7o T Y X A 552
(1997. 1. 23)

An Adaptive Distributed Fault-Tolerant Routing Algorithm for
the Star Graph
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This paper presents an adaptive distributed fault-tolerant routing algorithm for the n-star graph. Based
on the local failure information and the properties of the star graph, the algorithm can make routing
decisions without deadlock and livelock. After faults are encountered, the algorithm routes messages to a
given destination by finding a fault-free n — l-star graph. As long as the number f of faults (node faults
and/or edge faults) is less than the degree n — 1 of the n-star graph, the algorithm can adaptively find a
path of length at most d + 6f to route messages from a source to a destination, where d is the distance
between source and destination.
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1 Introduction

With the advent of massively parallel computers, it has become highly desirable to construct the intercon-
nection network that has as many nodes as possible within a given degree and diameter. The hypercube
has been drawn considerable attention from both academic and industrial communities. The star graph
in [1] claims to possess topological superiority over the hypercube. Similar to the hypercube, the star
graph possesses rich recursive structure, symmetrical properties and simple routing on the fault-free star
graph. In addition, it has a smaller diameter. and degree, and a lower average diameter for a given size
than the hypercube.

Fault-tolerant routing problems have been studied for different interconnection networks. The prob-
lems with different fault models have been studied for the hypercube in [5],[9],[13],[14]. Fault tolerance of
the star graph was discussed in [1],[7],[12]. Given a set of at most n — 2 faulty nodes, node-to-node and
set-to-set fault tolerant routing algorithms for the star graph have been presented in {5],[6]. Only based
on local failure information, fault-tolerant routing algorithms for the star graph have been described
subject to faulty edges in [3], [4]. The shortcoming of the algorithms listed above for the star graph is
that all these algorithms are only subject to faulty nodes or faulty edges. When the types of faults are
unknown, these algorithms cannot insure routing success. Therefore, it is necessary to develop routing
algorithms which can tolerate node faults and/or edge faults for the star graph.

In this paper, we present an adaptive distributed fault-tolerant routing algorithm without any dead-
lock and livelock for the star graph. A special property of the star graph, which is not possessed by the
hypercube, is that the number of copies of n — 1-star graph that makes up the n-star graph is larger than
n — 1 that is the fault tolerance of the n-star graph. We use this property together with the local failure
information to develop a fault-tolerant routing algorithm that can route messages to a given destination
by finding a fault-free n — l-star graph. It is not necessary to judge types of faults when faults are
encountered. The algorithm can tolerate at most n — 2 faults (node faults and/or edge faults) to route
messages successfully for an n-star graph.



2 Preliminaries

Let V denote the set of n! permutation of symbols
{1,2,...,mn}. An n-star graph interconnection net-

work on n symbols, denoted by S,, = (V, E), is an 1234 4231
undirected graph with n! nodes. The nodes of S, 3214 2134 3241 2431
are in a 1-1 correspondence with the permutation Ss(4) Sa(1)

P = p1p2...pn of < n >= {1,2,..,n}. Two nodes 2314 3124 2341 3421
of S, are connected by an edge if and only if the 1324 4321
permutation of one node can be obtained from the

other by interchanging the first symbol p; with the

ith symbol p;, 2 < i < n. Obviously, every node has

n—1 incident edges, corresponding with n — 1 sym- 3412 2413

bols which the symbol in the first position can be 3312 1432 4213 1423
interchanged with. Thus, S, is a regular graph of Si:(2) Si(3)
degree n — 1 and is (n — 1)-connected. S, possesses

a number of properties that are desired by inter- 1342 142 4132 1243 s1es 4123

connection networks. These include node and edge
symmetric, maximal fault tolerance, and strong re-
silience. S, has a high recursive structure, and is Fig.l: The 4-star graph viewed as four 3-star
made up of n copies of n — 1-star graph. graphs.

Definition 1 Given a node t in S, Sn~1(t;) denotes an n — 1-star graph induced by all the nodes with
the same last symbolt;, t; e<n >, and S, = {Sn_1(t:)|1 <i < n}.

Definition 2 For a node z in S,, z(') denotes the node that is oblained by interchanging the first symbol
with the ith symbol, specially z(1) = z. Given a nodet in S, £%) for 1 < j < n denoles the node that is
obtained by interchanging the first symbol with the symbolt;, specially z(#) = g, 2049 denotes the node
that is obtained by interchanging the first symbol with the ith symbol of z(*), and z(:%) denotes the node
that is obtained by interchanging the first symbol with the symbol t; of (5,

Example 1: Let ¢ = 12345 and z = 54231. Then, z® = 24531, z(*) = 34251, z(**®) = 24351 and
z(3:t3) = 34521.

