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Abstract For the correctness of the minimum cut algorithm proposed in [H. Nagamochi and
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1 Introduction

Let G = (V,E,cg) stand for an edge-weighted
undirected graph with a set V of vertices and a set
E of edges weighted by cg : E — R, where Rt is
the set of non-negative reals. An undirected edge e
with end vertices  and v is also denoted by {u,v},
and its weight cg(e) by cs(u,v) (= cg(v,u)). For
two graphs G = (V, E,cg) amd G' = (V,E,cg) in
the same vertex set V' and edge set E, we write
G C G if cag(e) £ cgle), e € E. We denote
n = |V| and m = |E|. A singleton set {z} may
be written as z. For a nonempty subset Z C V, the
subgraph induced from G by Z is denoted by G[Z].
For two nonempty disjoint subsets X,Y C V, define
Eg(X,Y) = {{u,v} € E| v € X, v € Y}, and
ca(X,Y) = Xoemg(x,v) cale). Let E*(G) denote
the set of edges with positive weights. We say that
two vertices ¥ and v are connected if there is a path
P C E*(G) between u and v. A subset Z C V is
called a component of G if any two vertices in Z are
connected and no vertex in V — Z is connected to a
vertex in Z.

We define a flow in an undirected graph G =
(V,E,cg). For this, we regard G as a directed
graph G = (V,E), where E is a set of arcs (= di-
rected edges) obtained by giving orientation either
(u,v) or (v,u) (arbitrarily) to each edge {u,v} €
E. An arc with tail » and head v is denoted
by (u,v). For two specified vertices s and ¢, a

-

function f : E — R is called a (s,t)-flow if f
satisfies Z(v,u_u)eﬁ flo,w) = Xiyes fw,v) for
each v € V = {s5,t} and |f(v,w)] < c(v,w) for
each edge (v,w) € E, where f(v,w) > 0 (resp.
fv,w) < 0), (v,w) € E means a flow from v to
w (resp. from w to v). The flow value of f is
defined by Z(Q’W)QE f(s,w) - Z(w,a)EE—' f(wv 3) (:
—E(t,w)epj' f(taw) +Z(w,z)eﬁ f(w,t)). An (S,t)-
flow with the maximum value among all (s, t)-flows
is called a mazimum (s,t)-flow.

A cut is defined as a subset X of V with § # X #
V, and the size of cut X is defined by cg(X,V — X),
which may also be written as cg(X). A cut with
the minimum size is called a (global) minimum cut,
and its size is called the edge-connectivity of G. The
local edge-connectivity Ag(z,y) for two vertices z,y €
V is defined to be the minimum size of a cut in G
that separates z and y, or equivalently the value of
a maximum (z,y)-flow [1].

The minimum cut algorithm by Nagamochi and
Ibaraki [7] repeats finding a pair of vertices v and w
such that

/\6(’0,10) = Cg(’w), (1)

and contracting those vertices into a single ver-
tex, until the resulting graph has only one vertex.
Clearly, the edge-connectivity of G is equal to the
minimum among all cg(w) that appeared during this
process, i.e.,

min{cg, (wi) |i =1,2,...,n =1}, (2)

where G is the graph in the i-th iteration and (v;, ;)
is the pair in G; satisfying (1). A global minimum cut
in G is given by the set of vertices that have been con-
tracted into the vertex w;- attaining the minimum in
(2). Reference [7] proves that the pair of vertices v
and w satisfying (1) in each iteration can be found
in O(m + nlogn) time, and the entire running time
of the minimum cut algorithm is O(n(m + nlogn)),
which is currently one of the best among existing
deterministic algorithms.

Given G = (V, E,cg) (not necessarily connected),
an ordering vy, vz, ..., v, of all vertices in V is called
a mazimum adjacency (MA) ordering (also called le-
galin [3)) in G if it satisfies cg({v1,v2,...,vi}, vit1)
= max[cg({v1,v2, ..., v:},u) [u € {vig1,...,va});

1 <4 < n~1. Such an ordering can be found in
O(m + nlogn) time [7].

