A Distributed Coordination Protocol for a Heterogeneous Group of Peer Processes

Alixier Aikebaier†, Naohiro Hayashibara†, Tomoya Enokido‡†, and Makoto Takizawa†
†Tokyo Denki University, Japan, ‡Rissho University, Japan
†{alixier, haya, taki}@takilab.k.dendai.ac.jp, ‡eno@ris.ac.jp

In distributed applications like computer supported cooperative work (CSCW), multiple peer processes are required to cooperate to make a global decision, e.g. fix a date for a meeting of multiple persons. We discuss how multiple peer processes make a decision to achieve some objectives in a peer-to-peer (P2P) overlay network. Here, every process is assumed to be peer and autonomous. A domain of a process is a collection of possible values which the process can take. An existentially dominant relation shows what values a process can take after taking a value. In addition, values are also ordered in the preferential relation. Based on the existential and preferential relations, each process takes the most preferable value in the domain, which is dominantly preceded by the value v. In this paper, we discuss how every process makes an agreement on a tuple of values while each process can change the value according to the existential and preferential relations. In this paper, we discuss a coordination protocol in a type of heterogeneous system where every pair of processes have the same domain but may have different existential and preferential relations.

1. Introduction

In distributed applications like computer supported cooperative work (CSCW) [3], a group G of multiple peer processes p1,...,pn are cooperating to achieve some objectives by exchanging messages with each other in peer-to-peer (P2P) overlay networks. For example, multiple peer processes fix a schedule of next month in a project. Thus, multiple processes are required to make an agreement in a group. In order to make an agreement, each process pi initially takes a value vi and notifies the other processes of the value vi. A domain Di of a process pi is a set of possible values which pi can take. The process pi in turn receives values v1,...,vn from other processes in a group G. From a tuple ⟨v1,...,vn⟩ of the values, a process pi obtains one value vi. For example, a majority value v in a tuple ⟨v1,...,vn⟩ of values is taken. Protocols for making an agreement on a value are discussed in papers [2, 4] where each process pi does not change the value vi.

In the atomic commitment control on multiple database systems [1], there are one client process p0 and multiple server processes p1,...,pn. A process
p_i can take one value which is 0 (abort) or 1 (commit) in a binary domain $D = \{0, 1\}$. One coordinator process, i.e., client process p_0 asks every server process p_j to notify of a value, i.e., 0 or 1. Only if every process takes 1, every process agrees on the value 1. Otherwise, every process takes 0 even if some of them notifies 1. A process which makes a decision on the value 0 unilaterally aborts. However, a process which notifies the value 1 takes 0, i.e., aborts if the global decision of the coordinator process p_0 is 0. Thus, 0 is more dominant than 1 because a process notifying 1 may change the value with 0 but a process notifying 0 cannot change the value with 1.

In agreement procedures of our life, a person often changes the opinion after saying something to others so that every process can make some agreement in a cooperative society. In addition, a person cannot arbitrarily change the opinion but can change the opinion with ones depending on the previous opinion. That is, a current opinion of a person depends on the previous opinion. We define an existentially dominant relation \preceq_E [5] on a domain D_i of each process p_i. In the commitment protocol, $1 \preceq_E 0$ as presented here. Furthermore, a person takes a value out of more than two values 0 and 1, i.e., the domain includes multiple values. In addition, each peer has preference on values in the domain. For example, a peer p_i can take any one of v_2 and v_3 after taking a value v_1, i.e., v_2 and v_3 existentially dominating v_1. Here, if the peer p_i prefers v_2 to v_3 ($v_3 \preceq_E v_2$), the peer takes v_2. Values in a domain D_i of each process p_i are partially ordered in the relations \preceq_E and \preceq_P. Each process p_i is characterized in terms of the domain D_i and the relations \preceq_E and \preceq_P, $p_i = (D_i, \preceq_E, \preceq_P)$.

In this paper, we discuss a coordination protocol for a group of multiple peer processes to make an agreement on some values notified by the processes. A system is a set of processes. A some pair of processes in a heterogeneous system have different domains or different relations. In this paper, we discuss a coordination protocol in a type of heterogeneous system where each process has the same domain but may have partially ordered relations different from another process. Initially, each process does not know anything about the relations of every other process. A process p_i can learn which value dominates others and is preferred to a value in another process p_j through exchanging values with p_j. A process p_i can take one of possible values which more processes may be able to take by taking usage of knowledge about the other processes.

