7O I YU X A 69-6
(1999. 9. 2)

SRMEHEEITRENT VT XL (DCGA) :

B OBHE I BT B HERE
FTEEREL
MERE EWER BRI AT LEE

BE: BENTILITIXLAORRBEICBNT., @NRFTHEERICEEAERNTHEDEE®EI- T
ET30IE, EHOBEFHOBIRZREZEFTILENSS, TOLORBELERTS
. DCGA (Diversity-Control-oriented Genetic Algorithm) &IERH L WEBHH T I TY XAFREL -,
DCGA Tid. KADOEET, BEERLEFHESDEEMN S, BROEREOEE S ERORE
EEONI > TBEEICE D W BREREA N TRIRE NS, BRTIE. AL TWSFEOEES
RYEBRERICDWTHRE Uiz, FHE T, DCGA DEKEELICRIT2MLEE, N Fv—r R
KOWTOERICEDBRFEL TWD, 1To72KBOHEA TIX. DCGA ZBNAEEETL. BEOHE
TREINTVUBENRFREEFL> 50 EEX 505,

A Diversity-Control-Oriented Genetic Algorithm (DCGA) :
Performance in Function Optimization

Hisashi Shimodaira
Department of Information and Communication, Bunkyo University

Abstract: In genetic algorithms, in order to attain the global optimum without getting stuck at a local optimum, an
appropriate diversity of structures in the population needs to be maintained. I have proposed a new genetic algorithm
called DCGA (Diversity-Control-oriented Genetic Algorithm) to attain this goal. In DCGA, the structures of the
population in the next generation are selected from the merged population of parents and their offspring on the basis
of a selection probability, which is calculated by using a hamming distance between a candidate structure and the
structure with the best fitness value. In the previous papers, the effectiveness of DCGA has been shown by some
experiments. In this paper, the performance of DCGA in function optimization is examined by experiments on
benchmark problems. Within the range of my experiments, DCGA showed superior performances and it seems to be
a promising competitor of previously proposed algorithms.

1. Introduction process that can select and keep different structures in

the population and those for genetic operators (mutation

Genetic algorithms (GAs) are a promising means for
function optimization. One problem plaguing traditional
genetic algorithms is convergence to a local optimum.
The genetic search process converges when the struc-
tures in the population are identical, or nearly so. Once
this occurs, the crossover operator ceases to produce
new structures, and the population stops evolving, Un-
fortunately, this often occurs before the true global opti-
mum has been found. This behavior is called premature
convergence. The intuitive reason for premature conver-

gence is that the structures in the population are too alike.

This realization suggests that one method for preventing
premature convergence is to ensure that the different
members of the population are different, that is, to
maintain the diversity of structures in the population [1].

Various methods for maintaining the diversity of
structures in the population have been proposed to im-
prove the performance of genetic algorithms. These are
classified- into two groups: methods for the selection

and crossover) that can produce different offspring.
Major ones of the former are Mauldin's method [1] in
which a new structure is checked whether it differs from
every other structure in the population on the basis of the
Hamming distance, Goldberg's sharing function method
[2] in which a potential fitness is modified by the shar-
ing function value that is calculated on the basis of the
distance between each structure, and Mahfoud's deter-
ministic crowding method [3] in which the selection is
performed between two parents and their offspring on
the based of the phenotypic similarity measure. Major
ones of the latter are Eshelman's CHC [4, 5] that em-
ploys a highly disruptive uniform crossover (HUX) and
the population-elitist selection (PES) method, Srinivas's
AGA [6] in which the probabilities of crossover and
mutation are varied depending on the fitness value of the
structure, Shimodaira's GALME [7, 8] that employs a
large mutation rate controlled by a decreasing function
of generation and the PES method, Sefrioui's distance-

dependent mutation [9] whose rate is changed dynami-
cally depending on the distance between the individuals
that are crossed, and Yang's CGA [10] that uses family
competition and decreasing-based Gaussian mutation.
Many studies have shown that the performance of CHC
on standard benchmark tests is good and robust [11, 12].

