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Abstract—In this paper, we address the task of active
learning for linear regression models in collaborative
settings. The goal of active learning is to select training
points that would allow accurate prediction of test output
values. We propose a new active learning criterion that
is aimed at directly improving the accuracy of the output
value estimation by analyzing the effect of the new
training points on the estimates of the output values.
The advantages of the proposed method are highlighted
in collaborative settings — where most of the data points
are missing, and the number of training data points is
much smaller than the number of the parameters of the
model.

I. INTRODUCTION

In standard supervised learning settings, we try to
learn (approximate) a target function from the data con-
sisting of inputs and the corresponding outputs from
the target function. Recently, collaborative settings are
becoming more common[1]. In standard settings, it is
assumed that all of the data comes from the same
function; whereas in collaborative settings there is not
enough data from the target function to obtain a reliable
approximation. However, in collaborative settings, the
data from many other functions are available. Utilizing
the data from other functions allows us to obtain a
better approximation of the target function and/or to
reduce the cost of data acquisition. For example, in
recommender systems domain, it is common for a user
to rate only a small portion of the items.

For the task of active learning, it is assumed that in
order to better approximate the function, we can select
inputs for which the output values will be obtained. For
example, in order to better learn a user’s preferences
in the domain of recommender systems, we can ask
the user to express preferences for the selected item.
However, the degree to which a training point allows us
to approximate the function varies. For example, rating
a popular item may not be useful for approximating the
user’s preferences since most users assign a positive
rating to a popular item. Therefore, choosing samples
carefully may allow us to obtain a better approximation
of the true function.
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Figure 1. A matrix entry corresponds to the output value of a

function for an input (for recommender systems it corresponds to
a rating of an item by a user). The matrix is sparse (most of the
entries are missing). The task is to select an input & for which the
output value of the target function ys will be provided, so as to
better approximate the output values y™.

II. PROBLEM FORMULATION
A. Linear Regression in Collaborative Settings

Let us formulate the task of function approximation
for collaborative settings in a linear regression form.
As illustrated in Figure 1, we want to approximate the
output values y of the target function through the linear
combination of the output values of other functions
(corresponding to the column vectors of matrix X)
weighted by the parameters B: y = X8 +¢,X €
R**P, where t is the number of inputs and p is the
number of functions; y € Rf, parameters 3 € RP?,
and € ~ N(0,0%I;) normally distributed ii.d. noise
with mean zero and unknown variance o?. We can
obtain the least squares estimator 3 of the parameter

values as: ,B = (XTX ! XTy, where T denotes the
transpose. However, in the collaborative settings the
matrix X is often sparse, so the matrix X X is
singular and is not invertible. To cope with this, we
add a regularization constant oI to XX (where the
value of « is positive and is small e.g. & = 0.1). This
ensures that X' X + ol is full rank (in\ignible), and
improves numerical stability. Parameters 3 could now
be expressed as: B = (X"X + oI)"!XTy. We can
approximate the output values y* of the test inputs by
estimates y as: y = X*3, where X* are the output
values of the functions for the test inputs. We measure
how well y approximates y* by the generalization
eror G(¥) = ||y — y*|*

B. Active Learning Task

We consider the following task. We are allowed to
sequentially select for which inputs the output values
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(of the target function) are obtained. We want to select
an input J, so that obtaining and adding its output
value ys to the existing output values y minimizes the
generalization error G: argminsG.

III. RELATED WORK

An information matrix is typically used for identi-
fying inputs, obtaining output values for which, allows
us to reduce the generalization error. The inverse of the
information matrix A~1 = (XTX) " allows us to es-
timate the error of the approximated parameters 3. The
active learning task could then be formulated as the
minimization of the parameter’s estimation error based
on a particular optimality criterion of the information
matrix: min trA~! for the the A-optimal design [2],
max |A| for the D-optimal design [5], min ||A 1|| for
the E-optimal design [3], max tr (X*XT A~ 1XX"T)
for the transductive experimental design [6].