In section 2, we discuss a model of distributed coordination of multiple peer processes. In section 3, we discuss a basic coordination protocol. In section 4, we present a coordination protocol for a heterogeneous system.

2. Dominant Relations

2.1 E-dominant relation

A system S is composed of n (≥ 1) peer processes p_1, \ldots, p_n. Let P be a set $\{p_1, \ldots, p_n\}$ of the processes in the system S. Each process p_i takes a value v_i and notifies the other processes of the value v_i in the coordination protocol of the processes in P. A domain D_i of a process p_i is a set of possible values which the process p_i can take.

In the coordination protocol, each process p_i initially takes a value v_i^0 in the domain D_i and notifies the other processes of the value v_i^0. A process p_i receives a value v_j^0 from every other process p_j ($j = 1, \ldots, n, j \neq i$). The process p_i takes another value v_i^1 from a tuple (v_j^0, \ldots, v_n^0) of values which p_i receives from the other processes. This is the first round. Then, p_i notifies the other processes of the value v_i^1. Thus, at the tth round, p_i collects a tuple $v_i^{t-1} = (v_i^{t-1}, \ldots, v_i^{t-1}, \ldots, v_n^{t-1})$ of values obtained. If the tuple v_i^{t-1} does not satisfy the agreement condition, p_i takes one value from the tuple v_i^{t-1} as an agreement value. Otherwise, p_i takes a value v_i^t in the domain D_i and notifies the other processes of the value v_i^t as shown in Figure 1.

![Figure 1. Round t+1](image)

In the commitment protocols [1,6], a process which notifies commit (1) may take abort (0) if the coordinator process indicates abort. Here, a process which notifies 0 cannot take 1. Thus, there is a subset $C(v)$ ($\subseteq D_i$) of values which each process p_i is allowed to take after taking a value v. Each process p_i can take a value v_i^t after v_i^{t-1} in the domain D_i if p_i can change the value v_i^{t-1} to v_i^t at round t. Here, p_i changes the opinion from the value v_i^{t-1} to v_i^t. If p_i cannot take any value from a value v_i^{t-1}, p_i still takes v_i^{t-1} as v_i^t. Here, a value v_{ik} is referred to as existentially (E) precede a value v_{ih} with respect to a process p_i ($v_{ik} \rightarrow_i v_{ih}$) if and only if (iff) the process p_i can change the value v_{ik} to v_{ih} ($\rightarrow_i \subseteq D_i$). In the commitment protocol, 1 \rightarrow_0 0 but 0 $\not\rightarrow_1$ 1. In some agreement protocol, a process p_i cannot take any value which p_i has so far taken. Here, $v_{ik} \not\rightarrow_i v_{ih}$ if p_i had not taken v_{ih}.
There are two points on the transitivity of the existentially (E) precedent relation \(\rightarrow_i \) is transitive or not transitive. If the E-precedent relation \(\rightarrow_i \) is not transitive, we introduce a transitively E-precedent relation \(\preceq \). A value \(v_1 \) transitively \(E \)-precedes another value \(v_2 \) in a domain \(D_i \) with respect to a process \(p_k \) if \(v_1 \rightarrow_i v_2 \). Suppose that \(v_1 \rightarrow_i v_3 \rightarrow_i v_2 \) but \(v_1 \not\rightarrow_i v_2 \) for some value \(v_3 \) in \(D_i \). (\(v_1 \subseteq D_i \)).

Suppose that \(v_1 \rightarrow_i v_2 \rightarrow_i v_3 \) but \(v_1 \not\rightarrow_i v_3 \), i.e., \(v_1 \not\rightarrow_i v_3 \). Here, the process \(p_k \) can take a value \(v_2 \) but cannot take a value \(v_3 \) just after \(p_k \) took a value \(v_1 \).

In this paper, we assume the dominant relation \(\rightarrow_i \) is transitive. Here, the process \(p_k \) can take \(v_3 \) only after taking \(v_2 \).