From the results of these previous studies, it turns out
that maintaining an appropriate diversity of the struc-
tures in the population is effective for avoiding prema-
ture convergence and for improving the performance,
whereas the proposed methods are not necessarily com-
plete. Therefore, I have developed a new genetic algo-
rithm called DCGA (Diversity-Control-oriented Genetic
Algorithm) [13, 14, 15, 16, 17]. In DCGA, the structures
in the next generation are selected from the merged
population of parents and their offspring with duplicates
eliminated on the basis of a selection probability, which
is calculated by using the hamming distance between a
candidate structure and the structure with the best fitness
value. The selection probability is larger for a structure
with a larger hamming distance. The diversity of struc-
tures in the population can be externally controlled by
adjusting the coefficients of the probability function so
as to be in an appropriate condition according to the
given problem. Within the range of some experiments,
DCGA outperformed the simple GA and seems to be a
promising competitor of the previously proposed algo-
rithms.

This paper describes the outline of DCGA and pre-
sents the results of experiments to examine the perfor-
mance of DCGA in function optimization. The results
are compared with those for the promising previous
studies.

2. The outline of BCGA

2.1 Algorithm

The skeleton of DCGA is shown in Fig. 1. The num-
ber of structures in the population P() is constant and
denoted by N, where ¢ is the generation number. The
population is initialized by using uniform random num-
bers. In the selection for reproduction, select, all the
structures in P(#-1) are paired by selecting randomly two
structures without replacement to form P'(¢-1). That is,
P'(t-1) consists of N/2 pairs. By applying mutation with
probability p,, and always applying crossover to the
structures of each pair in P’(¢-1), C(t) is produced. The
mutation rate p,, is constant for all the structures. The
structures in C(f) and P(t-1) are merged and sorted in
order of their fitness values to form M(z). In the selection
for survival, select, those structures that include the
structure with the best fitness value are selected from
M(r) and the population in the next generation P(f) is
formed.

The details of the selection for survival, select; are as
follows:

begin
t=0;
initialize population P(z);
evaluate structures in P(f);
while (termination condition not satisfied) do;
begin;
t=t+1;
select, P'(¢-1) from P(z-1) by randomly pairing
all structures without replacement;
apply mutation with p,, and crossover to each
pair of P'(¢-1) and form C(f);
evaluate structures in C(f);
merge structures in C(f) and P(z-1) and sort
them in order of their fitness values to

form M();

select, N structures including the structure with
the best fitness value from M(f) to form the
next population P(f) according to the
following procedure:

(1) eliminate duplicate structures in M(f) to
form M'(%);

(2) select structures from M'(f) with CPSS
method;

(3) if the number of selected structures is
smaller than &, introduce new structures
by the difference of the numbers;

end;
end;

Fig. 1. Skeleton of DCGA.

@ Duplicate structures in M(¢) are eliminated and
M’(¢) is formed. Duplicate structures mean that they
have identical entire structures.

@ Structures are selected by using the Cross-
generational Probabilistic Survival Selection
(CPSS) method, and P(?) is formed from the struc-
ture with the best fitness value in M’(¢) and the se-
lected structures. In the CPSS method, structures
are selected by using uniform random numbers on
the basis of a selection probability defined by the
foliowing equation:

ps={-0h/L+c}*, (1)

where k is the hamming distance between a candi-
date structure and the structure with the best fitness
value, L is the length of the entire string represent-
ing the structure, ¢ is the shape coefﬁciént, and o is
the exponent. In the selection process, a uniform
random number in the range [0.0, 1.0] is generated
for each structure. If the generated random number
is smaller than p, that is calculated by Eq.(1) for the
structure, then the structure is selected; otherwise, it
is deleted. The selection process is performed in or-
der of the fitness values of all the structures in M’(¢),

— 49—

without considering the fitness value of a structure
itself, except the structure with the best fitness
value.

® If the number of the structures selected in the proc-
ess @ is smaller than N, then new structures gen-
erated by using uniform random numbers are intro-
duced by the difference of the numbers.

2.2 Empirical and Theoretical Justification

The reasons for employing the above methods in
DCGA are as follows.

