7 v F Y X A 46— 3
(1995. 7. 20)

EREORABLFEFREEZRD D
WHILBET VT Y XA

Kz,

BUH EH,

A B

SRTEKRE AM-HHR-BER!
‘et v —71
BEOFZRRENHRIT, STEAx-y REEEICMR o = N & EHEEOK
FREDORRERDDZELLMIRTE D, ARTIE, Wiy =N{HFICHEET I E

BT RERDBFESRRT S, ZOFETH. REKEEAN Y ommcrszy
DT EMNAETHD, BB, FIREAZZR L -BRESBEO W T O AT §eMt: % 7%

B

A Parallel Algorithm to Determine Solution Domain
for Prime Factorization of Integers
Hiroshi NAGASE, Naoki TAKEDA, and Akira NAGAI'

Department of Information and Computer Engineering

Kanazawa Institute of Technology*,
SHARP Corporation*

Prime Factorization of integers can be explained geometrically as finding, in an x-y
solution plane, the crosspoint of hyperbola xy = N and integer coodinate lattice points. The present
paper proposes methods to find the lattice points which exist near the hyperbola xy = N. By this

method, factors can be searched at intervals of maximally N 4 integers. And finaly, the
possibility of parallel prosessing of the proposed factorization method with considering residue

are shown.

1. Introduction

Many cipher and authentication systems
base their safety on difficulty of prime
factorization. Examples include RSA and Fiat-
Shamir zero knowledge interactive proof . To
make RSA cipher be safe, the length of the
composite numbers must be shown, such that the
prime factorization is computationally difficult.

The solution to the problem "what RSA
block length is safe ?" depends on each prime
factorization algorithm. For example, the simplest
algorithm, a trial division method, requires N 2
trials in the worst case, where N is a composite
number.

Generally, the prime factorization is said

to have subexponential computational complexity.
Roughly speaking, we only require &V 8 trials to
find prime factors of 200-digit composite number.
Quadratic sieve method and elliptic curve method
are examples of O(N m) algorithm. A recent

experiment shows that a 155-digit composite
number is factored with the algorithms running on
many computers.

In this paper, we propose a new prime
factorization algorithm, which is a sort of trial
division method. We define an x-y solution plane,
and seek crosspoints between a hyperbola xy = N
and integer coordinate lattice points. To be
precise, the lattice points positioned close to the
hyperbola xy=N are selected. For each selected

L lattice point

Fig. 1 Lattice points near a solution curve

lattice points (x, y), if a product of two
coordinates x, y equals the composite number N,
then x, y are factors of the V.

By this basic method, hereafter
referred to as the lattice point search method,
we can search factors at intervals of
maximally N 4 intergers. The method is
faster than the trial division method and
Fermat's method. To increase the speed of
the lattice point search method, we take
notice of the residue of N over a prime
number. From the value of residue, we can
see that candidates of the factors are included
in some of lattice points. Hence, we pick
these points in advance, and among them,
find points positioned near the hyperbola.
Then, search intervals are expanded.

2. Lattice Point Search

For an arbitrary composite number ¥,
integers x, y which solve the equation xy=N
are factors of N. If x (or y) is a composite
number, x is factored into two integers.
Continueing this method, we obtain prime
factors. Hence, we only consider the problem
of type xy=N.

2.1 Basic Concepts
Let us consider a solution plane

whose coodinate axes are x and y. On this
plane, there exist an infinite number of lattice
points which take integers as coodinate
values. Among these lattice points, we can
select a sequence of points with positions
near the solution curve xy=N. The sequence
is illustrated as a line in Fig. 1. Since a large
composite number, such as 10200, is used for
practical ciphers, the solution curve can be
seen locally as if it is a straight

line. Hence, if the near point line is parallel to
the solution curve, two lines seldom cross on
the solution plane. In other words, the
crosspoints of two lines are rare. Among
these points, one with positions on any of the
lattice points corresponds to the factors of V.

2.2 Crosspoint Calculation

Let us define concisely the near
point sequence. Firstly, two integers n and m
are chosen as

mn>N, n(m-1)<N,n<m. (1)

We also define a line which passes
through a lattice point (n, m), where n (m) is
a value of the x (y) axis. - Then, by parallel
movement of the line, a set of lines is defined
as

x=n-k

y=m+Rk+1

Here, k(=0), /, P are integers,

()

B=|m/n=a]sa 3)
and | x | is the largest integer among integers
less than x. Deleting the parameter k from
(2) yields

y=—|3(x-n)+m+l. 4)

A line of / = 0 crosses the lattice
point (n, m), and has a slant -B. Other lines
of I = 0 are obtained by shifting the line of / =
0. These lines have the following properties.
[Theorem 1] Let us define a line P from the
lines (4) of / = -1. Then, any lattice point on
a line P of x < n is under the solution curve,
and never satisfies the relation xy = N.