Now, we show some topological properties of S, that are important in this paper. Let d(z,y) denote
the distance of two nodes z and y. Let (;¢;) be an operator such that z(tit;) = z(3;1;) = z1..45..4i..2n
for z = zy...4;..;...x,, where z(t;t;) = z if i = j. We use the operator (Z;t;) to define a function that
can show an image relation from a node in S,,_;(¢;) to a corresponding node in S,_;(;).

Definition 3 ¢;; : 2 — ¢ij(z), 1 <i<n and 1 < j < n, is an image function, and p;;(z) is called the
image node of z. For a given node t, p;;(z) is given by:

pi(z) =z if i=j
() = J Pi(z) = z(tts) if j=1,2<i<n
#ile) = ¢15(z) = z(t1ty) if i=1,2<j<n
pij(z) = z(tit;)(tats) if 2Lj#i<n

Lemma 1 Letz be in Sp—1(k), then pii(z) is in Sa_i(t;) and d(z, 1)) = d(pij(z),1(5™).

Proof. Let z = z;...1;, since

zy..4 = 2.1 if i=j
(z) _ 21...!1...i,'(tlt.') =zy..15..0 if 7=1,2<i<n
¥ij - zl...tj...tl(htj) =z;..h..4; if i=1,2<j3j<n °’
.’cx...il..ij...t;(t.'tj)(‘l,-tl) =z..4i..2..0 if 2<j#i<n
@ij is in Sp—1(t;). When z = ¢(t™),
$(tin) = 4(t;5m) if i=j
o (1)) = tn.tidi(titi) = €00 if j=12<i<n
tn.dj i (thty) = ttn) if i=1,2<j<n
Loyttt (taty) =t5m) if 2<j#i<n



Based on node and edge symmetric of the star graph, d(z,1(*™)) = d(p;; (), ™). o
Example 2. As shown in Fig.1, let ¢t = 1234. 2.1: Let £ = 1324, then 4, (1324) = 1324(41) = 4321.
d(4321, 8114 = 4231) = d(1324,1 = 1234) = 3. 2.2: Let z = 3412, then ¢33(3412) = 3412(23)(21) =
1423. d(1423,t(=%) = 4213) = d(3412,1(*»%) = 4132) = 2.

Lemma 2 Given a node t, let 2, = t; and y = ¢;;(z), then d(z,y)) < 2 and z(" is in the shortest
path from z to y when zy =1;, and 3 < d(z,y) < 4 and z(5™) is in the shortest path from z 1o y when
Iy # tj.

Proof. 1t is clear that d(z,y) = 0 when i = j. When z; = t;, z(™) is in the shortest path from z to y if
d(z(™,y) = d(z,y)—1. When z; # t;, (') is in the shortest path from z to y if d(z(t™), y) = d(z, y)—2.
We prove Lemma 2 for ¢ # j in three cases.

Case 1. z = z(tn) = £1Z2..0n isin Sn_1(tn):

L.1. y = pn1(z) = z(t12n): When 2y =11, 2 = t;..1, and y = z(t1¢,) = ,...f1. Then, d(z(""‘), y) =
d(z(™,y) = 0 and d(z,y) = 1. When z; # &}, z = z;.41..4p. y = z(tt,) = zy..t,..41. Then,
d(z(**™) y) = 1 and d(z,y) = 3.

1.2. y = pnj(z) = zgtjtﬂ)(tlt,.), 2<j<n—1: Whenzy =tj,z=1;.t..1, and y = z(t;1,,)(t1tn) =
ty..4n..45. Then, d(z(t™) y) = d(z(,y) = 1 and d(z,y) = 2. Whenz; #¢; andi < j,z = zy. byt
and y = z(tjtn)(t1n) = Z1...4n...1..2j. Then, d(z(5") ) = 2 and d(z, y) = 4. Similarly, d(z(t"), y) = 2
and d(z,y) =4 when i > j.