Side-effects of crossover and mutation may destroy
the better-performing structures obtained so far. In
DCGA, because the structure with best performance
obtained so far always survives intact into the next gen-
eration, the influence of this side-effect is small. There-
fore, large mutation rates can be used and crossover can
always be applied. This results in producing offspring
that are as different as possible from their parents and in
examining regions of the search space that have not yet
been explored. In fact, the best result was obtained when
a crossover rate of 1.0 was used. On the other hand, in
the simple GA, mutation is a background operator, en-
suring that the crossover has full range alleles so that the
adaptive plan is not trapped on a local optimum [18],
and low mutation rates are generally used,

Duplicate structures reduce the diversity of the struc-
tures in the population and often cause premature con-
vergence, because the same structures can produce a
large number of offspring with the same structure in the
next generation. Therefore it is effective to eliminate
duplicate structures in order to avoid premature conver-
gence.

Preliminary experiments on functions for the selec-
tion probability showed that the performance is closely
related to the shape of the curve. Eq. (1) was selected
because it can easily and flexibly express various curves.
Example curves of Eq. (1) are shown in Fig. 2.

Ps 1 —
0.8
////
0.6 1 //’/
"
0.4 — (a)
e (b
0.2 ®
0 v v T v

0 02 04 06 08 1
h/L

Fig.2. Example curves of Eq. (1). (a) a =0.19,
c=0.01; (b) a=0.5, ¢ =0.234.

The structure with the best fitness value obtained so
far can always survive. Before the global optimum is
aftained, however, it is a local optimum. If selective
pressure for better-performing structures is high, struc-
tures similar to the best-performing structure will in-
crease in number and eventually take over the popula-
tion. This situation is premature convergence. Therefore,
we need to reduce appropriately the selective pressure in
the neighborhood of the best-performing structure to
thin out structures similar to it. Eq. (1) can work to do
such processing. The selection of structures on the basis
of Eq. (1) is biased toward thinning out structures with
smaller hamming distance from the best-performing
structure and selecting structures with larger hamming
distances from the best-performing structure. The larger
bias produces greater diversity of structures in the
population. This does not mean to neglect the selective
pressure. As a result, there exists an appropriate selec-
tive pressure because the selection process is performed
in order of the fitness values of the structures and better-
performing structures can have an appropriate chance to
be sclected.

The degree of this bias is "externally" adjusted by the
values of ¢ and «a. Their appropriate values need to be
explored by trial and error according to the given prob-
lem. As demonstrated in the experiments described later,
Eq. (1) is very suitable for controlling the diversity of
the structures in the population so as to be in an appro-
priate condition by adjusting the values of ¢ and a.
DCGA is based on the idea that the selective pressure
and population diversity should be externally controlled
independently of the condition of the population, be-
cause the algorithm itself cannot recognize whether the
population is in the region of a local optimum or in that
of the global optimum.

In DCGA, the speed of convergence to the global
optimum can be controlled indirectly by the user
through the values of o and ¢ of Eq. (1). This method
may slow the convergence speed to the global optimum
in some case, whereas it can be compensated and even-
tually improved by preventing the solution from getting
stuck at a local optimum and stagnating.

The survival selection on the basis of the CPSS
method introduces probabilistic fluctuations into the
composition of structures in the population. I believe
that such probabilistic fluctuations in the population are
effective for escaping from a local optimum in a similar
way to simulated annealing (SA). The selection process
is performed in order of the fitness values of the struc-
tures, without considering the fitness value itself. This
gives more chance of survival to current worse struc-
tures with fitness values below the average and of evo-
lution into better structures. In the PES method [4],
because the structures are deterministically selected in
order of their fitness values (that is, p, = 1.0 for all
structures), the diversity of structures is often rapidly

lost, and this results in premature convergence. The
CPSS method can avoid such a situation.

When a structure is represented by a bit string, binary
coding or gray coding [19] is usually used. With DCGA,
because the performance with gray coding is superior to
that. with binary coding, it is recommended that gray
coding be used.

The methods employed in DCGA can work coopera-
tively to escape from a local optimum and to avoid pre-
mature convergence in the following way.

With the simple GA, better-performing structures can
produce multiple offspring. Therefore, structures for a
dominating local optimum can increase rapidly and
eventually take over the population. On the other hand,
with DCGA, each structure has only one chance to be-
come a parent, irrespective of its performance. In addi-
tion, the same structures are eliminated and the number
of structures similar to the best-performing one is re-
stricted by selection according to the CPSS method. This
can prevent structures in the population from becoming
identical or nearly so, and eventually lead to avoid pre-
mature Convergence.