Lemma 1 [2, 4, 6, 7, 14] For G = (V,E,cg), let
V1,03, ...,Un be an MA-ordering of all vertices in G.
Then the last two vertices v,y and v, satisfy

Ag(vn-l,vn) = CG(’UT,). (3)

a

The original paper [7] handles only edges with
positive weights, and shows in Lemma 5.1(2) that
Ag(vh,vn) = cg(vy) holds for the vertex vy with
the largest index h such that Eg(vh,vs) # 0, which
seems weaker than (3). However, it can be easily ex-
tended to imply (3) by introducing edges with zero
weight in its proof, because allowing edges e = {z,y}
with cg(z,y) = 0 in algorithm CAPFOREST [7]
does not affect the correctness of the lemma. How-
ever, the proof of the lemma was rather technical and
complicated, since it first proved the case of rational-
valued weights, and then extended the argument to
real-valued weights. Since an MA-ordering has some
other useful applications [3, 6, 10], many researchers
have studied properties of an MA-ordering, and dis-
covered some simpler proofs of Lemma 1 (2, 4, 14].
Also [12] generalizes the lemma to a symmetric sub-
modular function cg : 2¥ — R*.

2 A New Proof of Lemma 1

We now present a new simple proof of Lemma 1.
Our proof not only shows (3), but also provides an



efficient construction of a maximum (v,_1,v,)-flow
(none of the previous proofs can do this).
We start with the following observation.

Claim 1 Let vq,...,v,(n > 2) be an MA-ordering
in G. Then each component of G consists of vertices
Vj,Vj41,-+.,Vh With consecutive indices. In partic-
ular, vp—1 and v, belong to the same component if
ca(vn) > 0.

Proof: Assume that a component consists of vertices
whose indices are not consecutive. Let Z be the com-
ponent that contains a vertex with the smallest index
among such components. Then we can choose three
vertices v; € Z, v;y1 € Z and v; € Z for some 1 <
i1 <i+1<j<n LetZ' bethe component contain-
ing v;41. By the choice of Z, Z’ contains no vertex v
with index k < ¢, and hence cg({v1,...,v:},vis1) =
0. On the other hand, cg({v1,...,vi},v;) > 0 holds
since v; and v; are in the same component. However,
cg({v1,...,vi},viy1) < ca{{v1,...,v:},v;) contra-
dicts the definition of an MA-ordering. This proves
the first statement in the claim, from which the sec-
ond statement is immediate. O

Given an MA-ordering vy, vs, ..., v, in G, we write
uw < v if u=wv; and ' = vy for i < ¢, and arrange
the edges in Eg({vi,...,vic1},v:) (¢ = 2,3,...,n)
in the order of

= {ui»rnvi}’ (4)

where r; = |Eg({v1,...,vi—1},v;)|, so that u;; <
ujp < -+- < u;,, holds. Now given a real § > 0, we
define the weight functions cg, and cg, as follows:
cGa('"'i,js'Ut) = CG(uz s Vi ) 1f] <pi—1, ch(ul,J"Uz)
=0- 1<j<pi -1 ca(uij,vi) if j = pi, 606(%,,,711) =
0if j > p;, and cg,(e) = ce(e) — cg,(e) for all edges
e € E, where p; denotes the smallest index such that
21<J<p cg(uij,vi) > & (we interpret p; = 7; + 1
if El<]<r cg(u;j,v;) < 6). We call the resulting
graphs G5 = (V,E,cg,) and G5 = (V,E,c3 L) 6-
skeleton and 8-skin of G (with respect to ordenng
V1,...,Vn), Tespectively. As already noted in [10] for
unweighted graphs, we see the following property.

ei1 = {ui1, v}, 0, eim

Claim 2 Let v1,...,vn(n > 2) be an MA-ordering
in G, and G5 = (V, E,cg,) and G5 '= (V,E,cg,) be
the 6-skeleton and the 6-skin of G, where § is real
satisfying 0 < 6 < cg(vn). Then the same ordering
Ui,y...,Vp Temains an MA-ordering in Gs and Gs.

