askance at the console panel in the state one is sitting in the seat. The issues in developing our system are also discussed in the paper.
1. はじめに

仮想現実感（バーチャリリアリティ：VR）の技術を利用して実用的なシステムを構築しようという試みが、最近、設計やトレーニング、情報通信、あるいはアミューズメントなどの様々な分野で活発に行われている[1]-[3]。

現在我々もそのような試みの一つとして、コンピュータグラフィックス（CG）により立体表示された仮想空間内で、車内の形状やデザインから受ける印象を検討、評価するための自動車内装シミュレーションシステムの研究を行っている。本システムが実現されれば、従来の木や粘土などを使った実体モデル作成に必要な時間と費用を軽減でき、デザインプロセスの早い段階での十分な試行やデザイン期間の短縮等が可能になる。

一般に、立体映像による仮想体験を目的としたVRシステムの多くは、両眼視差、輪郭角を利用した立体視を行っており、我々のシステムも例外ではない。しかしながら、両眼視差情報による立体視では、焦点調節などのその段階が奥行き感を知覚する際に使用している視覚機能の一部を使えないために、計算上での表示位置と人間が実際に感じる表示位置との違いがある。また、不自然さ、疲れ、酔いを感じたりするといった問題が生じる[5]-[7]。これらの問題があまり表面にでてこなかった理由としては、これまでのVRシステムがアミューズメントやトレーニングに用いられることが多く、その場合、高い位置精度や、不自然さが顕著に現れる視点から近い仮想物体の表示を必要としなかったためと考えられる。しかし、本文で述べるような自動車の内装デザインを検討するためのシステムでは、観察者の手の届く範囲に仮想物体を精度良く表示する必要がある。

仮想物体の知覚位置精度については、これまでにもいくつかの報告[8]-[12]がなされているが、我々の

2. 奥行き知覚に関する実験

2.1 表示装置の構成

表示装置および実験器具の配置図を図1に示す。グラフィックワークステーションで生成された立体視画像は、プロジェクタにより表示領域2400×1800（mm）の大型スクリーン上に投影される。立体視画像として、視点とスクリーンの位置より得られる視覚内に物体をスクリーンに投影した画像を左右の眼に分けて生成し、それぞれを時分割方式による液晶シャッター眼鏡を用いてそれぞれの眼に提示し立体視を行う。更に、外部光のスクリーンへの写り込みなどによるスクリーン自体の知覚から生じる立体視への悪影響を軽減するために、装置全体は暗室内に設置する。

2.2 実験方法

被験者の視点位置を固定するための頭部をスクリーンから1300mmの距離に置き、高さ100mmの実物体および仮想物体の円錐を被験者の正面および左斜め前方に提示する。瞳孔間距離は被験者が遠方を注視した状態を計測し、被験者の
視点とスクリーンとの距離は額を頬台に固定する度に測定した。円錐はハンドルや打鉄器の位置を考慮し、視点のやや下方に頂点が位置するよう提示した。また、右側のコンソールを表示して視点から300mm、すなわちスクリーン上に背景として仮想物体の壁面を表示した。知覚した位置の計測は、指示棒の移動量を指示棒先端に取り付けた水の長さの変化量から測定することで行う（図1）。この際、指示棒で触れることにより位置が知覚されることを避けるため、実物試料、仮想物体共に円錐の頂点の約10mm上を指すよう被験者に指示した。被験者は、仮想物体の立体視が著しく不適定な者（12人中2人）を除外した、正常な视力を有する10人（21～36歳の男女）とした。

実物試料と仮想物体に対する実験は視覚を比較するために、まず初めに被験者が両物体の位置をどれほど正しく把握できるかを調べ、次に仮想物体について実物試料と共通の位置把握実験を行う。最後に、仮想物体について他種類の奥行き距離について実験を行い、より詳しく知覚特性を調べた。

【実験1】実物試料の奥行き知覚
まず、人が実際の物をどれだけ正確に位置把握しているかを調べるために、実物試料を被験者の前段、視点から400mmと800mmの位置に置き、知覚した位置を指示棒で指示させた。この操作を前回指した位置が記憶されないよう休憩を挟みつつ7回繰り返し、その位置を計測する。この際、仮想物体の実験と条件を同じにするために液晶セーター眼鏡を装着し、壁面の背景を表示して実験を行った。また、斜め方向の知覚特性を調べるために、左前方20度の方向に正面の場合と同様に視点から400mmと800mmの位置に実物試料を置いて実験を行った。