\(v_1 \preceq_i^E v_2 \) if \(v_1 \rightarrow_i v_2 \) but \(v_2 \not\rightarrow_i v_1 \). A pair of values \(v_1 \) and \(v_2 \) are transitively (E) equivalent \((v_1 \equiv E v_2) \) iff \(v_1 \rightarrow_i v_2 \) and \(v_2 \rightarrow_i v_1 \). A pair of values \(v_1 \) and \(v_2 \) are transitively (E) independent \((v_1 \parallel E v_2)\) iff neither \(v_1 \rightarrow_i \) nor \(v_2 \rightarrow_i v_1 \).

Definition A value \(v_1 \) dominates a value \(v_2 \) in a process \(p_k \) if \(v_2 \preceq_i^E v_1 \) iff \(v_2 \rightarrow_i v_1 \) or \(v_1 \equiv E v_2 \).

An E-dominant relation \(v_2 \preceq_i^E v_1 \) means that a process \(p_k \) can take a value \(v_1 \) after taking a value \(v_2 \). A transit E-dominant relation \(\leq_i^E \) is defined as \(v_2 \leq_i^E v_1 \) iff \(v_2 \preceq_i^E v_1 \) or \(v_1 \rightarrow_i v_2 \) for every pair of values \(v_1 \) and \(v_2 \) in \(D_i \). If the E-precedent relation \(\rightarrow_i \) is transitive, \(\leq_i^E \) is \(\leq_i^E \).

A domain \(D_i \) is partially ordered in the E-dominant relation \(\preceq_i^E \). A least upper bound (lub) of values \(v_1 \) and \(v_2 \) is a value \(v_3 \) in the domain \(D_i \) such that \(v_1 \preceq_i^E v_3 \) and \(v_2 \preceq_i^E v_3 \), and there is no \(v_4 \) such that \(v_1 \preceq_i^E v_4 \) and \(v_2 \preceq_i^E v_4 \). Suppose there are a pair of processes \(p_1 \) and \(p_2 \) notifying one another of values \(v_1 \) and \(v_2 \), respectively. Suppose the processes \(p_1 \) and \(p_2 \) have the same E-dominant relation, \(\preceq_i^E = \preceq_j^E = \preceq_i^E \) on the same domain, \(D_k = D_2 = D_1 \). If there exists a least upper bound (lub) \(v_3 = v_1 \cup_i^E v_2 \), both the processes \(p_1 \) and \(p_2 \) can take the value \(v_3 \) after taking \(v_1 \) and \(v_2 \), respectively, i.e., make an agreement on \(v_3 \).

A greatest lower bound (glb) of values \(v_1 \) and \(v_2 \) is a value \(v_3 \) in \(D_i \) such that \(v_3 \preceq_i^E v_1 \), \(v_3 \preceq_i^E v_2 \), and there is no \(v_4 \) such that \(v_1 \preceq_i^E v_4 \) and \(v_2 \preceq_i^E v_4 \). The processes \(p_1 \) and \(p_2 \) can also take the greatest lower bound \(v_4 = v_1 \cap_i^E v_2 \) as an agreement value if the processes can take previous values again. In this paper, we assume \(v_1 \) is a pair of special values, bottom \(\perp_i^E \) and top \(\top_i^E \) where \(\perp_i^E \preceq_i^E v \) and \(v \preceq_i^E \top_i^E \) for every value \(v \) in the domain \(D_i \). This means that a process \(p_i \) can take any value in \(D_i \), after taking the bottom value \(\perp_i^E \). On the other hand, a process \(p_i \) cannot take the top \(\top_i^E \).

A lattice \(L_i = \langle D_i, \preceq_i^E, \cup_i^E, \cap_i^E \rangle \) is thus defined for each process \(p_i \) \((i = 1, \ldots, n)\). Figure 2 shows a Hasse diagram of the E-dominant relation \(\preceq_i^E \) of a binary domain \(D_i = \{0, 1\} \) in the commitment control. Here, a directed edge \(\alpha \rightarrow \beta \) shows \(\alpha \preceq_i^E \beta \). The value 0 E-dominates the value 1 in the domain \(D_i = \{0, 1\} \).

Definition Let \(\preceq_i^E \) and \(\preceq_j^E \) be E-dominant relations of processes \(p_i \) and \(p_j \), respectively. \(\preceq_i^E \) and \(\preceq_j^E \) are existentially (E) consistent \((\preceq_i^E \preceq_j^E \preceq_j^E)\) iff for every pair of values \(v_1 \) and \(v_2 \) in \(D_i \cap_j^E D_j \), \(\preceq_i^E \) \(v_1 \) does not hold iff \(\preceq_j^E \) \(v_2 \).