Proof: By the definition of G5 and G,
cg,({v1,...,vi-1}, )= min[6, ce({v1,.--
¢, ({v1,...,vic1}, )= maxfeg({v1,...,viz1 }hu) —
6,06] foreachii¢=2,---,nand v € {v;,viy1,---,Vn}
Then, for each : = 2,...,n, we have

»’Uz‘—l}»u)]’

cg; ({v1y -y vim1},v5) = min6, cg({v1, .oy vio1}, vi)]
= min[6max{ce({v1,...,vi—1},u)|u € {vi, ..., vn}}]
= max{min|é,ce({v1, ..., vi-1 }, u)|v € {vi,...,vn}]}

= ma*x{ch({vla Ty vi—l}, u) Iu € {’Ui’ o avn}}a
implying that ordering v1,...,%, is an MA-ordering
in G;. Similarly for Gs. [m}

To prove Lemma 1, we assume without loss of gen-
erality that cg(vs) > 0 holds in a given MA-ordering
V1,...,Un (ca(vn) = O trivially implies (3)). We con-
sider the directed graph G = (KE) obtained from G
by regarding each edge {v;,v;} € E j < i as an arc
(vj,v;). Foreach i = 2,...,n, let First{Eg({vs,---
,vi—1},v;)] denote the edge {u;,v;} with the small-
est index i’ among the edges in Eg({vy,...,vi—1},v:)
NEY(G) if Eg({v1, **,vi—1},v:) N E¥(G) # 0 and
let First{Bg({vi,---,vi—1},vi)] = 0 otherwise (ie.,
if Eg({v1,---,vic1},v) N ET(G) = 0). Let Forest(
G) be the forest (V, E') with E' = {First[Eg({v1,

'7”1‘—1}’”1')] | =2, ’n}'

By construction of Forest(G) we see that there is
no cycle C with C C Forest(G) in Forest(G); i.e.,
Forest(G) is a collection of trees.

Clearly, cporest(c)(vn) > 0. Let § > 0 a real num-
ber which is smaller than the weight of any edge
in Forest(G). Then the é-skeleton of G satisfies
Gs C Forest(G). Since Claims 1 and 2 imply that
Vn—1 and v, are connected in Gs, v, and v, are
connected by a path P C E(Forest(G)). Let T™ be
the tree in Forest(G) that contains v, and v,_1, and
let v, be the least common ancestor of v, and v, in
T*. Clearly, P C E(T*)and v, isin V(P). Lete >0
be the minimum value of the edge weights on P.
Then a (vn_1,vs)-flow f with value € in Forest(G)
is obtained as follows:

fle)=

€ fore € E on P,
—¢ forec Eon P (5)
0 for e € E that is not on PuPp,,

where P; is the path between v, and v, and P; is the
path between v,_; and v.. For this €, we consider
the e-skeleton G, of G. Let f; = f, which is a
(vn—1,vn)-flow, and let e := €. Clearly,

CE[] ('U'n) = CG("/n) —&

holds in the £;-skin Eel of G, and, by Claim 2, the
same ordering vy,. .., v, remains an MA-ordering in
G,,. Therefore, if 3., (vn) > 0 still holds, then we
can find another (v,_q,vn)-flow f, by applying the
above procedure to a new G' := Ge,.

Repeating this procedure until cg(v,) = 0 holds
in the resulting graph G’, we find a sequence of



(Vn—1,0n)-lows fi,f2 ..., fx. The number of rep-
etition of constructing ¢;-skeleton and e;-skin is at
most m, since no edge weight increases during this
process, and at least one edge with positive weight
becomes zero weighted when an (e; +- - - +¢;)-skin of
G is constructed. By construction, we easily see that
the resulting flow f; + fo +...+ fx is a (Vn_1,vn)-
flow of G, and the weight of this flow is equal to
cG(vy), proving Ag(vn-1,vs) = E]’:x €5 = cg(vn).