(proof) Abbreviated.

[Theorem 2] Let us define a line Q from the
lines (4) of / = 0. Then, for any lattice point
(x,y) = (n -k, m+ Bk) on a line Q, there
exists & (=0) which satisfies the relation xy =
N.

(proof) Abbreviated.

Now, before starting the search, we
select an initial lattice point with coodinate
values n, m satisfying (1). Then, near the
initial point, the lines (4) of / = 0 cross the
solution curve xy = N. Among these lines,
only the line of /= 0 has the minimal value xy,
and satisfies xy = N. Hence, from theorem 1,
2, the line Q of / = 0 is the nearest to the
solution curve. The crosspoint of the line Q
and the curve is obtained by kg

_ —(m-np) +\/(m—n[3)2 +4B(nm~N)
28

ko

&)
where k is a solution of f(k,) = 0.

If this crosspoint is on a lattice
points, it corresponds to a factor. Otherwise,
we scan the line from the crosspoint until we
obtain the closest lattice point (called the
bottom point). Then the next initial lattice
point is determined by increasing the value of
y to meet the relation (1). To summarize, a
search algorithm (called a regular order

search) is used as follows.

[Search algorithm 1]

[Step1] Initial lattice point (n, m) is selected
to meet (1).

[Step2] Determine ffrom », and (3).
Calculate k, from (5). If &, is an integer,
n—k,, m+Pk, are two factors.

[Step3] If k, has a decimal, find a bottom
point by

(x. %) = (n =[ky]+ B[ko])

where IFkO'I denotes a minimal integer greater
than k.

Since at the bottom point, xy < N, the next
initial lattice point is set to (x,,y, +1), and
repeat [Step 2].

3. Analysis of Search Intervals

The interval k,, the interval of search
argolithm 1, has a maximal value when
m~Bn or, in other words, when m is integer
times larger than »n. Then the value of
maximal &, depends on values of nm - N and

B from (6).
nm-N 1 ©)

lsfko]s[5

Of these values, nm-N can be
geometrically estimated. When the Iinitial
lattice points n, m satisfy m~fn, line Q and
the solution curve become parallel as stated
before . Hence, a bottom point (n’,m’), near

the crosspoint of line Q and the curve, exists
as if it were on the curve. This yields
n'm'~N. Hence, for the next initial lattice
point (n',m" +1)

n'(m +1)-N~n @)
holds. Though the initial condition (1) only
says that nm < N, the relation nm-N~n
holds as long as m~fin is satisfied.

For the value f,B~1 when n, m~N"? and B

increases when » decreases. The maximal
search intervals (when m~Pn stands) is

calculated as a function of n from (6), and are
shown in Fig. 2.

Iz

N

Maximum of
search interval

N s 1

n

Fig. 2 Search interval and search position

l 2
N

From this, the interval has maximal
value N when n, m~N"? However, it
becomes smaller as n decreases. Hence, this
method is basically effective when factors
exist in the neighborhood of N2, Suppose
N equals 10°%

n=10"": interval = 10"

1 =10%: interval = 10¥

n =10%: interval 1
hold. For n satisfying 10”* <n <10'®, which
occupies 99 % of the total search area, the
search area, the search proceeds at the
interval of 10" (if m is integer times larger
than n). On the other hands, for small n, the
search proceeds at the interval 1 in the worst
case. Hence, more than 10%® searches are
required.

When m/n~f does not hold, m/n
has a decimal, and the search proceeds.
Noted at (6), every lattice point near the
solution curve must be examined in the worst
case. How to improve the algorithm in such
a case is discussed later(3.3 Virtual Lattice
point).

[Example 1] When N =10x10", the
search intervals k, of algorithm 1 are shown
in Fig. 3. A horizontal axis denotes ». The
search starts at point A, where m=n=N"?,
and proceeds so that » may decrease. At
point B, m = 2n holds, and the search

intervals increase. At point C, n becomes
N"? and the search intervals become shorter
as shown in Fig. 2. However, the. area
1~ N'"? occupies only a small portion of the
total search area 1 ~ N'?.

3.2 Inverse Order Search

When the initial lattice point has the
coordinate values (n, m), with m/n slightly
smaller than an integer value (e.g. m/n =
1.99), algorithm 1 has small search intervals.
However, searching both regular and inverse
directly, we can make the search intervals
large.

3.3 Virtual Lattice Point

Even if algorithm 1, 2 are used, there
remains a large area where the search
intervals are small. In the area, the
coordinate ratio m/n of the initial lattice point
has decimal values. To improve the search
intervals in such cases, we introduce virtual
lattice points.