In DCGA, structures that survived and the structure
with the best fitness value obtained so far can always
become parents and produce their offspring. Crossovers
are always applied to diverse structures maintained in
the population. When a pair of structures with a small
distance are mated, their neighborhood can be examined
to result in the local search. When a pair of structures
with a large distance are mated, a region not yet ex-
plored can be examined to result in the global search. In
such a way, local as well as global searches can be per-

formed in parallel.

The structure with the best fitness value obtained so
far always survives as a promising candidate to attain
the global optimum, and its neighborhood can be ex-
amined by the local search. On the other hand, a current
worse-performing structure can survive with a certain
probability. This may give the structure a chance to
produce an offspring with a fitness value close to the
global optimum, if it is possible. This mechanism is
similar to that of simulated annealing (SA) that can
escape from a local optimum by accepting a solution
based on a probability whose performance is worse than
the present solution. In DCGA also, the solution can
escape from a local optimum in a similar way to SA.

2.3 TFeatures of DCGA

If we compare DCGA with Goldberg's method [2],
the purpose and the method of realizing diversity of
structures are essentially different. The purpose of the
former is to attain only the global optimum efficiently,
whereas that of the latter is to investigate many peaks of
a multimodal function in parallel. The latter method
follows the traditional GA, and the reproduction prob-
ability of a member of the population is adjusted by
modifying the fitness value of the structure according to
how many population members occupy a niche of the
solution space.

3. Experiments on Performance in Function
Optimization

The performance of DCGA for large-scale multimo-

Table 1. Summary of benchmark problems.
No. Function equation Bounded conditions Optimal value
Function name

1 = 4 Goldberg's tightly- Maximum
fi= ;af‘”i 2 Elfsi ordered deceptive f. [4] | 300

2 fsi: £(000)=28 f(001)=26 £(010)=22 f(011)=0 Goldberg's 100§ely- Maximum

£100)=14 £(101)=0 f(110)=0 £(111)=30 ordered deceptive f. [4] | 300
3 22 2 -100=sx, y =100 Maximum
0.5 -
f3=05+ ——é—il—n———zx—+7y—5 Schaffer [20] 1
[1+0.001(x? + y)]

4 1n 1n -30=x; =30 Minimum

fo=- ZOexp(— 0.2,— Sx?] - exp(— 5 cos(2m;)) +20+e | Ackley [23] 0
ni=1 ni=1
5 - ‘%[-Xi sin(M)} -512sx <511 Minimum
i=l Schwefel [21] -418.982887n

6 ~ Ao ax ! ~5.12=sx 5511 Minimum
Jo =107+ ,-i[x‘ 10+ os{es)| Rastrigin [21] 0

7 n x? n - -512 = x; s 511 Minimum
fr=1+ 3750 L [COS (xf I)] Griewangk [21] 0

8 n-1 -2.048=x; <2.047 Minimum
fs=3 {10 i —xm)z +{1-xF +100(x3 -x,)z +{t-x,F Rosenbrock [21] o

— 44—

Table 2. Definitions of symbols in subsequent Tables.

Symbol Definition

N Population size

n Number of dimension

o Exponent for probability function, Eg. (1)
¢ Shape coefficient for probability function,

Eq. (1)

CVR Convergence rate (rate of successful runs)

AVFE Average number of function evaluation
times

SDFE Standard deviation of function evaluation
times

AVBF Average value of best fitness values in all
runs

MXFE Maximum function evaluation times

dal functions that have been frequently used as bench-
marks was tested and compared with those of existing
leading methods. The functions used are summarized in
Table 1. The dimension of the problem (n) and maxi-
mum function evaluation times (MXFE) were set ac-
cording to the previous studies. With f;, a bit string of
length 22 for each dimension was used. With £, f;, f,
and f,, a bit string of length 10 for each dimension was
used. With f;, a bit string of length 12 for each dimen-
sion was used. Gray coding was used except for f, and f,.
Bit-flip mutation was used. Two-point crossover for f, f,
and f;, and uniform crossover HUX [4] for the other
functions were used. Combinations of best-performing
parameter values including the size of population were
examined by changing their values little by little. I per-
formed 50 runs for f, f, and f,, and 30 runs for the other
functions per parameter set, changing seed values for the
random number generator to initialize the population.