3 Algorithm

The proof of Lemma 1 is constructive, from which
is a polynomial time algorithm for computing a max-
imum (vp—1,vy)-flow is constructed. In this section,
we present an O(mlogn) time algorithm for find-
ing a maximum (v,,_1, v,)-flow from an MA-ordering
V1, *, Vs in an undirected graph G.

At first, we give an O(mn) time algorithm called
MAX-FLOW, which is a naive implementation of the
proof of Lemma 1.

For this, we induce some notations. After the i-th
iteration of the procedure in the proof of Lemma 1,
we assume that a (vy—1, v, )-flow of G with value § =
€1 +¢€3+---+¢; has been obtained. For the current
flow value §, consider a forest T = Forest(G;) of the
6-skin of G, and we denote as follows:;

cur(v;) :=
27—1 caluij,vi) @ =2,---,n, where {u;;,v;}
is defined as (4) and edge {“m v} € E(T).
(cur(v;) implies the current position of edge
{ui,j,vi} in the list Eg({vy,---,vi—1},vi).)

Cap(e) : the current weight of edge e € E(T) (i.e.,
Cap(e) = cur(v;) — 6).

Let T denote the current forest Forest(Gs) in the
§-skin of G. In the (z + 1)-th iteration of the pro-
cedure, we find a (v,_1,v,)-flow as follows. We find
the path P between v,_; and v, in the tree contain-
ing vp—1 and v, in the T, and the minimum weight
€i+1 on P. According to (5), we obtain a (vp—1,vn)-
flow with value 6 + €;4;. We then update the cur-
rent T to obtain Forest(Gsye,,,) as follows. We de-
crease the weight of edges on P by €;4;, and for each
edge e = {vj,v1} j < ! whose value becomes zero,
delete e from the current 7', and add the next ele-
ment of the edge e in the list Eg({vy, -, vi-1,v1})
(if any). For each e = {vj,u} j < ! in the current
T where € is not on P and the current cur(v;) >
6 + €i41, we only decrease the weight of the edge
by €it1, 1.e., Cap(e) := cur(v)) — (6§ + €;41). For
each e = {vj,u} j < ! in the current 7 where €
is not on P and the current cur(v;) < 6 + €41,
we scan the edge list Eg({v1,-++,v;-1) in the or-
der of (4) from the current edge e to find edge

e = {vw ,v1} where Zh—l ca(Vih,v1) < 6+ €54
and Eh 1¢alv, h,vz) > §+ £;41 and let the weight
of ¢ Cap(e') =Yty co(vin, v1) = (6 +€iva). It
is clearly followed from the definitions of §-skeleton
and &-skin that edge e’ is in Forest(Gsyc.,,) and its
weight Cap(e’) is equal to the weight of the edge in
Forest(Gs.e,,,) that corresponds to e'.

Procedure MAX-FLOW

Input: an edge-weighted undirected graph G =
(V, E,cg), an MA-ordering vy, - - , vy, of all ver-
ticesin G, the linked lists Eg({v1, -, vi—1},v;)
for all ¢ = 2,---,n, and a directed graph G =
(v, E) defined in the proof of Lemma 1.

Output: a maximum flow f(e) e € E from vn_;
to vy,.
1 begin
2 §:=0; f(e):= 0 for each arc e € E}

3 T := Forest(G), where E(Forest(G)) =
{First[Ec({v1,...,vic1},v)] |i=2,---,n};

4  Cap(e) := cgle) for each e € E(T);

5 Fori=2,---,n, cur(v;) := cg(vj,v;) for edge

{vi,v;} € E(T) i > j (if any),

cur(v;) = 0 otherwise;

while 6§ < cq(v,) do

7 Find the least common ancestor v, of v,
and v,—y in T, and let P, (resp. P2) be the
path between v, and v, (resp. between v,