Case 2. z = z(l1) = 21Z5..0; isin S,_y (1) and y = py;(z) = z(11¢;), 2 < j < n:

When z; = tj, 2 = t;..t; and y = z(t:tj) = t1..4;. Then, d(z(5™),y) = d(z(™,y) = 1 and
d(z,y) = 1. When z; # tj, 2 = z;..4;..4; and y = z(t1t;) = z;..t;..4;. Then, d(z(t™) y) = 1 and
d(z,y) =3.

Case 3. z = z(t;) = z1z9..4 isin Sp_1 (), 2< i< n:

3.1. y=pi(z) = z(t1;), 2 <i < n: When 2y = ¢, z = t;..4; and y = z(t11;) = #,..t;. Then,
d(z("™) y) = d(z(™,y) = 0 and d(z,y) =1. When =1 # ¢, ¢ = z1...4;...t; and y = z(tyt;) = zy.. 4. 11
Then, d(z(**),y) = 1 and d(z,y) = 3. .

3.1, y = pii(z) = z(tit;)(it1), 2 < i# j < m: When z; =, T = t;..81..4. y = z(tit;)(tits) =
tyodity, d(z0™) g) = d(z™,y) = 1 and d(z,y) = 2. When z; # ¢, z = zy..4;..4.4. y =
z(t,-tj)(t,'tl) = zy.. 4y 4.0 d(z(t™),y) = 2 and d(z,y) = 4. 0

Lemma 3 There is at least one shortest path from x to t that passes through the nodes only in S,_;(z,)
and Sn_1(ts)-

Lemma 4 Let z and t be two nodes in Sy, then d(z,1*~™) < d(z,t).

Proof. Without loss of generality, assume t = 12..n. If z,, = n, d(z,t~")) = d(z,t) since &~ = ¢, If
Zn =t #n, zis in Sp_1(é), From Lemma 3, there is one shortest path through the nodes only in S,_1(%)

and Sn—1(n). As shown in Fig.2, let y(n) = z(i)(

and y(5) = pni(y(n)). According to Lemma 2, o
z(i) = y(n)(" is in the shortest path from y(n) to o S
y(i). Based on Lemma 1, d(y(1), (™) = d(y(n), ). (i) - - ,"(”_!(“)'"
Since y(n)1 = y()a, d(y(i),y(n)) < 2 according AL
to Lemma 2. From d(z(i),y(i)) = d(y(i), y(n)) —
d(z(3),y(m)), d(z(0),¥()) < d(z(i),(n)). From et
d(z,t6™) < d(z, 2()+d(2(3), 9 (i) + d(y(5), 10),

then d((:y,t("")) < d(z,z(i)) + d(z(i),y(n)) + Fig.2: The shortest path through the nodes in
d(y(i), 1¢™) = d(z, 1). O Sp-1(f) and S,_1(n).

x
Sn-1(i)

3 Fault-Tolerant Routing Algorithm for S,

In this section, we not only present an adaptive distributed fault-tolerant routing algorithm, but prove
its correctness, and analyze its properties. We make the following assumptions:

A fault can be a node fault and/or an edge fault. If a node is faulty, all the edges incident to it are
treated as faulty edges. Each edge is bidirectional. If an edge is faulty, both directions are faulty. The
total number of faults is less than degree n — 1 of S,. Any node only knows the condition of its incident
edges. The source and the destination are fault-free.



3.1 Routing Algorithm for S,

Since the total number of faults is less than degree n — 1 of Sp,, there are at least two fault-free n — 1-star
graphs in {Sn_1(%:)]1 < i < n}. Given a destination node 2, there is at least a fault-free adjacent node of
t, which is in or is adjacent to a fault-free S,,_1(%), 1 < ¢ < n. Let F denote the set of the invalid nodes
that is treated as the faulty nodes. When a node z encounters a faulty edge, F is updated as follows.

1. For2<i<n, F:= FUz®) if (=) £ ¢ and (z,z(9)) is faulty.
2. For2<i<n, F:i= FUzif 2(*) =t and (z,z(*9)) is faulty.

Let S denote the set of invalid n — 1-star graphs that is treated as the faulty subgraphé. It is updated
as follows.

