1. ハードディスクの大容量化・高速化技術

橋本 雅伸

1. はじめに

世界初のハードディスク装置（HDD）がIBMによって開発されてから今年で40年になる。この間、記憶機能を回転させ、磁気ヘッドで記録再生を行う原理はほんと変わることなく、高密度大容量化、高速化が進展した結果、今やあらゆるコンピュータ環境でHDDは欠かせないものとなった。このHDDの小型、大容量化あるいは低価格化と高速化は、媒体単位面積あたりのビット数を表す記録密度の向上と、高速データアクセス、転送技術の進歩によるものである。

1990年以降、HDDの主要マーケットは大型計算機からPC/WSに移り、今後も年率60%以上の面記録密度の向上が予想されている。また、HDDの記憶容量もGB（ギガバイト）時代を迎え、データ高速処理のための外部インタフェースの採用や、それに対応した内部データ転送の高速化、アクセス、データリーク時間の短縮などが行われている。

磁気ヘッドと記憶円板の組み合わせという原理原則は不変のまま、飛躍的な性能向上が実現されている背景には、HDDを構成するデバイス、システム技術のまつまな技術革新がある。本稿では、大容量高速化の契機となっているHDDの主要構成技術について紹介し、今後の展望について述べる。

2. ハードディスク装置（HDD）

HDDの容量を決定する代表指標である面記録密度は、記録トラック上の記録密度、線記録密度（BPI：Bit per Inch）と、媒体半径方向単位のト

1 Fundamental Technologies in Large Capacity, High Speed Hard Disk Drives by Masanobu HASHIMOTO (Functional Devices Research Labs., NEC Corporation).

2 日本電気(株)機能エネルギー技術研究所
ハードディスクの大容量化、高速化技術

イスコイルモータ（VCM）を駆動し、ヘッドが位置決めされる。位置決め完了が確認されると、R/W（Read/Write）チャネルを介してヘッドは符号化されたデータを媒体に記録再生する。データは一般的に512バイト単位のセクタごと管理され、1トラックは数十セクタで構成されている。目的のセクタにアクセスするためには時間的なオーバーヘッドとしてコマンド処理に要する時間、ヘッド移動動作時間、そして回転してくるデータ待機の時間があり、これらがHDDのレスポンス速度に大きく影響する。HDDでは複数のヘッド媒体を利用し、所望のヘッドを切り換えることで機械的動作を最少にして複数トラックの連続処理が可能であり、1回のヘッド位置決めに対応する全媒体面のトラックを総じてシリンダと呼ぶ。パッケージ以外の主要部品は超高清浄な環境でベル/カバーにより密封される。これはHDDの基本性能がヘッド媒体間の最大30m/sにも及び、相当なミクロの空間構造によって支えられているという実験を長期保証するためである。装置を手にとってみると「WARRANTY VOID IF SEAL BROKEN」と書かれたシールが目に入る所以である。

3. 大容量、高速化のための主要技術

3.1 ヘッド技術

近年、そして今後のHDD高密度大容量化の推進役はMR（Magneto-Resistive）ヘッドである。これまでの高密度ヘッドの代表である誘導型薄膜ヘッドは、薄膜プロセスを用いてリング型磁極間にCuコイルを形成したもので、媒体磁化遷移部（NS/SN磁化境界）の磁束密度の増加とコイル面数に比例した再生出力が得られ、したがって記録ピットピルが小さくなるほど、出力化には高速化ヘッド媒体相対運動と多数の巻線が必要である。しかし、媒体径小型化による速度低下と、巻線のコイルインダクタンス増加は、書き込み周波数特性能を悪化させる。一方、MRヘッドには速度依存性がなく、3.5インチ以下の小型HDDに好適である。

現在実用化されているMRヘッドの構造図を図3に示す。MRヘッドは再生専用のヘッドで、記録専用ヘッドと組み合わされる。記録ヘッド

![図1 ハードディスク記録密度の推移](image1)