【実験2】仮想物体の奥行き知覚
仮想物体の奥行き方向の物体位置把握を計測するために、実験1と同様の実験を先頭と同じ10人の被験者で仮想物体に対して行った。

【実験3】仮想物体の知覚特性
計測位置を5ヶ所（300mm, 400mm, 600mm, 800mm, 1000mm）に増やし、それぞれの位置について各7回ずつ仮想物体を合計35回ランダムに提示する。これを正面、斜めについて先程の10人の被
表1 知覚した距離の平均値と信頼区間（実体物）

<table>
<thead>
<tr>
<th>項目</th>
<th>正面400mm</th>
<th>正面800mm</th>
<th>斜め400mm</th>
<th>斜め800mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>398.4</td>
<td>398.3</td>
<td>398.6</td>
<td>398.7</td>
</tr>
<tr>
<td>B</td>
<td>399.1</td>
<td>399.2</td>
<td>399.4</td>
<td>399.5</td>
</tr>
<tr>
<td>C</td>
<td>394.9</td>
<td>394.8</td>
<td>395.1</td>
<td>395.2</td>
</tr>
<tr>
<td>D</td>
<td>390.4</td>
<td>390.3</td>
<td>390.5</td>
<td>390.6</td>
</tr>
<tr>
<td>E</td>
<td>396.8</td>
<td>396.7</td>
<td>397.0</td>
<td>397.1</td>
</tr>
<tr>
<td>F</td>
<td>397.6</td>
<td>397.5</td>
<td>397.8</td>
<td>397.9</td>
</tr>
<tr>
<td>G</td>
<td>400.0</td>
<td>400.1</td>
<td>400.3</td>
<td>400.4</td>
</tr>
<tr>
<td>H</td>
<td>398.9</td>
<td>398.8</td>
<td>399.1</td>
<td>399.2</td>
</tr>
<tr>
<td>I</td>
<td>396.1</td>
<td>396.0</td>
<td>396.3</td>
<td>396.4</td>
</tr>
<tr>
<td>J</td>
<td>400.8</td>
<td>400.7</td>
<td>400.9</td>
<td>401.0</td>
</tr>
<tr>
<td>平均</td>
<td>398.6</td>
<td>398.7</td>
<td>398.9</td>
<td>399.0</td>
</tr>
<tr>
<td>標準偏差</td>
<td>0.202</td>
<td>0.204</td>
<td>0.206</td>
<td>0.208</td>
</tr>
</tbody>
</table>

表2 知覚した距離の平均値と信頼区間（仮想体物）

<table>
<thead>
<tr>
<th>項目</th>
<th>正面400mm</th>
<th>正面800mm</th>
<th>斜め400mm</th>
<th>斜め800mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>385.9</td>
<td>386.1</td>
<td>386.4</td>
<td>386.5</td>
</tr>
<tr>
<td>B</td>
<td>390.1</td>
<td>390.2</td>
<td>390.4</td>
<td>390.5</td>
</tr>
<tr>
<td>C</td>
<td>390.7</td>
<td>390.8</td>
<td>391.0</td>
<td>391.1</td>
</tr>
<tr>
<td>D</td>
<td>388.6</td>
<td>388.7</td>
<td>388.9</td>
<td>389.0</td>
</tr>
<tr>
<td>E</td>
<td>389.3</td>
<td>389.4</td>
<td>389.6</td>
<td>389.7</td>
</tr>
<tr>
<td>F</td>
<td>402.1</td>
<td>402.2</td>
<td>402.4</td>
<td>402.5</td>
</tr>
<tr>
<td>G</td>
<td>392.7</td>
<td>392.8</td>
<td>393.0</td>
<td>393.1</td>
</tr>
<tr>
<td>H</td>
<td>389.3</td>
<td>389.4</td>
<td>389.6</td>
<td>389.7</td>
</tr>
<tr>
<td>I</td>
<td>405.7</td>
<td>405.8</td>
<td>406.0</td>
<td>406.1</td>
</tr>
<tr>
<td>J</td>
<td>385.4</td>
<td>385.5</td>
<td>385.7</td>
<td>385.8</td>
</tr>
<tr>
<td>平均</td>
<td>391.6</td>
<td>391.7</td>
<td>391.9</td>
<td>392.0</td>
</tr>
<tr>
<td>標準偏差</td>
<td>0.104</td>
<td>0.105</td>
<td>0.106</td>
<td>0.107</td>
</tr>
</tbody>
</table>

３．実験結果

まず、実験1で実物体を正面に提示した場合と斜めに提示した場合の、10人の被験者の各7回（合計70度数）の測定によって得られた知覚距離の度数分布をそれぞれ図2、図3に示す。また、被験者別の知覚距離の平均値と、95%の信頼区間を表1に示す。これらの結果から、実物体については遠近、正面、斜め方向すべてについて手前を指し示す傾向が若干見られるものの、95%信頼区間は±2mm程度で収まっており、ほぼ正確な位置を安定して奥行きが知覚されていることがわかる。