1. Foranyz € F, S := SUS(z,) if z ¢ {t®)2<i<n~1}.
2. Foranyz € F, S:=SUS(z,)US(zy) ifzr € N2 <i<n—1}.

Let FT-procedure be a function for performing the fault-tolerant procedure. The node z in the
course of FT-procedure updates F' and S based on local failure information, and decides a node 2z with
z ¢ F that is in or is incident to some S,,_; € S, or returns the node (") if the edge (z,1) is faulty and
each valid adjacent node of z with z € {t{*)|2 < i < n — 1} is not directly connected to Sp,—1 ¢ S.

function FT-procedure (z,t: node; var F: the set of invalid nodes;
] var S: the set of invalid n — 1-star graphs): node;
var i,n : integer; y: node; /* t;,z;,y;: symbol of t, z, y */
begin
/* z is the node that is ready to send M, t is the destination node */
for i := 2 to n do begin /* update F */
if 2(*/) = t and (z,z(%?)) is faulty then F := F Uz;
if (=) £ ¢ and (z,2(*))) is faulty then F := F U z(=?)
end,; .
for any y € F do begin /* update S */
ify ¢ (t()]2<i<n—1} then §:=SUS,_1(3n);
ifye {tt)2<i<n—1} then S:=SUS(y)US(1)
end;
/* to decide z ¢ F that is in or is incident to a Sp_1 (%) ¢ S */
if Su_1(zn) ¢ S then return (z);
if S,_1(z1) ¢ S then return (z(*+));
for i := 2 ton — 1 do begin
if Sp_1(zi) ¢ S and (z,z(*9)) is non-faulty then return (z(*:))
end;
return(z(™))
end;

Following two rules described in [1] that insure a path of minimum distance between two nodes, it
is easy to develop an optimal routing algorithm for a fault-free S,,. Let ROUTING(z,1) be a routing
function that decides the adjacent node of z, which is in the shortest path from z to ¢ for the fault-free
Sp, and let ROUTING(z,#(*")) be a routing function that decides the adjacent node of z, which is
in the shortest path from z to {(*i") for the fault-free S,_1(z;), 1 < i < n. Based on FT-procedure,
ROUTING(z,t) and ROUTING(z,1(*#™)), we present a routing algorithm called FT_ROUTING
that can tolerate at most n — 2 faults. Let M = {messages,t, F, S} denote a sending request. By
FT_ROUTING, a node z that possesses M determines a proper node z for routing the messages based
on the following routing rules:

Rule 1. z is an adjacent node of ¢: If the edge (z,t) is non-faulty, M is sent to ¢. Otherwise, z sends
M to the node decided by FT-procedure.

Rule 2. z € {tti™2<i<n-1}: If .i(") ¢ F and the edge (z,z(™) is non-faulty, M is sent to z(").
Otherwise, z sends M to the node decided by FT-procedure.’

Rule 3. z is not an adjacent node of £ and z ¢ {2 < i< n—1}:



3.1. S = 0: If the edge (z,7) is non-faulty, where z is decided by ROUTING(z,t), M is sent to
z. Otherwise, z sends M to the node decided by FT-procedure if z itself is not the node
decided by FT-procedure. If z is the node decided by FT-procedure, go to 3.2.1.

3.2. S#£0:

3.2.1. Sp-1(2a) ¢ S: If the edge (z,z) is non-faulty, where z is the node decided by
ROUTING(z,#=™), M are sent to z. Otherwise, the edge (z,z) is faulty, z sends
M to the node decided by FT-procedure.

3.2.2. If Sn-1(2n) € S, z sends M to the node decided by FT-procedure.

Algorithm FT_ROUTING;
Input: A sending request M.
Output: A node z to which a sending request M is sent.
var i,n :integer; z,t,y, z: node; /* t;,z;: symbol of ¢, z /*
var F': the set of invalid nodes; S: the set of invalid n — 1-star graphs;
begin
/* z is the node that is ready to send M, z is the node to which M is sent */
if z € {t(*)]2 < i < n} then begin /* Rule 1 */
for i := 2 to n do begin
if (z,1) is non-faulty then begin z := {; goto SENDING end
else begin z := FT-procedure(z,t, F,S); goto SENDING end
end
end; /* Rule 1 */
if z € {t(t#")]|2 < i < n — 1} then begin /* Rule 2 */
for i := 2 to n — 1 do begin
if () ¢ F and (z,1(*")) is non-faulty then begin z := t(*); goto SENDING end
else begin z := FT-procedure(z,t, F, S); goto SENDING end
end
end; /* Rule 2 */
/* begin Rule 3 */
if S = @ then begin y := ROUTING(z,t); /* Rule 3.1 ¥/
if (z,9) is non-faulty then begin z := y; goto SENDING end
else begin z := FT-procedure(z,t, F, S);
if r # z then goto SENDING [*if z = z, Rule 3.2.1 */
end
end; /* Rule 3.1 */
if S # 0 then begin /* Rule 3.2 ¥/
if Si_1(zn) ¢ S then begin y := ROUTING(z,t=*™); /* Rule 3.2.1 */
if (z,y) is non-faulty then begin z := y; goto SENDING end
else begin z := FT-procedure(z,t, F,S); goto SENDING end
end; /* Rule 3.2.1 */
if Sp_1(zs) € S then z := FT-procedure(z,t, F,S) /* Rule 3.2.2 */
end /* Rule 3.2 */ '
/* end Rule 3 */
SENDING: if z # t then send M to z /* if z is not t, route M from z to ¢ */
end;