Table 2 shows the definitions of major symbols used
in subsequent Tables. The performance was evaluated
by the rate of instances out of the total runs in which the
GA converged (CVR) and the average number of func-
tion evaluation times in those runs that converged
(AVFE). The best results of the experiments are summa-
rized in Table 3. With £, f,, T, f,, f, and £, the conver-
gence rates were 1.0, whereas with f; and f;, the conver-
gence rates were not 1.0.

The performances of existing leading methods for
each benchmark function were summarized in Table 4.
In Yang's CGA, an error threshold = 107 was used as the
convergence criterion. Also, Yang implemented evolu-
tionary strategy (ES) and evolutionary programming

(EP), and conducted experiments by the same conditions.

For Bick's ES and EP, results are averaged over 20 runs.
In Miihlenbein's GA, the global minimum has been
found to at Jeast three digits of accuracy.

According to these results, the performances of GAs
are superior to those of ESs and EPs for most of the test
functions. In terms of DCGA and CHC, the former is
superior to the latter for £}, f,, f; and f;, and the latter is

superior to the former for f;, f;, and ;. DCGA is superior
to Genitor for f,. It appears that Yang's CGA and
Miihlenbein's GA show good performance. However,
the comparison with them is not fair, because their con-
vergence criteria contain the error threshold.

4. Examination of Search Process

1t is interesting to know how DCGA succeeds or fails
in attaining the global optimum during the search proc-
ess. In order to conjecture this, we need to know how
DCGA works and of what structures the population is
composed. Thus, in some cases where the algorithm
succeeded or failed in attaining the global optimum, I
examined the relationships between minimum (best),
average, and maximum fitness values and generation
number, and those between the ratios (4 /L) of mini-
mum, average, and maximum hamming distances to the
length of the string and generation number.

Fig. 3 shows the case where DCGA succeeded in
attaining the global optimum for griewangk's function
(£5). In both cases where DCGA succeeded or failed in
attaining the global optimum, the best structure was
trapped at a local minimum whose value is 0.0505. In
the case of success, the algorithm could escape from the
local optimum, whereas in the case of failure, the algo-
rithm kept trapped there until MXFE. Comparing the
case of success with the case of failure, we could not

_ find the major difference between the ratios of hamming

distances.
5. Discussion

The examination of search process shows that during
the search process, the population is composed of struc-
tures with considerably different hamming distances and
thus the CPSS method effectively works. However, with
griewangk's function (f;) and Rosenbrock's function (fy),
the convergence rates were not 1.0. These cases show
the limitation of performance of DCGA using ordinary
crossover and bit-flip mutation operators. Comparing the
case of success with the case of failure, we could not
tind the major difference in hamming distances between
a structure and the structure with the best fitness and in
fitness values of structures. In the case of failure, the
best structure was trapped at a local minimum and kept
trapped there until MXFE. These results show that in
some cases, ordinary crossover and bit-flip mutation
operators could not produce a structure that can escape
from the local minimum. It appears that in harder prob-
lems, the combination of these operators does not have
sufficient ability to explore regions that have not yet
been examined. Hinterding {25] pointed out the limita-
tion of bit-flip mutation as a reproduction operator and
showed that Gussian mutation is superior to bit-flip
mutation for most of the test functions [26]. Thus, em-