\(\preceq_i^E \) and \(\preceq_j^E \) are E consistent \((\preceq_i^E \preceq_j^E \preceq_j^E)\) and \(\preceq_j^E \) are E-consistent \((\preceq_i^E \preceq_j^E \preceq_j^E)\) and \(\preceq_i^E \). (\(\preceq_i^E \preceq_j^E \preceq_j^E\).

Figure 2. E-dominant relation.

Let us consider an agent-based auction system as an example. A system is composed of multiple processes each of which plays a role of an agent of a person. A process first shows proposed price for some goods. Then, each process obtains the maximum price among the price values from the other processes. A process showing the maximum price is referred to as the leading process. The other processes are secondary processes. If a secondary process still would like to get the goods, the process bids more higher price than the maximum one. If a process would not like to get the goods, the process notifies the other process of quit. Here, if a process quits the auction, the process cannot join it again. If a process would like to just observe the auction for some time units and join it later, the process notifies the other processes of listen. If a leading process \(p_i \) showing the maximum price still shows "bid" and every other process listens or quits, the process \(p_i \) bought the goods. The domain \(D \) includes values \{bid, quit, listen, bought\}.

In the E-dominant relation \(\preceq_i^E \) \((\ni D_i^E)\), a process \(p_i \) makes a decision on a value \(v \) which \(p_i \) notifies to other processes depending on a value \(v \) most recently taken. That is, \(p_i \) takes a value \(v \) where \(\preceq_i^E \top_i^E v \). Let \(Corn_i^E(v_1) \) be a set \(\{v_1 | v_1 \preceq_i^E v_2\} \) of values which a process \(p_i \) can eventually take from a value \(v_1 \). Let \(Next_i^E(v_1) \) be \(\{v_1 | v_1 \preceq_i^E v_2\} \) of values which \(p_i \) can take next from \(v_1 \). Next \(\preceq_i^E (v_1) \subseteq Corn_i^E (v_1) \) for every value \(v_1 \) in \(D_i \). If \(\preceq_i^E \) is tran-
sitive, \(\text{Next}^E(v_i) = \text{Cornt}^E(v) \). A universal domain \(D \) of a system \(S \) is a union of domains \(D_1, \ldots, D_n \) of the processes \(p_1, \ldots, p_n, D = D_1 \cup \ldots \cup D_n \).

2.2 P-dominant relation

Suppose a process \(p_i \) can take a pair of values \(v_1 \) and \(v_2 \) after \(v_3 \) in the E-dominant relation \(\preceq^E_1 \), i.e. \(v_3 \preceq^E_1 v_1 \) and \(v_3 \preceq^E_1 v_2 \). The process \(p_i \) has to take one of the values \(v_1 \) and \(v_2 \). Here, if the process \(p_i \) prefers \(v_1 \) to \(v_2 \) (\(v_2 \preceq^E_1 v_1 \)), the process \(p_i \) first takes \(v_1 \). \(\preceq^P_1 \) is a preferentially (P) dominant relation on the domain \(D_1 \), \(\preceq^P_1 \subseteq D^2_1 \). The least upper bound \(\cup^P_1 \) and greatest lower bound \(\cap^P_1 \) are defined for the P-dominant relation \(\preceq^P_1 \). There are special values, top \(T^P \) and bottom \(J^P \), with respect to the P-dominant relation \(\preceq^P_1 \) in the same way as the E-dominant relation \(\preceq^E \).

Let \(D \) be a domain \{J (Japanese), C (Cantonese), S (Sichuan), U (Uyghur), I (Italian), F (French)\}, showing types of meals. A process \(p_i \) has the P-dominant relation \(\preceq^P_1 \) as shown in Figure 3. For example, \(C \preceq^P_1 S, C \cup^P_1 F = I, \) and \(S \cap^P_1 I = C \). Suppose a process \(p_i \) takes \(C \) and \(p_j \) takes \(F \). The processes \(p_i \) and \(p_j \) have the same P-dominant relations \(\preceq^P_1 = \preceq^P_j = \preceq^P \). Here, \(C \cup^P F = I \). The processes \(p_i \) and \(p_j \) can take \(I \) as an agreement value.