3.2 Performance Analysis of FT_ ROUTING

Given a destination ¢, each of its adjacent nodes can solely determine a Sn_1(t;) of Sy, and the number
of Su_1(t:), 1 <i < n—1,is equal to n — 1 that is the fault tolerance of S,. This special property of
the star graph is the basis for us to develop FT_ROUTING. By updating F and § dynamically, the
algorithm needs not to judge that faults are node faults or edge faults and can get necessary information
for finding a S,—1 ¢ S. At a time, each node in routing sends messages to one node only. Messages are
always routed to the destination ¢ through a S,_; ¢ S and an adjacent node of ¢ that is not in F.

Let & be a source, and let f < n—2 denote the number of faults in S,. We give and prove the lemmas
about FT-procedure, ROUTING(z,t) and ROUTING(z,1(=~")).



Lemma 5 For Sy, |F|<n—-2and |S|<n—1 If|S|=n—1, then |Fj=n—2.
Lemma 6 FT-procedure can always find a Su_1 ¢S if f<n—21in S,.

Proof. Without loss of generality, assume n > 3. Firstly, we prove Lemma 6 in the special case: The
edge (z,1) is faulty and each valid adjacent node of z with z € {t(*)|2 < i < n — 1} is not directly
connected to S,_; ¢ S. We prove that the edge (z, 2(")) is non-faulty and there are no faults in Sn-1(z1)
by contradiction. Assume that the edge (z,z(")) is faulty. Since |F| = n — 2 before the faulty edge
(z,2(™) is encountered, f = |F|+1=mn—1in contradiction with f < n — 2. Similarly, we can prove by
contradiction that there are no faults in S,-1(z;). Since z € F for (™), z(® cannot send M to z and
must process FT-procedure. From Lemma 5, there is at least a node y ¢ F incident to the non-faulty
edge (z("),y), where y is directly connected to S,—1(y1) ¢ S. Since n — 2 faults have been encountered,
the edge from y to Sn_;(y1) is non-faulty. FT-procedure can always find a S,_1 ¢ S.

We prove Lemma 6 by induction. It is clear that Lemma 6 is correct when there is only a fault in
Sn. Assume Lemma 6 is correct when there are k(< n — 3) faults in S,. It shows that FT-procedure
can find a node that is directly connected to a S,_y ¢ S after k faults are encountered. When f = k+1,
let z be the node that receives M after k faults are encountered, then |F| = k and |S| < k+ 1 in M.
If z encounters (k + 1)th faults, |F} = k+1 < n -~ 2 and S| € k+1 < n—1. If the condition of the
special case is satisfied in z, Lemma 6 holds as shown in the proof in the special case. Otherwise, since
|[Fl=k+1<n-2and|S|<k+1<n-—1, there is at least an non-faulty edge (z, (")) incident to z,
where z(*%) is directly connected to Sn—1(z;) ¢ S. Since k + 1 faults have been encountered before M is
sent to z(*:), the edge (2(*:), z(#i:")} is non-faulty. FT-procedure can always find a Sp_; ¢SimS, O

Lemma 7 ROUTING(z,t) is optimal before encountering faults in S,,.
Lemma 8 ROUTING(z,t(=~")) is optimal before encountering faulls in S(zn).

Now, we prove FT_ROUTING, analyze its properties, and give the length of the path that is decided
by FT_ ROUTING as well as the message complexity of FT_ROUTING.

Theorem 1 FT_ROUTING can adaptively find a fault-free path to route messages from a source s to
a destination t in S,, with less than n — 2 faulls.

Corollary 1 FT_ROUTING is deadlock-free and livelock-free.