For example, when m/ n~1.5, lattice
points shifted by 1/2 in the direction of the y
axis are added to the original lattice points.
Then, line Q which passes through the lattice
points near the solution curve, becomes
parallel to the solution curve (actually the
tangent of the curve). Hence, large search
intervals are attained. The difference from
the above algorithm is that a crosspoint on a
virtual lattice point does not coordinate
values are integers.

Generally, when m/n~R+t/s (R, s,
and ¢ are integers), lattice points, shifted by
wis(w=1,2, ..., s-1) in the direction of the
y axis, are added to the original lattice points.
We denote a set of these lattice points as W.
We will explain the details of the regular
order search as explained in algorithm 1.

300 I ;

200

100 : i

| ¢ Bl D, A
150000 200000 250000 300000 350000
14
Fig. 3 k, and n of searching algorithm 2(N=10"")

In the point set W, the initial lattice
point is selected as
nm>N.n(m-1/s)<N,

R+t/ssm/n<R+(t+1)/s (8)

(n, R, and s are integers.)y
are satisfied. A set of lines, which linl the
points of W near the solution curve, are
formalized as

x=n-k)
y=m+R+isHk+lls (I=1,2,.)
and theorem 1, 2 are proved.

In (9), a crosspoint of the line Q,
with / = 0 and the solution curve is
determined by k, where k, satisfies
f(k,) = N —xy =0, and given by

~[m-nR]+ \ﬁm—nR,]z -4R(N — nm)
2R(R+1/5)

k =

R =(R+t/5) ,
(10)

[Search algorithm 2]
[Step 1] Initial lattice point (1, m) is selected
to meet (8).
[Step 2]Calculate &, from (10).
bottom point by
(x, %) =(n—Lk0J,m+(R+(/s)|_k0J).
[Step 3] If x,y, = N,
if y, is an integer, x,, y, are facters,
if y, is a decimal, set the next initial
lattice point to (x,, y, + l/s),
and repeat [Step 2].
[Step 4] If x;y, <N, find the minimal v
satisfying x,(y, +v/5)z N, »
[Step 5] if x,(y, +v/s) =N,
if y,+v/s is an integer, x,,
y, +v/s are factors,
if y, +v /s is a decimal, set

Find a

the next initial lattice point

to (x,, y;+v/s+1/s), and
repeat [Step 2],
[Step 6] if x, (yl +v/5)> N, set the next
initial lattice point to (x,, y, +v/s),

and repeat [Step 2]. []

4 Consideration on Residue

The preceding algorithm has
maximally N'* search intervals. In the case
of RSA, the composite number N is nearly
10 and NV* is 10*°. though it is a large
interval, it requires more than 10% searches to
cover the total search area N''.

Hence, whether or not a higher
algorithm exists is important. To clarify this
problem, let us devide the composite number
N by a prime number, and obtain a residue.
From the residue, we can estimate a class of
lattice points. Then we can construct a
similar algorithm on the -extracted lattice

points.

4.1 Residue Class

For a prime number p, there exist p
residue classes Z,, Z,, Z,, ..., Z,,. Here, Z,
is defined as a set of integers z's such that z =
i mod p. Suppose the composite number N is
expressed as a product of two integers. Then,
each integer belongs to one of the residue
classes. Generally, a pair of residue classes
which generate N is limited to the following
forms,

N=zz

N=z:z
m p—lforms(z,EZ,). an

N=z, .z
For example, if N mod 3, N is divided into
one of the following forms:
N=@Ba+1)(3b+1)
N=@Ba+2)3b+2)
integers.

(12)

where a, b are

4.2 Computational Quantity for Search
Suppose one of the forms is selected
from (9). Let us denote it as

2, €Z,). (13)

Then in algorithm 1, the initial lattice point is
chosen as
nm>N, n(m-p)<N
n<m, (n €Z,,m EZJ).

N=zz, (z,. €7,z

(14)

A set of lines, corresponding to (2) are
x=n-pk (15)
y=m+ ppk + pl

and with these lines, theorem 1, 2 hold. The

value k,, relating to (5), is calculated from

(n - pk,)(m+ ppk,) = N

and
L —(m—{3n)+\/(m—[3n)2 +4ﬁ(nm—N)
’ 2pB
(16)
Then the search intervals satisfy
1s[pk01s[”’”B’N} (17)

(righthand equality holds when m = fn).