![図2 ハードディスク装置の構成](image2)
ドは誘導圧頭ヘッドであるが、コイル巻き数を少なくして書き込み性能を向上させる。また、高線密度化に対応し、再生分解能向上のために、膜厚2～3ミクロンのNi-Feシールド層にMR素子を挟み込んだ構造が採用される。MR素子はSAL（Soft Adjacent Layer）と呼ばれる軟磁性体層とMR層（Ni-Fe）が非磁性導体層を介して積層された感磁部と、金電極、そしてMRヘッド特有の不安定ノイズを抑制するための永久磁石膜層から構成される。感磁部の膜厚はそれぞれ数十ナノメートル程度の薄膜であり、端部に傾斜面を作って正確に永久磁石膜を接合させると、異種材料間の高度な接続形成プロセスが用いられている。

図4はMRヘッド再生の基本原理であ、Ni-Feなどの強磁性膜の抵抗値が外部磁界によって変化する特性を利用して利用している。MRヘッドは、直接に媒体からの微弱磁界強度変化に応答するため、ヘッド間隔の相対速度に応じて出力が依存しない。媒体からの微弱磁界によって感磁部の磁化方向が変化すると、素子抵抗値が変化し、電流流動によって素子抵抗変化を電圧検出する。この抵抗変化は定電流流動に無く、感磁部の磁化方向と電流の方向の間の角度をθとして図中の式のような関係にある。Δμ/μを抵抗変化率と呼び、高いほど大きな再生出力を得られる。実際には、再生信号波形至極の低減のため、SALによってMR層の磁化方向に45°のバイアスを与え、ほぼ線形な応答を確保している。

以上のようにMRヘッドは、感度度再生ヘッドとして、高性能書き込みヘッドとの組合せによって、大容量化の鍵を握っている。同一条件の比較で誘導型ヘッドの数倍の高出力が可能であるが、さらにMRヘッドの発展形としては、ナノメータ積層薄膜の磁気抵抗効果を利用し、現状のMR素子よりも1倍近くも高密度なスピンバルブ素子や、GMR（Giant Magnetoresistance：巨大MR効果）材料などの研究開発が盛んに行われており、次世代の超大容量HDDのキーバイスとして実用化が期待されている。

3.2 媒体技術

MRヘッドの実用化によって、ヘッドノイズが大幅に低下した結果、ヘッド媒体のSNRのうち、ノイズは媒体ノイズが支配的となった。媒体ノイズの低減のためには、磁性膜の残留磁化密度と膜厚の積を小さくする設計が行われる。膜厚の減少は出力も同時に小さくなるが、出力の大きなMRヘッドとの組合せはかえって良いSNRを得ることができる。

図5にMRヘッド用として用いられている媒体の構成例を示す。アルミ合金にNiPがめっきされた基板や、平滑性の高いガラス基板にクロム下地を形成し、スパッタによってCoCrTaやCoCrPtなどの薄膜磁性膜を形成する。さらに表面にはペセンターコーティングの保護膜とパープロポリエーテル潤滑剤が塗布される。

低ノイズ化の指針は結晶粒の微細化と粒間相互作用の分断であるが、このうち結晶粒の微細化に
は成膜方法、条件、組成に加えて前述した磁性膜の薄膜化が効果的であるが、しかしながら磁性膜の低減は限界があり、10 ナノメートル以下の極薄膜となると、磁性粒の熱擾乱エネルギーが相対的に大きくなるいわゆる「熱平衡」が破れるため、磁化安定性が増し、保磁力の低下やノイズの急激な上昇を招くため、21世紀初頭に実用化が期待される 10Gbit/平方インチ（3.5インチ媒体1枚で10GB）クラスの媒体実現に重要なポイントである。

これを打ち破るには、磁性膜の面内方向に磁化を行う状態の面内記録に比べ、膜厚方向に垂直磁化する垂直磁気記録が有望と考えられているが、再生信号波形が面内記録とまったく異なるなど、現状の HDD 記録再生技術からの方向転換が必要となるなど、実用化までは多くの課題がある。

3.3 ヘッド媒体インタフェース（HDI）技術
HDD の高密度化には記録再生信号の高 SNR 化、高信号能化が必須であるが、そのためにはヘッド媒体分離長の低減が最も効果的である。
HDD は高速性の要求も高く、そのため浮動型ヘッドと呼ばれる極薄の空気層を介して媒体面に浮上するヘッドが用いられている。装置停止時にヘッドを搭載した概略 2mm のスライダが媒体面上に接触停止し、媒体が回転すると空気軸受の原理で浮き数ナノメートルの空気層を形成する。この方式をコンタクトスタートバスターと呼ぶ。ヘッドと媒体が空気層で分離されるため、摩擦や摩耗の問題が少なく、高速なトラック間移動（シーク）や媒体回転数の向上には好都合である。