IV. PROPOSED METHOD
A. Motivations

The methods described in Section III tend to in-
directly improve the estimates of output values y by
improving the estimates of parameters 3. However,
in collaborative settings, this may not necessarily be
efficient for the reasons outlined bellow:

o The ultimate goal is to obtain good estimates y
of the output values y, and not necessarily good
estimates 3 of the parameters 3.

o Traditional optimal design methods tend to as-
sume that the bias is sufficiently small, and con-
centrate on minimizing the variance. However, in
the current settings, the value of bias is not neces-
sarily small, since the number of training points is
much smaller than the number of parameters. So
reducing the variance and ignoring the bias may
not necessarily be an effective way of minimizing
the generalization error.

o In the current settings, the size of y is smaller
than the size of B, so optimizing estimates of y
(instead of estimates of 3) may be more compu-
tationally efficient.

B. Method

The generalization error measures how well the
estimated output values approximate the true output
values. We note that in the calculation of the gener-
alization error, the true output values are not affected
by the addition of the new training point, while the
estimates of the output values do change. Therefore,
we propose to estimate the effect of a new training
point on the value of the generalization error in terms
of changes in the estimates of the output values.
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Figure 2. Location of the estimate of the output value ¥ after the
training point J is added to the training set (making the number of
training points equal to ¢ + 1).

First, let us reformulate the goal of minimizing the
generalization error in terms of the changes in its value
that adding a training point causes. Let us denote the
generalization error when the number of training points
is equal to t by G;. Let us denote the input of the
next training point by &; and the generalization error
after the output value ys is obtained by Giy. Let us
express Gi+1 as: Gi+1 = Gt— (Gt —Gi41). The value
of G; is fixed in advance (since we are considering a
sequential scenario). The value of G;4; depends on
the choice of d. The original task of minimizing the
generalization error could be reformulated as maximiz-
ing the difference between the generalization errors G
and G4 i.e.: argminsGiyy = argmazs(Gi—Giir)-
Let us denote y; as the estimates of output values
when the number of training samples is equal to ¢;
and y;4+1 as the estimates of output values after the
value of ys was obtained and added to the existing
ratings y. Let us rewrite the difference between gen-
eralization errors G; and Gi4; (also referred to as
AG) in terms of a difference between y, ¥, and y;41:

AG = ||)'t|| —2(9t — F41,¥*) = |F141/1 . Defining
€ =y* — ¥i+1, we have:
AG = |9t = Fer1|® + 2 Fep1 — Fe€). (1)

Note that this decomposition is different from the stan-
dard bias-variance decomposition. Let us denote the
first term of the above Eq. (1) by T} = ||yt ?H.l“z ,
and the second term by T = 2 (Y41 — ¥1, €

The value of AG could not be calculated dlrectly
since the true output values y* are not accessible.
Estimating the value of term T relies on the estimate
of the values in y*, since € = y* —y;,; and y* is
not accessible. In the current settings, the number of
training samples is small, so the estimate of y* is likely
to be unreliable. However, estimating the value of term
Ty requires only the estimate of a single value yj3, so
the estimate of T3 is less likely to be error-prone than
the estimate of T5.

Let us investigate if 77 alone is a good predictor
of AG. Let us consider three possible cases of the
location of 3;4+1 (an element of ;1) in relation to
the corresponding elements 7; and y*, as illustrated in
Figure 2. In case (b), adding a training point improves
the estimate of the true output value. In this case,
maximizing T also maximizes AG. In case (a), adding
a training point deteriorates the estimate of the true
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Figure 3. Distribution of 31 in relation to y* and yz+1 (Section
V-C).

output value. In case (c), adding a training point causes
the estimate to overshoot the true output value. In both
cases (a) and (c) maximizing 77 does not maximize
AG. In Figure 3, we show the distribution of the
location of 3;4; relative to 7; and y* (plotted from
the data from the numerical experiment described in
Section V-C). Case (b) is much more frequent than
cases (a) and (c). Even when cases (a) and (c) do occur,
the probability of the output estimate significantly
deteriorating is low. Since 77 is less prone to error and
is more likely to be applicable, we use it as an estimator
of AG and define the active learning criterion J as:

J(O) = |9t — Fenr|- @)

The training point is then selected as: argmazsJ(9).