Table 3. Best results for each benchmark problem using DCGA.
Func. | n MXFE | N a c Dom CVR AVFE SDFE AVBF
f; 10 50000 4 1051 0.33 0.008 |10 6182 3452 | 300.0
£ 10 50000 4 1037 0.83 0.045 1.0 14996 6512 | 300.0
f. 2 50000 {12 |05 0.234 |0.022 10 16051 9000 | 1.0
f, 30 | 100000 6 10.03 0.005 0006 1.0 35477 7491 | 0.0
fs 10 | 100000 2 10,0001 |06 0.029 | 1.0 11428 5095 | 4.18982887-10°
20 | 200000 2 10.0001 | 0.6 0018 |10 62708 | 18424 | 8.37965774-10°
fs 20 | 300000 | 2 | 011 0.003 | 0.006 |1.0 140207 | 37872 | 0.0
f; 10 | 500000 |46 |0.21 0.01 0.006 | 0.87 160298 | 122713 | 7.140-10°
20 | 500000 |50 |0.21 0.01 0.0021 | 0.77 264599 | 106174 | 1.145-10?
fy 6 | 200000 |28 {02 0.008 | 0.012 |0.53 77723 | 24167 | 2.77
8 | 500000 |34 |0.204 0.0005 | 0.01 0.5 238829 | 116860 | 3.96
10 | 5000000 |42 | 0.2 0.002 | 0.011 |047 | 2286790 | 812327 | 5.28
Table 4. Best results for each problem using existing algorithms.
Func. n Reference, Method Run No. | MXFE N CVR AVFE | AVBF
f,f, |10 | CHC[4],GA 50 50000 50 |10 20960 | 300.0
fy 2 | CHC[4], GA S0 50000 50 | 1.0 6496 | —
f, 30 | Yang{10], GA 20 200000 50 | 1.0 43068 | —
Bick[23], ES 20 100000 30 | — —_ 1.62:10°
Yang[10], ES 20 200000 | — 0.85 35514 | —
Bick[23], EP 20 100000 | 200 |— — 1.98
fs 10 | Miihlenbein[22], GA 50 — 820 092 8699 | —
CHC[24], GA 30 500000 50 |10 9803 | —
Yang{10], GA 20 200000 50 | 1.0 71273 | —
Yang[10], ES 20 200000 | — 0.04 7875 | —
Yang[10}, EP 20 200000 | — 0.0 — —
20 | CHC[24], GA 30 500000 50 |10 17123 | —
fs 20 | Miihlenbein[22], GA 50 —— 820 |10 9900 | —
CHC[24], GA 30 500000 50 {10 158839 | 0.0
Yang[10], GA 20 200000 50 | 1.0 81440 | —
Yang{10], ES 20 200000 | — 0.0 — —
Yang[10], EP 20 200000 | — 0.26 342100 | —
f; 10 | Miihlenbein[22], GA 50 — 1640 | 1.0 59520 | —
CHC[24], GA 30 - 500000 50 |1.0 51015 | 0.0
Genitor{12], GA 30 500000 | 1000 | 0.83 92239 | 5.96:10°
Yang[10], GA 20 200000 | 100 1.0 126785 | —
Yang[10}, ES 20 200000 | — 0.02 23835 | —
Yang[10], EP 20 200000 | — 0.0 — —
20 | CHC[24], GA 30 500000 50 110 50509 | 0.0
Genitor [12], GA 30 500000 | 1000 | 0.57 104975 | 2.40-10?
1y 6 | CHC[21], GA 30 5000000 50 10.0 — 5.939
8 | CHC[21], GA 30 5000000 50 1 0.067 — 7.391
10 | CHC[21], GA 30 5000000 50 | 0.033 — 9.569
Yang[10], GA 20 450000 30 | 1.0 356991 | —
Yang[10], ES 20 400000 | — 0.65 274726 | —
Yang[10], EP 20 400000 | — 0.0 — —

o 1000
=
g g ~o= maximum
g 100
5] -& average
(o]
e .
2 104 1 -o= minimum
0.01
0.001 T T T
0 500 1000 1500 2000
Generation number
@
i 0.7
0.6
0.5+ -o= maximum
- average
0.4+ -
-0~ minimum
o T T T
0 500 1000 1500 2000
Generation number
®)
Fig. 3. Conditions of the population in the case where

DCGA succeeded in attaining the global optimum
for Griewangk's function (n = 10). (2) Generation
number vs. function value, (b) Generation number
vs. ratio of hamming distance (h / L) between a str-
ucture and the structure with the best fitness value.

ploying more powerful mutation operators may be a
promising way to further improve the performance of
DCGA.

According to the above results, the combinations of
best-performing parameter values are considerably dif-
ferent for the given problems. In this sense, DCGA is
sensitive to the parameter values and they must be tuned
by trial and error for each given problem.