For convenience, we call a pair of sending and receiving a step, and denote the length of path by the
number of steps here.

Theorem 2 FT_ROUTING can take at most d(s,t) + 6f steps to route messages from a source s to
a destination t in S, with f faulls.

Proof. Let z, y and z be the nodes in the course of FT_ROUTING, and let extra denote the number
of the extra steps induced by faults. When z in S,_;(%;) encounters faults, it always tries to send
M to (™) in S,_y1(t;) ¢ S, where (") = z() jf t; = z;. Since d(p;j(z), 1) = d(z,ttm))
and d(z(t) ¢(tin)) < dEz('i'"),w,-j(z)) + d(ij(z), t(*™)) based on Lemma 1 and 2, d(z("™), (7)) <
d(:('f"‘),cp;j(z)) + d(z,t")).  Assume that the edge (z("s),z(}/™)) is non-faulty and faults are not
encountered in S,_1({;). Let 2’ be a node in the shortest path from z(:") to t(*5") and d(z/,1(t")) =
d(pij(z), 1)), then it takes at most d(z,z(*3™)) + d(z(*s™), z') ‘steps to send M from z to z’ based on
Lemma 1, 2 and 8. Since d(z(%"™),z") < d(z(t™), y5(2)), d(z,z(t™) + d(z(t5), 2') < d(z,z(t™)) +
d(z(t5), y5(2)) = d(z, ©ij(z)). It shows that it takes at most d(z, ¢i;(z)) steps tosend M to z’. Without
loss of generality, assume that z’' = ;;(z) in the course of FT_ROUTING. We prove ezira < 6f in
three cases: '

Case 1: z is an adjacent node of ¢ except t(*»), i, z € {t(*)|2 < i< n—1}.
Case 2: 7 is a destination node of Sp_1(#;) except t,ie., z € {{(i™|2<i<n—1}.

Case 3: z is a node except the nodes in case 1 and 2.



Let f; denote the number of faults that are encountered after M is sent to some node that belongs
to case 1, and let f; denote the number of faults that are encountered after M is sent to some node
that belongs to case 2 and before M is sent to some node that belongs to case 1, and let fa denote the
number of faults that are encountered before M is sent to some node that belongs to case 2. Then,
f=h+Ffi+fs

Case 1. We prove it by induction. Assume f; = fa=0. When f=1,let z = ('), 2<i<n—1,
and the edge (z,t) be faulty. FT_ROUTING takes 4 steps to route M from z to ,;(z) in S,_,(t;) ¢ S
based on Lemma 2, 6 and 8, and 1 steps from ,;(z) to t(3») based on Lemma 1 and 8, and 1 step from
185m) o ¢(85), Since d(t(*3), 1) = d((*),1), FT_ROUTING takes 6 extra steps to complete routing.

When f = f; — 1 < n — 4, assume that FT_ROUTING takes 6(f; — 1) extra steps to route M
to t(’) ¢ F. It means that M can be routed to a node y = ¢(*) in 6(f; — 2) extra steps. When the
faulty edge (y,t) that is the (fi — 1)th fault is encountered in y, M is routed in 6 steps from y to 1)
through S,_1(tx) ¢ S. Let y*, y? and y° be in the path from y to ni(y), and let y°y'y?y y*y®y® denote
the path from y to ¢(**) as shown in Fig.3, where 1° = y, y* = ni(y), v° = t0*™), and 3§ = ().
FT_ROUTING can take m steps to route M from y to y™.

Fig.3 shows the routing procedure from y to
y™, and from y™ to its image node in a fault-free
Sn-1(ta), 1 € a < n —1, as well as from this im-
age node to t(t=") and from t(*=") to {. When
the fith fault is encountered in y™, M is routed
to t through a fault-free Sp_1(ta). Let @ga(y™) be
the image node of y™ in Su-1(ts), where 8 = n
fm =0,1or6and g =Fkif2<m <5
Then, extra = 6(f; — 2) + m + d(y™, psa(¥™)) +
d(ppa(y™), 1) + 1 based on Lemma 1, 2, 6 and
8, where d(y™, psa(y™)) < 4 from Lemma 2. When
0 <m < 1,since y™ is in S,-1(t,) and d(y™,t) =
1 +m S 2, d(wna(ym)’t(t;,,n)) = d(ymyt) S 2 from
Lemma 1. Therefore, extra < 6(f; —1) +2 < 6f;.