C. Criterion Formulation in Linear Regression Set-
tings

Let us formulate the proposed criterion for the
linear regression settings (Section II-A) as: J(d) =

”X* (ﬂt ﬂt+1) ” We can rewrite the parameter

estimate as: ﬁt = A~!XTy. The parameters ﬂt 10
after the output value for the input § was added could
be expressed as: B, = (A+x5x] ) Xy + (A +
x5XJ )" 1xsys. By using the Woodbury formula, the

difference between the parameter estimates could then

A —
be expressed as: Byp1 — B; = 1::(”’;_’1‘,‘? The

difference between the output values’ could _now be

A~ xs(ys—xd B,
expressed as: yi41 — yr = X* —TA—QHX A-1e, = The
proposed criterion is then formulated as:

—~ 2

T
Ys — X3 By TA—Iy*ly*a—1

J(O) = | ———*— AT X" X*A .

©) (1 +xg'A—1xa> o 8

3)

We are not able to calculate the value of the proposed
criterion directly since the output value of the sample
ys is not known. Let us denote by J(d| ys = r) the
value of the criterion J(6) when ys = r. We may
then approximate the value of the criterion as: J(§) =
Y., P(ys = )J (8| ys = r). Since we assume no prior
knowledge of P(ys = r), we approximate it by the
non-informative uniform distribution.

V. NUMERICAL EXPERIMENTS
A. Experiment Settings

Let us describe the settings that are common to the
experiments. We have selected a popular collaborative
dataset MovieLens [4] for the numerical experiments.
The MovieLens dataset consists of approximately 1
million ratings for 3,900 movies by 6,040 users. We
randomly select 100 users that have each rated at least
100 items. We estimate each user’s mean rating and
use it to centralize this user’s ratings. For each user, we
randomly select 50 points (items) as potential training
points and use the rest of the points as a test set. All of
the users’ output values (ratings) are withheld. For each
user, training points are selected in a sequential manner
by an active learning algorithm. After the training point
is selected, its output value is revealed and the point
is added to the training set. For the random active
learning method, training points are selected following
the uniform distribution. For all of the applicable active
learning methods, the value of « is set to 0.1.

B. Effect of Active Learning

In this experiment, we investigate the effect of active
learning (training point selection) on the generalization
error. We use a random active learning algorithm to
sequentially select 20 training points for each user. At
each step, we record the change in the generalization
error AG. Results of the experiment are presented in
Figure 4. In line with the expectations, as the number
of training points increases, the effect of training point
selection decreases.

C. Validity of Assumptions

In this experiment, we investigate whether the as-
sumptions that the proposed algorithm relies upon are
satisfied. As discussed in Section IV-B, the proposed
criterion relies on the value of the error (of the output
estimate) not increasing, and the output estimate not
overshooting the true value. We use the experiment
settings described in Section V-A and the random
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Figure 4. Effect of the training point selection (active learning) on
the generalization error with respect to the training set size (Section
V-B).

active learning method. For each run, we record the
values of ¥, J¢+1 and y*and then plot the distribution
of the ;41 normalized by 7; — y*. From results
shown in Figure 3, we can see that deterioration of
the estimate and overshooting of the true value occurs
with the low probability and the value of the resulting
error is likely to be small. Therefore, due to only a mild
violation of the assumptions, the proposed criterion is
still likely to be accurate.

D. Criterion Accuracy Evaluation

In this experiment, we evaluate how accurately the
proposed criterion estimates the change in the general-
ization error. We use the experiment settings described
in Section V-A and the random active learning method.
For each run, we record the actual values of the
proposed criterion 77, and the value that it estimates
AG. Results are presented in Figure 5. The term T}
models AG well, except in a relatively rare situations
where AG < 0. However, for the active learning task,
we are interested in the training points that improve the
model i.e. AG > 0. Therefore for the task of active
learning, the proposed criterion could be considered a
good predictor of AG.

E. Comparison with existing Active Learning algo-
rithms

In this experiment, we evaluate how the proposed
method compares with existing methods (Section III),
a random active learning method, and an optimal
method. Results are presented in Figure 6. The pro-
posed algorithm has the best performance (at the
statistical significance level of 95%).
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Figure 5. Relation between the value of T} = ||y — y¢+1]| and
the value that it tries to approximate AG (Section V-D).
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Figure 6. Evaluation of active learning criterions (Section V-E).
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