![Figure 3. Hasse diagram of P-dominant relation.](image)

As discussed, values are partially ordered in E- and P-dominant relations \(\preceq^E \) and \(\preceq^P \) in a domain \(D_1 \). A value \(v_1 \) dominates a value \(v_2 \) in a process \(p_i \) (\(v_1 \succeq_i v_2 \)) if the following conditions hold:

1. \(v_2 \preceq^E_1 v_1 \).
2. \(v_2 \preceq^P_1 v_1 \) if \(v_1 \equiv^E_1 v_2 \).

The least upper bound \(\cup_i \) and greatest lower bound \(\cap_i \) are defined for the dominant relation \(\succeq_i \).

2.3 Types of systems

Systems of processes \(p_1, \ldots, p_n \) are classified into homogeneous and heterogeneous ones in terms of domains and relations of the processes. A system \(S \) of processes \(p_1, \ldots, p_n \) is referred to as fully homogeneous iff \(D_i = D_j, \preceq^E_i = \preceq^E_j, \) and \(\preceq^P_i = \preceq^P_j \) for every pair of processes \(p_i \) and \(p_j \) in \(S \). A system is homogeneous iff \(D_i = D_j \) and \(\preceq^E_i = \preceq^E_j \) for every pair of processes \(p_i \) and \(p_j \) in \(S \). Here, some pairs of processes \(p_i \) and \(p_j \) may have different P-dominant relation \(\preceq^P_i \neq \preceq^P_j \). Every process \(p_i \) can make the same decision \(v_1 \cup_i \ldots \cup_i v_n \) on a tuple of values \(v_1, \ldots, v_n \) received from the other processes. A system in the commitment control is homogeneous.

A system \(S \) is referred to as heterogeneous if \(D_i \neq D_j \) or \(\preceq_i \neq \preceq_j \) for some pair of processes \(p_i \) and \(p_j \). For example, suppose a system \(S \) is composed of a pair of processes \(p_1 \) and \(p_2 \). Here, the process \(p_1 \) has a domain \(D_1 = \{a, b, c\} \) when \(c \succeq_i b \succeq_i a \) and \(p_2 \) has a domain \(D_2 = \{a, b, c\} \) where \(b \succeq_j a \) and \(c \succeq_j a \) in the system \(S \). Here, the system \(S \) is heterogeneous since \(D_1 = D_2 \) but \(\preceq_i \) and \(\preceq_j \) are inconsistent (\(\preceq_i \neq \preceq_j \)).

Heterogeneous systems are furthermore classified into domain-homogeneous (DH) and order-homogeneous (OH) heterogeneous types of systems. A system \(S \) is domain-homogeneous (DH) heterogeneous iff \(S \) is heterogeneous and \(D_i = D_j \) for every pair of processes \(p_i \) and \(p_j \). In the DH heterogeneous system, an existential (E-) dominant relation \(\preceq^E_i \) may be inconsistent with another relation \(\preceq^P_i \) even if \(D_i = D_j \) for every pair of processes \(p_i \) and \(p_j \). The system \(S \) is DH heterogeneous since \(D_i = D_j \). A system \(S \) is order-homogeneous (OH) heterogeneous iff \(S \) is heterogeneous but \(\preceq^E_i = \preceq^E_j \) and \(\preceq^P_i = \preceq^P_j \) for every pair of different processes \(p_i \) and \(p_j \). A system \(S \) is fully heterogeneous iff \(D_i \neq D_j \) and \(\preceq_i \neq \preceq_j \) for some pair of different processes \(p_i \) and \(p_j \).

Systems are also classified into static and dynamic types of systems. In a static system, each process \(p_i \) cannot change the domain \(D_i \) and E- and P-dominant relations \(\preceq^E_i \) and \(\preceq^P_i \). In a dynamic system, each process can change the domain and dominant relations. For example, a process \(p_i \) adds some values in the domain \(D_i \) and a new relation in a dominant relation. In this paper, we discuss homogeneous and DH heterogeneous systems which are static.

3. A Basic Coordination (BCoRD) Protocol

We discuss a basic coordination (BCoRD) protocol for multiple peer processes \(p_1, \ldots, p_n \) to make an agreement. Let \(P \) be a set of processes \(p_1, \ldots, p_n \). Each process \(p_i \) is characterized in terms of a lattice \(L_i = \langle D_i, \preceq_i, \cup_i, \cap_i \rangle \) as discussed.