=]

and v,_y) in T} (a)
8 e:=min{Cap(e) |e € P, UP; }; (b)
9 f(e) := f(e) + € for each arc e € Py; (c)
10 f(e) := f(e) — ¢ for each arc e € Py; (d)
11 Cap(e) := Cap(e) — ¢ for each e € Py U Py; (e)
12 For each e = {v;,v;} j < ¢ where Cap(e)
becomes zero in operation (e), (f)
13 Output f(v;,v,);
14 Delete e from T,
15 If the list Eg({v1,--,vi=1},v;) has the
next element e’ = {vj,v;} of {v;,v;} then
16 Insert the edge ¢’ into T
17 cur(v;) := cur(v;) + cg(vjr, v5);
18 Cap(e') 1= cg(e');
19 end {if}
20 §:=06+¢ (8)
21 For each edge e = {v;,v;} j < ¢ that.is not
on P,
22 If cur(v;), > 6 then '
23 Cap(e) := cur(v;) — & (h1)
24 else then
25 while cur(v;) < é do (h2)
26 Let {vj,v;} be the edge in E(T)
with 7. < ;- . ‘
27 Output f(v],v,) .
28 Delete edge {v;j,v;} from T



29 If the list Eq({vy.---,vi—1},v;) has the
next element ¢’ = {v;/,v;} of {v;,v;}

then
30 Insert e’ in T
31 cur(v;) 1= cur(v;) + ca(vjr, vi);
32 If cur(v;) > 6 then
33 Cap(v;) = cur(v;) — 6 (i)
34 end {if}
35 end {if}
36 end; {while}

37 end; {while}
38 each e € E(T), output f(e);
39 end. {MAX-FLOW} o

The correctness of MAX-FLOW follows from the
fact that the algorithm computes flow f in the same
way of the proof Lemma 1. Let us analyze the run-
ning time.

We can construct Forest(G) in O(n) time
by picking up the first element in each list
Eg({v1,...,vi—1},v:), ¢ = 2,---,n which stores the
edges in the order of (4). The least common ances-
tor ve of v, and v,_y in Forest(G) and the mini-
mum weight in the path P between v,_; and v, can
be computed in O(n) time. We will never scan any
edge whose weight becomes zero once in the proce-
dure. We say that such edge is saturated. Since
one iteration of the outer while loop saturates at
least one edge, the total number of iterations of the
outer while loop is at most m. Hence (a)-(g) op-
erations take O(mn) time in the whole procedure.
Before operations (h1)(h2), we can scan all edges
and edge weights in the current T in O(n) time
in one iteration of the outer while loop. In opera-
tions (h1)(i), updating operation can be computed
in O(1) time per one edge. The number of edges
whose weights are updated in one iteration of the
outer while loop is O(n). Since the total number
of iterations of the outer while loop is at most m,
these operations take O(mn) time in the whole pro-
cedure. In operation (h2), deletion operation takes
O(1) time per one edge. When we have deleted edge
{vj,vi} j < i from T, we can scan the next element
of the edge list Eg({v1, --,v;—1},v;) in O(1) time.
Since we will never scan any edge that is deleted
once, this operation takes O(m) time in the whole
procedure. From above, MAX-FLOW computes a
maximum (vn—1,vn)-flow in O(mn) time.

Now let us reduce this time complexity to
O(mlogn). For this, we consider an efficient imple-
mentation of MAX-FLOW. If we look up all edges
in a path between v, and v,_y to find a (v,_1,v,)-
flow in Forest(G) in the while loop, each iteration
would take Q(n) time. To save this computation, we
represent Forest(G) in the dynamic tree structure
due to Sleator and Tarjan[13}, by which we can in-
crease all weights of edges in a path in a tree by the