Equation (15) has the same
expression as (6), but the values inside the
root symbol differ from each other. To
clarify the discussion, we firstly propose that
the slant —B of lines (13) is almost equal to
the slant of the solution curve. This is the
essential condition for enlarging the search
intervals, and is realizeable with virtual lattice
points as stated bofore. Then, the bottom
point positions are near the solution curve.
The next initial lattice point (n, m) has a value
m larger than that of the bottom point, and
the difference almost equals a lattice interval.
Since the residue of mod p is considered, the
lattice interval is p times larger than when the
residue is not considered. Hence from (15),
the search intervals pk, are \/1_7 times larger
than (6).

Therefore, taking account of residue
class, the search trials are reduced to 1/ \/;
compared with the ordinary search on integer
lattices. However, a pair of residue classes

has p-1 forms as stated in (9). Since
specifing a true form among p-1 forms is
difficult, the total number of searches
increases by (p—l)/ p times. We now
present an example to overcome this problem.

[Example 2] Let us consider a composite
number N = 1315753 and modulo p = 6.
N =1(mod 6) (18)
then N is factored as next forms:
N =(6a+1)(6b +1), (19)
or N =(6a+5)(6b +5).
(a and b are positive integers.) (20)

Now, assume N is denoted as equation (19).

Hence, the factors are included in series:
1,7,13,19,25,31,37,43,49,

while, the LSD of N is 3 (Condition 1.).

Then, factors are
1,7,13,19,31,37,43,49,

Since equation (16),
36ab+6a+6b=1315753
6ab+a+b=219292
a+b=4(mod6)

Then the candidates are
4,10,16,22,28,34,40,46,52,58, ...

This result is shown as the following graph

Fig. 4.

ey

350
313 301
304 283
25Q 108
204 199 187
72
15¢ 133 121
103
100
108
50,
19 7

0 S 10 15 20 25 30 35 40X

Fig. 4 Candidates of factor in Example 2

As mentioned above, the results are
shown in the following tables. In table 1, the

set of candidates of mod 4 are the subset of
mod 2. Similarly, candidates of mod 6 are the
subset of candidates mod 3. Hence, it is
possible to expand a search interval if we
select large composite modulus.

Table 1 shows average interval of
lines which pass though candidates of factor
(illustrated in Fig. 4). Since search intervals
are increased by \/;times when intervals of

lines become p times larger. Hence, for
example, search interval in the case of mod
12 is 11 times (:M) larger than original
search interval.

Table 1. The relation between modulus and
the search intervals

mod p | Period | Numof | Average
elements | interval
2 20 2 10
3 90 4 22.5
4 240 10 24
9 22680 240 945
12 774400 6201 124 .88
20 2293200 30038 76.34

Table 2. The relation between combination of
modulus and the search intervals

Combination of| Period | Num of | Average
modulus elements| interval
23 180 4 45
2,3,5 900 19 47.37
2,3,5,7 44100 | 420 105
3,5,8 100800 | 479 210.44
3,8 20160 95 212.21
8,9 181440 312 581.54
5. Conclusion
We proposed a new prime

factorization algorithm, which seeks factors
of a composite number N by finding the
crosspoint of solution curve xy = N and a line
made of lattice points near the curve. In this
algorithm, when a slant of the curve (to be
precise, a tangent of the curve) equals a slant
of the line, the search progresses by the order
of NV*. In other cases, however, the search
intervals decrease. Hence, we proposed a
method to make the two lines parallel by
adding virtual lattice points whose
coordinates are decimals.

To consider the practical meaning of
algorithm, suppose the algorithm is used to
decipher RSA. Since RSA uses a large
composite number, such as 10°*, the search
interval of this method grows to maximally
10, Hence, it is necessary, in future, to
speed up the proposed algorithm. To do this,
we proposed a method to specify the residue
expression of the composite number.

The presented algorithm s
experimentally examined, and resulting
numerical data are shown in this paper. With
this examination, we can confirm that the
basic idea, presented here, is true. However,
an accumulation of data, especially on a large
composite number, remained for future
research. Finally, we comment on the parallel
processing of the algorithm. Since the initial
lattice points can easily be calculated from (1)
etc., the proposed algorithm is suited to
parallel processing like the other factoring
algorithm.

References

[1JR Rivest, A.Shamir and L.Adleman "4 method
Jor obtaining digital signatures and public-key
cryptosystems”, Comm. of ACM, pp.120-126(Feb.
1978)

[2]Hiroshi NAGASE, Naoki TAKEDA "On the
selection of Public Modulus for RSA Cipher"
[3]Shi'nichi. SHHIMONAKA, Naoki TAKEDA and

Hiroshi NAGASE “Parallel Decomposition of
Modular Exponentiation for RSA Cryptosystem",
ISITA 1994

eds.), Math. Centrum Tracts, Number 154, Part |
and Number 155, Part II, Amsterdam, pp.89-139
(1983)