次に、実験2で得られた知覚距離の度数分布を図4、図5に、また、被験者別の平均知覚距離と95%信頼区間を表2に示す。

図2、図3と図4、図5を比較することにより仮想物体の方が実物体に比べて全体的に分布範囲が広がる傾向があり、知覚のばらつきが明らかに増していることが分かる。実物体では、若干の距離のズレが確認されただけであったが、仮想物体については正面400mmの場合では約9mm手前、同800mmではやや奥、斜め方向400mmの場合は約18mm手前、同800mmの位置では約12mm手前というように知覚距離に明らかなズレが見られる。しかしながら、表2の結果より信頼区間は±4mm程度であり、実物体と比較してもばらつきは増えるものの、仮想物体でも遠近、正面、斜め方向に関わらず、ある程度の奥行き知覚はできていることがわかる。

実験3の10人の被験者の個別の各提示位置と知覚した位置との誤差の分布を、正面、斜め方向の場合それぞれについて図6、図7に示す。この結果から、仮想物体の位置知覚のズレは、ある距離を基点として手前の物はより手前に、奥の物はより奥へ知覚していることがわかる。また、その細工法は被験者ごとにそれぞれ異なり、斜め方向については正面の場合と比較してその基点が奥に移動する傾向が見られる。

以上をまとめると次のようになる。

1) 実物体と比較すると平均的なズレやその大きさのばらつきは増えるが、仮想物体でもある程度の奥行き知覚が可能である。

2) 仮想物体に対して、ある距離を基点として手前の物をより手前に、奥の物をより奥に知覚する傾向にある。ただし、その基点は個人差がある。

3) 斜め方向についてはその基点が奥に移動する。

以上の結果を基に、次章ではその原因と補正方法についての考察を行う。

４．考察

4.1 接続間距離変化による誤差要因

視点から表示する位置が離れるにつれて、誤差が正の傾きで変化していくことの要因の一つに、眼球の軸方向による瞳孔間距離の変化が考えられる。そこで、提示物の位置による理論的な瞳孔間距離の変化（瞳孔間距離5mm、眼球半径12mm）で計算して、前実験３の結果である知覚位置誤差を瞳孔間距離に換算した場合を比較した。正面の場合の瞳孔間距離の変化を図8に、斜め方向の場合を図9に示す。

これらより、知覚誤差から換算された瞳孔間距離の変化は、提示位置が視点から離れるにつれて増加する傾向運動による変化と同じ傾向が
確認できるが、その変化量が理論値と異なる結果となった。

このように、理論的な幅を考慮したのは、理論計算において誤差を含むためであるが、実験結果よりさらに小さいことが確認された。従って、正確な位置に仮想モデルが知覚できるシステムを開発するための準備として、両眼立体視における仮想物の位置把握について検討を行った。本システムのように比較的視点から近い距離に仮想物体を提示する場合は、ある基点から手前のものはより手前に、奥のものはより奥に感じ、斜め方向ではその基点が奥に移動するという空間特性が得られた。これは、本システムにおいて仮想空間を体験したアツイナーの感覚である「ベースがきつい（目に近い物が自分に迫ってくる感じ）」という意見と合致する結果となった。

5. まとめ

本研究では、立体視技術を用いた自動車の内装デザイン支援システムに必要な表示範囲内において、正確な位置に仮想モデルが知覚できるシステムを開発するための準備として、両眼立体視における仮想物の位置把握について検討を行った。本システムのように比較的視点から近い距離に仮想物体を提示する場合は、ある基点から手前のものはより手前に、奥のものはより奥に感じ、斜め方向ではその基点が奥に移動するという空間特性が得られた。これは、本システムにおいて仮想空間を体験したアツイナーの感覚である「ベースがきつい（目に近い物が自分に迫ってくる感じ）」という意見と合致する結果となった。

参考文献
[1] 創刊，広報通学，“バーチャル・テック・ラボ”，工業調査会，1995。
[4] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti:
[8] 田村彦明，“CADの3次元直接操作手法の検討”，R&Hシンポジウムon Human Interface, pp. 1-6, 1992。
[9] 内海純，小野寺政之，“視覚映像の3次元表示における奥行き知覚の要因について”，学術技報，HE34-10, pp. 63-70, 1994。
[12] 髙野一成，村田浩之，宮脇雅也，著本正文，黒川隆夫，“立体視映像の視覚特性に対するモデル化方法”，学術技報，MIE96-29, pp. 97-104, 1996。
[13] 田村彦明，“立体感の形成”，朝倉書店，1979。
[14] 髙野一成，“医学大事典”，南山堂，1954。