same amount in O(logn) time. Based on this, each
of operations (a)-(g) can be carried out in O(logn)
time. Since edges that are deleted from T once in the
procedure will never be looked up again, we output
a flow f(e) for each e € E when e is deleted. When
we update the current 7' after we have obtained a
(vn-1,vn)-flow with value § in T, MAX-FLOW may
possibly scan one edge m times to update its weight
by operations (h1)(i), from which updating the cur-
rent forest may take O(m?) time in the whole proce-
dure (in fact, since at most n — 1 edges are updated
in one iteration of the outer while loop, this updating
operation takes O(mn) time). For this, we improve
MAX-FLOW as follows. We do not compute oper-
ations (h1)(i) in MAX-FLOW, and, for each edge
e = {v;,v;} j < ¢ in the current forest with the
current cur(v;) > §, we neither scan the edge e nor
update its edge weight except operation (e). That is,
the number of scanning edges except operations (a)-
(g) is at most one per one edge, since we scan edges
only by deletion operation. Then the edge set of the
current forest after each iteration of the outer while
loop in this improved algorithm is equal to the edge
set of that in MAX-FLOW, since operation (hl) im-
plies that each edge e = {v;,v;} j <1, =2,---,nal
ways satisfies the current cur(v;) > the current § and
cur(v;) — ca(vj,v;) < § in the improved algorithm.
Since the weight of each edge in the current forest in
this improved algorithm is at least the weight of that
in MAX-FLOW, the following argument holds:

suppose that we have obtained a (v,-1,v,)-
flow with value § after iterations of the
outer while loop,

the current forest D Forest(Gj).

That is, there is always a (v,_1,v,)-flow in the
current forest after each iteration of the outer while
loop until the degree of v,, becomes zero in the im-
proved algorithm, which implies that the correctness
of the improved algorithm has been proved.

Let us review the dynamic trees. Given a set of
rooted trees that are edge-disjoint each other and a
vertex weight, this structure supports the following
operations on a vertex v: )

AddPath(w, z): increase by z each of the weights
of all vertices (containing vertex w) on the path
from vertex w to the root such that T' contains
vertex w.

MinPath(w): return the minimum weight of the

vertex that is on the path P from vertex w to
the root of the tree T which contains w, and re-
turn the vertex closest to the root of T among
those achieving this minimum in P.

Cut(v,w): divide the tree containing vertices edge
{v,w} into two trees by deleting the edge {v; w}



from the tree.

Link(v,w): link two trees which contain vertices v
and w, respectively by adding edge {v,w} and
make vertex w the parent of vertex v.

Common(v, w): return the least common ancestor
of vertex v and vertex w in the tree that con-
tains v and w.

It is shown that any m of the above operations can be
carried out in O(mlogn) time in the dynamic trees
with n vertices [13].

We describe algorithm MAX-FLOW by using the
operations on dynamic trees. In preliminaries, we
introduce some notations. In the procedure we al-
ways look up a set of trees denoted by the current
T. Suppose that we have obtained a (vp-1,v,)-flow
with value 6 after some iterations of the outer while
loop. The current T is the same as Forest(Gs) ex-
cept edge weights. Define p(v) (v € V) the parent
of v in the current T. We use cur(v;) 1 = 2,---,n
as defined in MAX-FLOW. For each ¢ = 2,---,mn,
cap(v;) corresponds to Cap(v;,v;) in MAX-FLOW,
where edge {v;,v;} j < i is the edge of T'. For each
i = 2,---,n, F(v;) denotes a flow from v; to v; on
edge {v;,v;} € E(T) j < i. In the following proce-
dure, we consider a set of rooted trees and two types
of vertex weights (cap(), f()) on T. For each type
of weight, we prepare a distinct dynamic tree data
structure. Since the trees T are common to these two
types of weights, we simply denote each operation on
a type of weight without specifying the data struc-
ture which supports operations for the weight. For
example, we denote AddPath(v,;cap) if we compute
AddPath(v,,) with respect to cap().

The following algorithm MAX-FLOW on Dy-
namic Trees is outlined as follows. After ¢-th iter-
ation of the procedure, we assume that a (vn—1,vn)-
flow of G with value 6§ = €; + e + -+ + €; has
been obtained. Let T denote the current forest
C Forest(Gs). In the (i + 1)-th iteration of the pro-
cedure, we find a (v,-1,v,)-flow as follows. We find
the path P between v,_; and v, in the tree contain-
ing v,_; and v, in the T, and the minimum weight
€:41 on P. According to (5), we obtain a (vn—1,Un)-
flow with value § + €;4;. We then update the cur-
rent T to obtain the forest C Forest(Gsie,,,) as
follows. We decrease the weight of edges on P by
€i+1, and for each edge e = {v;,v} j < ! whose
value becomes zero, delete e from the current T,
and add the next element of the edge e in the list
Eg({v1, - ,vi-1,v}) (if any). We do not scan any
edgee = {vj,v} j < lin the current T where e is not
on P and the current cur(v;) > 6 + €;41. For each
e = {vj,v;} j <1in the current T where e is not on
P and the current cur(v;) < 8 + €541, we scan the
edge list Eg({v1,---,vi—1) in the order of (4) from