この浮動型ヘッドにおけるヘッド媒体間の分離長は図-6 に示すように、媒体の摩耗、腐食を防ぐ媒体保護膜と、ヘッドの信頼性向上のためのヘッド保護膜、浮上量の和で表される。誤終帯ヘッドの場合、浮上量低減努力の結果、約 0.025 ミクロンといった極めて浮上量が実用化されるに至った。媒体表面の粗さや、媒体振動、空気乱流による外乱などを勘案すると、媒体回転速度 30m/s の下でこの浮上量を長期保証することは容易ではない。この領域ではヘッドと媒体粗さの頂点は間欠的に接触しており、摩耗ダストのスライダへの付着による浮上不安定を原因としたヘッドクラッシュを避けることが重要である。そのために、衝突エネルギーを低減させる軽量スライダの採用や、ダスト発生を防止する潤滑剤、保護膜の改質などが行われている。

一方、信頼性高く低浮上を実現するには、媒体の表面粗さを低減するものも重要である。技術的には現状の粗さ（最大値で 25 ナノメートル程度）を低減することは研磨の改良や、媒体基板のガラス、セラミック化などに可能であるが、装置停止時に吸着障害を顕在化することがある。吸着と超平滑な 2 面間が強力くつくってしまう自然現象で、起こるとスライダが媒体面に固着し、スピンドロメータが起動できなくなる。この相反而する問題を解決する方法として、装置停止時のスライダのパーキングエリアのみ媒体粗さを大きくした、ゾーンテクスチャ媒体が実用化され始めている。

大容量化のための重要な技術として、媒体全面で一定の浮上量を実現することがある。一定浮上量は媒体全面で等密度記録を可能とする、等周波数記録に対し数十％の容量増が可能となる、この方式を半径ゾーンごとに可変周波数記録を行うマルチゾーンコーディングと呼ぶ。小型 HDD では回転型ヘッド位置決め機構が採用されており、スライダには最大約 20°の空気流偏向と、内外周で約 2 の速度差が存在する。スライダの浮上量はそれらに強く依存するため、スライダの空気流れ面に数ミクロンの深さの凹みを設け、発生する負圧力と浮上力を制御可能な負圧スライダが開発実用化され、一定浮上量が実現されている。

今後の HDI における極限的形態として、浮上量を限りなく零とする「コンタクト記録」の研究も盛に行われており、特に接触エネルギーの小さな小型装置での実用化が期待されている。

- 4 -
3.4 記録再生信号処理技術
従来、再生信号検出の主流であったピクエ型検出方式は、再生信号を等化後に微分し、波形ピクエをゼロクロス位置に変換し、データ列の"1"に対応させる方式である。しかし高密度化にともなって再生信号干渉による振幅低下とピーク位置のソフトが発生し、ノイズやジタリによる判定誤りが増大するようになった。これに対処するため、近年再生チャネルとして再生信号をPR（Partial Response）等化し、それを最大Likelihood検出するPRML信号処理が用いられるようになった。図7はPRML信号処理の流れを示している。PR等化とは再生信号を観察時点でのみ振幅をもつ単位パルス波形（ナイキスト波形）の重畳波形に等化する方法である。これによりPR等化出力はずなむサンプル時刻1/Tb（Tbはビット間隔）で3値以上に多値化され、装置の伝送特性に合致するスペクトルをもつ信号を構成する。PR等化にはいくつかのクラスがあり、HDDではPRクラス4が用いられている。

図8は再生信号をサンプル時刻で...01110...とする波形に等化する例である。この等化方法を遅延ゼロベースDを用いて1-Dと書くと、再生過程は微分、すなわち1-Dに相当するため、PRクラス4の等化出力は(1+D)(1-D)変換となり、-101いずれかの値をとる。