When 2 < m < 5, since m + d(pa(y™), 1(0=™) = S~
m+d(y™, y®) =5, extra < 6(f — 1) +4 < 6f;. It Sa-1(k) Sn-1 Sn-1

is clear that extra = 6f; when m = 6. For any y™, Fig.3: The fault-tolerant routing procedure of
0<m<6,extra<6fy. FT_ROUTING.

When y = t(5) with j # 1 sends M to y(") = tn..ty..t5in Sp_1(tj), f=n—2. Ifonly Sa_1(t1) ¢ S,
y(™ sends M to z = y("") = ¢;..4,..4; in Sp_1(¢;), and z sends M to 2() = 454,41 in Sa_y(t1). By
ROUTING(2™, (™), 2(t5) sends M to t(") = 2(4") = t,..4;..4;. It takes 4 steps from t(*s) to ¢("), and
extra =6(n—3)+4=6f—2. If Sy,_1(t1) U Sn—1(ts) € S with a # 1 in y, there are at least two faulty
edges incident to y, which have been not encountered before M is sent to y. It shows that |F| <n —4
when y received M and M was sent to y in at most 6(n —4) steps. Since it takes one step from y to y™
and 5 steps from y(™) to #{t=") ¢ F through S._1(t«) ¢ S, eztra = 6(n — 3) < 6f. Thus, Theorem 2
holds in case 1. : ‘

Case 2. Similarly, we can prove case 2 by induction. Assume f; = f3 = 0. When f = 1, let
z = () and the edge (t("'"),t("')) is faulty. By FT-procedure, Sn-1(z1) U Sn-1(zn) € S, where
Sn-1(21) = Sa-1(tn) and Sp_1(zn) = Sn-1(ti) since z; =1, and z,, = t;. Let M besent to S,_y(t;) ¢ S.
Based on Lemma 2, it takes at most 4 steps for z to route M to ¢(4:™), When z = #(t#") = 1(") . we can
prove that it takes 4 steps from £(1:") = ("} to #(t/™) for j # 1. It is just the reverse procedure from
(13" to t(") as shown in the proof of case 1. Assume that it can take 4(f2 — 1) extra steps to route M to
t when f = f, — 1. As same as the proof of case 1, eztra = 4f; when f = fo. When f; # 0 and fa =0,
extra = 6f; + 4f2 < 6f. Theorem 2 holds in case 2.

Case 3. Let length denote the length of the path from s to ¢, which is decided by FT_ROUTING.
Assume f; = fy = 0. When f = 1, only one of S,-1(z1) and S,—1(2z,) is in S. Let z be in S(¢;), and
let M be sent to Sn—1(¢;) £ S. Let y = pi;j(z), then Sp_1(yn) = Sn-1(z1) if yn = 21 or Sa-1(¥n) =
Sn-1(zn) if yn = z,. Based on Lemma 2 and 8, it takes at most 2 steps to route M from z to y in
Sn-1(ya) = Sn-—lgtj)- Therefore, length = d(s,z) + d(z,y) + d(y,t*™) + 2. Since d(z,y) < 2 and
d(s,z) + d(y, #t5m)) = d(s, z) + d(z,t(*+n)) < d(s,t) based on Lemma 1 and 4, length < d(s,t) +4. It



is easy to prove by induction that length < d(s,t) + 4f3. So, eztra < 4fa. When f; # 0 and fo # 0
extra < 6f; +4f2 + 4fs < 6f. Theorem 2 holds in case 3.

Corollary 2 FT_ROUTING is optimal if no faulls are encountered in routing.

Corollary 3 The number of M iransmitted from s to t in the course of FT_ROUTING is less than or
equal to d(s,t) + 6f in S, with f faulls.

4 Conclusions

In this paper, we presented an adaptive distributed fault-tolerant routing algorithm without deadlock and
livelock for the star graph. It is simple and easy for implementation. The message header only needs to
be updated when faults are encountered. The upper bound of the message header is 2n — 2 for the n-star
graph. This algorithm can always route messages to a given destination by finding a fault-free n — 1-star
graph based on the local failure information- and the topological property of the star graph. Thus, it
insure that the routing procedure is deadlock-free and livelock-free. If there are f < n — 2 faults(node
faults and/or edge faults) in the n-star graph, it-can find a path of length at most d(s,t) + 6f to route
messages from a source s to a destination t.
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