the current edge € to find edge ¢’ = {'ul 1,01} where
1 cg(vin 1) < 6+ €i41 and Eh-1 cg(vin, i) >
8 + €i41 and let the weight of €' cg(vyj,v). It
is clearly followed from the definitions of é-skeleton
and 6-skin that edge ¢’ is in Forest(Gsye,,,) and its
weight is at least the weight of the edge that corre-
sponds to e’ in Forest(Gsye,,,)-

Procedure MAX-FLOW on Dynamic Trees

Input: an edge-weighted undirected graph G =
(V, E,cg), an MA-ordering vy, - - -, vy, of all ver-
tices in G, the linked lists Eg({v1,- -, vi-1}, vi)
for all 7 = 2,---,7n and a directed graph G =
(V, E) defined as the proof of Lemma 1.

Output: a maximum flow f(e), ¢ € E from v,_,

to vy,.

1 begin

2 §:=0; f(e) := 0 for each arce € E;

3 Make one-vertex tree {v;} for each v; i =1,

e

4 Make a dynamic tree T to use the first
element of the list Eg({v1, -, vi-1},v:);
(That is, for each i 1 =2,---,n, if
First|[Eg({v1,-..,v:—1},v;)] # 0, Link(v;, u;)
for {u;,v;} = First[Eg({v1,...,vi-1}, 11,)] )

5  cur(v;) := cg(vi,p(v;)) for each 1=2,--,m

6 cap(v;) := cg(v;,p(v;)) for each ¢ = 2,--- . m;
cap(v1) = 005

7 F(v;):=0foreachi=2,---,n

8 while § < cg(vy,) do

9 v := Common(vn—1,vn); (a)
10 If p(v.) exists then

11 v’ := p(ve) and Cut(ve, p(ve));

12 end {if}

13 cap(v,) 1= oo;
14 € := min{MinPath(v,;cap), MinPath(v,_1;

cap)); (b)
15 AddPath(v,, &;F);
16 F(v) := F(ve) — € (c)
17 AddPath(v,_,, —&;F); F(v.) := F(v.) + ¢ (d)
18 AddPath(vy, —e;cap),

AddPath(v,_1, —&;cap); (e)

19 If v’ exists in (a) then
20 Link(v,,v') and cap(v.) = cg(ve, v );
21 end {if}

22 while MiuPath(vy,; cap) = 0 do (f1)
23 Let v; be a vertex that is found by
. MinPath(v,, cap);
24 f(p(vj),v)) i= F(v5);
25 Cut(vj,p(v5));
26 end; {while}
27 while MinPath(v,—1; cap) =0 do (f2)

28 Let v; be a vertex that is found
by MinPath(v,-1, cap);



29 F(o(v;),v;) 1= Fvy);

30 Cut(vj, p(v;));

31 end; {while}

32 For each v; that is found from these two
while loops, (3)
If the list Eg({vy,---,vj-1}.v;) has the next
element {u;,v;} then

33 Link(vj,u;);

34 cur(v;) = cur(vj) + cauj, v;);

35 cap(v;) := cg(u;,v;);

36 else then cap(v;) := oo;

37 §:=6+¢; (g)

38 while min{cur(v;) |:=2,---,n} < 6 do (h)

39 Let vy, be a vertex with cur(vy) =

min{cur(v;) |1 =2,---,n} < §

90 Fplon) ) = Flon)

41 Cut(vp, p(vh));

42 If the list Eg({v1, --,vn—1},vn) has the

next element {up, vy} then

43 Link(vp, un);

44 cur(vg) 1= cur(vp) + ca(un, vn);

45 cap(vr) = cg(un,vn);

46 else then cap(vy) := oo;

47 end; {while}

48 end; {while}

49
50 end. {MAX-FLOW on Dynamic Trees} O

- Lemma 2 Algorithm MAX-FLOW on Dynamic
Trees computes a mazimum flow between v,_1 and
v, in O(mlogn) time.