PR等化されれた信号は尤検出のためピクエ検出器に入力される。ピクエ検出器動作を図9のトレース線図に示す。インターセプトされた奇数時刻データについて説明すると、トレース（状態変化の過程を示すものの）は一時刻あたり4ブロックの枝で表され、各枝には等化出力、-101いずれかが割り当てられる。ピクエ検出器はノイズ重視とし、入力列の発生制約の仮定のもと、前記3値から、入力信号Y最も近い値を選択する。選択される枝は図9(a)に示すいずれかとなる。枝選択の判断は2ブロックの枝に付された値をもとに算出される確からしさ（パラメトリック差d）であり、各等価の一様を満たす枝接続が確定される。選択された枝を図9(b)のように順時刻ごとに接続し、尤検データ列が確定する。これにより、検出器出力データは入力に対してSNRにして2dB程度改善される。

現在のPRML方式は(17)RLL符号、ある
の重要な性能指標である。

図-10は、HDDのシーク/位置決め系の構成を示している。近年のHDDではDSPなどを用いたデジタルコントローラによって、シーク/位置決め動作が制御される。ヘッドのトラック位置決めは、再生ヘッドからの出力をもとにVCMにより閉ループ制御される。トラック上の一部にはあらかじめサーボ信号が記録されている。そのフィールドをサーボセクタと呼び、全トラック上に一定間隔で存在する。このサーボセクタの数や長さ（ビート長）が短いと、ユーザデータが減少するため、1周数十個のセクタが一般的である。

ヘッドがサーボセクタを検出した後、引き続きトラック中心から距々半トラックビッチだけある2つのサーボ信号を連続に読み出す。ヘッドがトラックの中心からずれている場合（オフトラック）、信号の出力差が零となるようヘッド位置を制御し、記録再生動作に移る。

一方、トラック間移動では、高速性と精密位置決めの両立のため、速度、セトリング、位置の三制御補償器をシーク中に順次切り換えてシーク動作が実現される。まず最高速度100G以上、速度2m以上の高速性を発揮するため、速度オフセットを用いて参照速度軌道に追従させる。ヘッドが目標トラックに接近すると、ヘッドを引き込みセトリング操作が行われる。セトリング操作は安定化のために、時間をかかげることで、PID制御や学習制御などによって高速化が計られている。セトリング完了後はトラックの中心に追従した位置制御が実現される。

これら制御はヘッドの目標位置と実際位置の位置誤差信号をもとにしたフィードバック制御であるが、位置誤差信号はサーボセクタ通過時点での離散的にのみ得られるために、高速移動の制御条件となる。近年の大容量装置では、フィードバック制御に加えて、より高精度のためにフィードフォワードを併用した制御系が用いられることが多い。

位置誤差信号を零にすることは理想であるが、トラックはスピンドルや媒体の振動などによって常に非線形な変化を生じ、アクチュエータの周波数特性や機械振動によって制御を制限されるため、トラック追従性には限界があり、高TPI化の妨げになる。現在の設計により、オフトラック時の流体緩和による低振動化や媒体基板の高剛性化、さらにヘッドアクチュエータの機械共振周波数の低下に加え、制御系の高帯域化などの改善が必要である。それらは装置の小型化も有効であり、トラック密度の拡大化はより小型の装置を実現しつつある。

4. おわりに

HDD1台あたりの容量が巨大化して行く中で、高度な信頼性をもって、大容量化や高速化は実現されるべきであり、そのためにはHDDはオングストロームからメガオーダーまでの広範囲な物理量を扱うながら、LSI、機械、化学などの分野のきわめて高度な技術によって支えられている。HDDはほかの記憶装置の上に、容量、速度、価格のバランスに優れており、今後もさまざまな固定技術のテクノロジーによって高性能化や小型制御化が推進され、マルチメディアシステムの重要なデバイスとして一段の飛躍が期待される。
できよう。

参考文献
1) 石原ほか：シールド型 SV ヘッドの波形対称性制御に関する考察、日本応用磁気学会誌、Vol. 20, No. 2 (1996).
4) 佐藤ほか：球面コンタクトスライダにおけるスライダ質量・押し付け荷重の磨耗・跳躍特性への影響、日本応用磁気学会誌、Vol. 20, No. 2 (1996).

(平成 8 年 7 月 8 日受付)

橋本 雅伸
1957 年生。1980 年東京大学工学部機械工学科卒業、1982 年同工学系研究科機械工学専門課程修了。同年日本電気(株)入社。以来、ブリンク、磁気ディスク装置に関する研究開発に従事。現在、同機械エレクトロニクス研究所研究課長、日本機械学会会員。