[Coordination Protocol BCoRD(P)]

1. Initially, \(t = 0 \) and \(V_i = \{\bot, \ldots, \bot\} \) for every process \(p_i \).
2. One process sends a notification request (val-req) to every process \(p_i \) in the process set \(P \).

3. On receipt of the notification request (val-req) from a process \(p_j \), each process \(p_i \) takes a value \(v_i^d \) in the domain \(D_i \), where \(v_i^d = GD_i((t_1, \ldots, t_n)) \). Then, the process \(p_i \) sends the value \(v_i^d \) to all the other processes in the set \(P \).

4. On receipt of a value \(v_i^d \) from a process \(p_j \), a process \(p_i \) stores \(v_i^d \) in buffer \(V_i \). If the process \(p_i \) receives values from all the processes \(p_1, \ldots, p_n \), the process \(p_i \) does the following steps for a tuple \((v_1^d, \ldots, v_n^d) \) in the buffer \(V_i \):

 (a) If the agreement condition
 \[AC_i((v_1^d, \ldots, v_n^d)) \]
 is satisfied, \(v_i^{t+1} = LD_i((v_1^d, \ldots, v_n^d)) \). Here, the value \(v_i^{t+1} \) is a global decision. The process \(p_i \) terminates.

 (b) Otherwise, the process \(p_i \) takes a value \(v_i^{t+1} = LD_i((v_1^d, \ldots, v_n^d)) \).

 - \(t = t + 1 \).
 - The process \(p_i \) sends the value \(v_i^{t+1} \) to all the other processes and goto step 3.

A predicate \(AC_i \) is the agreement condition on a tuple of values \(v_1, \ldots, v_n \), \(AC_i : D_1 \times \cdots \times D_n \rightarrow \{True, False\} \). Every process \(p_i \) has the same agreement condition \(AC_i = AC \) in this paper. At each round \(t \), each process \(p_i \) holds a tuple \((v_1^t, \ldots, v_n^t) \) of values notified by the processes \(p_1, \ldots, p_n \). Here, if the agreement condition \(AC_i ((v_1^t, \ldots, v_n^t)) \) is true, the coordination protocol terminates for a tuple \((v_1^t, \ldots, v_n^t) \). For example, in the majority agreement, if there is a majority value \(v \) in the tuple \((v_1^t, \ldots, v_n^t) \), the agreement condition \(AC_i ((v_1^t, \ldots, v_n^t)) \) is true.

A function \(LD_i \) is a local decision function which gives a value \(v_i^{t+1} \) in the domain \(D_i \) from a tuple \((v_1^t, \ldots, v_n^t) \) of values, \(LD_i : D_1 \times \cdots \times D_n \rightarrow D_i \). Here, \(v_i^t \subseteq v_i^{t+1} \). If there are multiple values which existentially dominates \(v_i^t \), the process \(p_i \) takes one of them. One strategy is \(p_i \) takes the least preferable value in them. In a homogeneous system, \(\leq \leq_i \), i.e., \(\leq E = \leq E_i \), \(\leq P = \leq P_i \), and \(D = D_i \) for every process \(p_i \) in the process set \(P \). \(v_i^{t+1} \) is given a least upper bound(lub) \(v_i^{t+1} = v_i^t \cup \leq E \cup \leq P \) in every process \(p_i \). In the order-homogeneous (OH) heterogeneous system, each process \(p_i \) can also take a least upper bound \(v_i^{t+1} = v_i^t \cup \leq E \cup \leq P \) since every process has the same dominant relation \(\leq \). Here, if there are multiple lubs \(l_1, \ldots, l_m \) (\(m > 1 \)), \(l_1, l_2, \ldots, l_m \) is taken. On the other hand, in the other types of heterogeneous systems, \(v_i^t \cup \leq E \cup \leq P \neq v_i^t \cup \leq E \cup \leq P \) for some pair of processes \(p_i \) and \(p_j \) since \(p_i \) and \(p_j \) have different E-dominant relations, \(\leq_i \neq \leq_j \).