Proof: Since the correctness of Algorithm MAX-
FLOW on Dynamic Trees has been described, we
consider the time complexity of this algorithm. All
lists Eg({vy,-,vi—1}, ), ¢ = 1,---,n — 1 can be
obtained in O(m + nlogn) time.

Making the dynamic tree for an initial T takes
O(nlogn) time, since we can make T to call n — 1
times Link(,) by looking up the first element of the
list Eg({v1,---,vi-1},v;) foreach: (1 =1,---,n—1).

We next consider the complexity in the outer while
loop. Note that once the current cap(v;) becomes
zero by AddPath(, ; cap) operation, or when “the cur-
rent cur(v;) < the current §” holds, we do not have
to look up the edge (v;,p(v;)) later. Since one itera-
tion of the outer while loop clearly saturates at least
one edge, the number of repetition is at most m.

Each of operations (a)-(e) and (g) takes O(logn)
time since any of these operation can be carried out
by performing at most nine tree operations. There-
fore these operations takes O{mlogn) time in the
entire algorithm.

Now consider operations (f1), (£2), (£3), and (h),
we will show that each operation takes O(logn) time.
We store cur(v;) (j = 2,---,n) in the heap, by which

f(e) := F(v;) for each e = (vi,v;) € E(T) i < j;

finding a vertex for min{cur(v;) | i = 2,---,n} < 8
in operation (h) takes O(1) time, and updating a
cur(vj) can be done in O(logn) time. Then each
of operations (f1)-(f3) and (h) consists of at most
one tree operation and the update of cur(:), but
both one tree operation and updating cur(-) takes
O(logn) time. Since any edge that is saturated once
will never be looked up later, these operations are
computed O(m) times. Therefore these operations
takes O(mlogn) time in the total iterations.

From above, the entire algorithm takes O(mlogn)
time. o]

Theorem 1 For the vertices v,_; and v, in
Lemma 1, a mazimum (vn,_1,v,)-flow can be com-
puted in O(mlogn) time. a

It is known [11] that there is a directed acyclic
graph DAG,; that represents for all minimum cuts
(not necessarily global minimum cuts) separating s
and t can be obtained in O(m +n) time from a given
maximum (s,t)-low. Hence, based on a maximum
(vn-1,v) flow, we can find all other minimum cuts
separating v,-1 and v, in O{mlogn) time.

Furthermore, it is known that there is a cac-
tus I'(G) that represents all global minimum cuts
in G, and that such a cactus representation I'(G)
can be found in O(nm + n - TDAG,;) time [8],
where TDAG,; denotes the time required to com-
pute the DAG,; for the minimum cuts separat-
ing some two vertices s and t (s and t are not
necessarily specified in advance). Therefore, since
the DAG,, for some s and ¢ can be computed in
O(mlogn) time, we can compute a cactus represen-
tation I'(G) in O(nmlogn) time, although a slightly
faster O(nm log(n%/m)) time algorithm based on the
maximum flow algorithm is known for constructing
a cactus representation [5].

From Lemma 1 and the property that the original
MA-ordering remains an MA-ordering in k-skeleton
and k-skin, we also observe the next.

Remark 1 For a graph G = (V,E,cg), an MA-
ordering vy,vz2,...,%, in G and a real k with 0 <
k < cg(va), a pair of k-skeleton G and k-skin Gr
of G satisfy Ag, (Vp-1,v) = k and A -(-;-k(vn_l,v,,) =
ca(vn) — k. [m}

Remark 1 plays a crucial role in designing an effi-
cient algorithm for computing the edge-connectivity
function Ag(k) of a graph G [9], where Ag(k) is
defined to be the smallest total amount of weights
added to make G k-edge-connected.
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