A function \(GD_i \) is a global decision function which gives a value \(v_i^d \) which a process \(p_i \) to take as the global decision, \(GD_i : D_1 \times \cdots \times D_n \rightarrow D_i \). \(GD_i \) depends on the agreement condition \(AC_i \). For example, \(GD_i((v_1^t, \ldots, v_n^t)) \) takes a majority value in \(\{v_1^t, \ldots, v_n^t\} \) if \(AC_i \) is the majority agreement. There are the following types of the agreement conditions:

1. Atomic condition: \(AC_i ((v_1^t, \ldots, v_n^t)) = True \) and \(v = GD_i ((v_1^t, \ldots, v_n^t)) \) if \(v_1^t = \cdots = v_n^t = v \).

2. Majority condition: \(AC_i ((v_1^t, \ldots, v_n^t)) = True \) and \(v = GD_i ((v_1^t, \ldots, v_n^t)) \) if \(|\{v_i^t \mid v_i^t = v\}| > n/2 \).

3. Consonance condition: \(AC_i ((v_1^t, \ldots, v_n^t)) = True \) and \(v = GD_i ((v_1^t, \ldots, v_n^t)) \) if \(v_i^t \neq v_k^t \) for every pair of different values \(v_i^t \) and \(v_k^t \).

4. General condition: \(AC_i ((v_1^t, \ldots, v_n^t)) = True \), if some condition defined by an application is satisfied for \((v_1^t, \ldots, v_n^t) \).

![Figure 4. Rounds.](image)

4. A Heterogeneous (HCoRD) Protocol

We consider a coordination protocol in a domain-homogeneous (DH) heterogeneous system \(S \), where there are \(n \geq 2 \) processes \(p_1, \ldots, p_n \). In the paper, we assume every process \(p_i \) has no P-dominant relation \(\leq P \) for simplicity, \(\leq \) means \(\leq E \). The protocol is referred to as heterogeneous coordination (HCoRD) protocol. Here, each process \(p_i \) has a same domain \(D_i = D = \{v_1, \ldots, v_m\} \) \((m \geq 2) \) while the dominant relation is not the same, \(\leq_k \neq \leq_h \) for some pair of different processes \(p_k \) and \(p_h \). Differently from a homogeneous system, a process \(p_i \) cannot take as an agreement value, the least upper bound \(v_i^t \cup \leq P \cup \leq E \) for a tuple \((v_1^t, \ldots, v_n^t) \) of values received at round \(t \) because \(v_i^t \cup \leq P \cup \leq E \neq v_i^t \cup \leq P \cup \leq E \) due to the difference of the dominant relations \(\leq E \neq \leq P \) and \(\leq P \neq \leq E \) for some pair of different processes \(p_i \) and \(p_j \). We also assume that the system \(S \) is static, i.e., the domain \(D_i \) and the dominant relation \(\leq_i \) of each process \(p_i \) are invariant.

Initially, every process \(p_i \) does not know anything about the dominant relation \(\leq_i \) of another process \(p_j \) (\(j \neq i \)). In the coordination protocol, the processes exchange values with each other. If a process \(p_i \) receives
a value \(v_1 \) after another value \(v_2 \) from another process \(p_j \), the process \(p_i \) perceives that \(v_2 \preceq_j v_1 \) in \(p_j \). Thus, the process \(p_i \) learns the dominant relation \(\preceq_j \) of another process \(p_j \) through communication with \(p_j \). The dominant relations of the other processes which a process \(p_i \) obtains through communication are stored in the local database \(DB_i \) of the process \(p_i \). Let \(\preceq_{ij} \) be a part of the dominant relation \(\preceq_j \) which a process \(p_i \) knows, \(\preceq_{ij} \subseteq \preceq_j \). That is, if a process \(p_i \) receives a value \(v_2 \) after \(v_1 \) from another process \(p_j \), \(v_1 \preceq_{ij} v_2 \) in the process \(p_i \).

First, each process \(p_i \) receives a tuple of values \(\langle v_1^i, \ldots, v_{n_i}^i \rangle \) at round \(t \), where each value \(v_j^i \) is received from a process \(p_j \) (\(j = 1, \ldots, n \)). A process \(p_i \) takes one value \(v_i^{t+1} \) such that \(v_i^t \preceq_i v_i^{t+1} \), i.e., \(v_i^{t+1} = LD_i((v_1^t, \ldots, v_{n_i}^t)) \) if the agreement condition \(AC_i((v_1^t, \ldots, v_{n_i}^t)) \) is not satisfied. The process \(p_i \) finds a value \(v_i^{t+1} \) for a tuple \(\langle v_1^i, \ldots, v_{n_i}^i \rangle \) by the following procedure \(FF ind_i \) :

\[
FF ind_i(\langle v_1^i, \ldots, v_{n_i}^i \rangle)
\]

1. If \(Next_i(v_1^i) = \emptyset \), return (NULL).
2. Let \(L_i \) be a set \(\{ v \mid v \in Next_i(v_1^i) \} \), i.e., \(v \preceq_i v_1^i \) and \(v_1^i \preceq_i v \) for every value \(v_j^i \) for a tuple \(\langle v_1^i, \ldots, v_{n_i}^i \rangle \). Take a value \(v \) where \(v \preceq_i v \) for every value \(v \) in \(L_i \), return (v).
3. Otherwise, let \(L_i \) be a set \(\{ v \mid v \in Next_i(v_1^i) \) \) and \(\{ p_j \mid v_j^i \preceq_i v^{t+1}_j \} \) be the largest. Take a value \(v \) where \(v \preceq_i v \) for every value \(v \) in the set \(L_i \), return (v). Find a value \(v_j^i \) in \(Next_i(v_1^i) \) such that \(\{ p_j \mid v_j^i \preceq_i v_j^i \} \) is the largest. If found, return (v).
4. Otherwise, the process \(p_i \) takes one value \(v_i^{t+1} \) in \(Next_i(v_1^i) \), for example, such that \(| Corn_i(v_i^{t+1}) | \) is the largest. return (v).

The procedure \(FF ind_i(\langle v_1^i, \ldots, v_{n_i}^i \rangle) \) takes a value \(v_i^{t+1} \) dominating the current value \(v_i^t \). This is a forwarding strategy since we are always going up to upper bounds in \(L_i \).

If a process \(p_i \) could not find a value \(v_i^{t+1} = FF ind_i(\langle v_1^i, \ldots, v_{n_i}^i \rangle) \), the process \(p_i \) takes a backward strategy. Suppose a process \(p_i \) takes a value \(v_i^t \) and another process \(p_j \) takes a value \(v_j^t \) at round \(t \). Suppose the process \(p_i \) could not find a least upper bound \((lub) \) \(v_i^t \cup j \) \(v_j^t \). Here, the process \(p_i \) finds the greatest lower bound \((glb) \) \(v_i^t \cap j \) \(v_j^t \). If a value \(v = v_i^t \cap j v_j^t \) is found in the domain \(D_i \), the process \(p_i \) takes the value \(v \), i.e., backwards to the value \(v \) in the lattice \(L_i \). Then, the forwarding strategy is adopted as follows:

\[
BF ind_i(\langle v_1^i, \ldots, v_{n_i}^i \rangle)
\]

1. If there is a value \(v = v_i^t \cap j v_j^t \) \(\in \) \(D_i \), return (FF ind_i(\langle v_1^i, \ldots, v_{n_i}^i, v, v_{n_i}^i+1, \ldots, v_{n_i}^i \rangle)).
2. Otherwise, find a value \(v \) such that \(v \preceq_i v_i^t \) and \(\{ p_j \mid v_j^i \preceq_i v_j^i \} \) is the largest.

\[
return(FF ind_i(v_1^i, v_2^i, \ldots, v_{n_i}^i)) \text{ where } v_j = v \text{ if } v \preceq_i v_j^i \text{ else } v_j = v_j^i.
\]

5. Concluding Remarks

In this paper, we discussed coordination protocols for a group of multiple peer processes to make an agreement on a domain of multiple values. Each process \(p_i \) has a domain which is a set of possible values which \(p_i \) can take. Values in a domain are partially ordered in a pair of dominant relations, \((E-)\) and \((P-)\) ones. A process \(p_i \) can take a value \(v_2 \) after \(v_1 \) if and only if \(v_1 \) E-dominates \(v_2 \) \((v_2 \preceq_i v_1) \). In addition, values are ordered in a preference of a process \(p_i \). A process takes a preferable value. In a heterogeneous system, each process \(p_i \) has the same domain but different dominant relations than other processes. We discuss the heterogeneous coordination \((HCoRD)\) protocol for a heterogeneous system of multiple processes. The coordination protocol can be adopted for agreement of multiple processes in various types of distributed applications.

Acknowledgment

This research is partially supported by Research Institute for Science and Technology [Q05J-04] and Academic Frontier Research and Department Center [16-J-6], Tokyo Denki University.

References