The best results using DCGA obviously shows that
there exists an optimum diversity of the structures in the

population according to the given problem. The value of
Pso» Which is p, for 2 = 0, represents the magnitude of the
selection probability, and a smaller p,, can produce a
higher diversity of structures in the population. The
values of py, in the best results are 0.57 for tightly or-
dered deceptive function, 0.93 for loosely ordered de-
ceptive function, 0.48 for Schaffer's function, 0.85 for
Ackley's function, 1.0 for Schwefel's function, 0.53 for
Rastrigin's function, 0.38 for Griewangk's function, 0.29
for Rosenbrock's function (n = 10), respectively. It ap-
pears that a harder problem requires a larger diversity of
structures in the population.

The best results using DCGA obviously show that
there exists an optimum population size. It seems that a
harder problem requires a larger population size. As a
whole, the optimum population size is small and good
performance is obtained with such a small population.
This indicates that if structures that keep appropriate
distances from the current best structure are distributed
in the solution space, only a small number of such
structures are sufficient to attain the global optimum.
Such a characteristic of DCGA has many advantages in
the stage of implementing and using it in practical appli-
cations.

It has been recognizes that real-coded GAs are more
effective than binary-coded GAs [9, 27] in some prob-
lems. The CPSS method can be applied to the real-coded
GAs by using some distance measure such as Euclidean
distance instead of hamming distance. At present,] am
conducting such an extension of DCGA.

6. Conclusions

Within the range of the above experiments using
conventional crossover and bit-flip mutation operators,
the following conclusions can be drawn.

@ DCGA is effective and efficient for large-scale
multimodal functions. The optimum population
size is small and good performance is obtained
with such a small population.

@ There is some room to further improve the per-
formance, because with some hard problems, the
convergence rates were not 1.0,

® In some problems, the performances of DCGA
were superior to those of existing leading methods.
According to these results, DCGA may be a
promising competitor to existing leading methods.

References

{1] M. L. Mauldin, "Maintaining Diversity in Genetic
Search," in Proc. of the National Conference on Ar-
tificial Intelligence, 1984, pp. 247-250.

{2] D. E. Goldberg and J. Richardson, "Genetic Algo-
rithms with Sharing for Multimodal Function Op-
timization," in' Proc. of the Second International

Conference on Genetic Algorithms, Lawrence Erl-
baum, 1987, pp. 41-49.

[3] S. W. Mahfoud, "Crowding and Preselection Revis-
ited," in Parallel Problem Solving from Nature 2, R.
Minner Ed., Amsterdam: North-Holland, 1992, pp.
27-36.

[4] L.J. Eshelman, "The CHC Adaptive Search Algo-
rithm: How to Have Safe Search When Engaging in
Nontraditional Genetic Recombination," in Foun-
dation of Genetic Algorithms, G.J. E. Rawlins Ed.,
California: Morgan Kaufmann, 1991, pp. 265-283.

[5] L.J. Eshelman and J. D. Schaffer, "Preventing Pre-

- mature Convergence in Genetic Algorithms by Pre-
venting Incest," in Proc. of the Fourth International
Conference on Genetic Algorithms, Morgan Kauf-
mann, 1991, pp. 115-122.

[6] M. Srinivas and L. M. Patnaik, "Adaptive Probabil-
ities of Crossover and Mutation in Genetic Algo-
rithms," IEEE Transactions on Systems, Man and
Cybernetics, Vol. 24, No. 4, pp. 656-667, April,
1994.

[7] H. Shimodaira, "Proposal of a Genetic Algorithm
Using Large Mutation Rates and Population-Elitist
Selection (GALME)," & #RLEZERWIFLHE,
ANTHTEE, 106-14, 1996, pp. 99-106.

[8] H. Shimodaira, "A New Genetic Algorithm Using
Large Mutation Rates and Population-Elitist Selec-
tion (GALME)," in Proc. of the International Con-
ference on Tools with Artificial Intelligence, IEEE
Computer Society, 1996, pp. 25-32.

[9] M. Sefrioui and J. Périaux, "Fast Convergence
Thanks to Diversity," in Evolutionary Programming
V., Proc. of the Fifth Annual Conference on Evolu-
tionary Programming, 1996, pp. 313-321.

[10]J. Yang, J. Horng and C. Kao, "A Continuos Ge-
netic Algorithms for Global Optimization," in Proc.
of the Seventh International Conference on Genetic
Algorithms, Morgan Kaufmann, 1997, pp. 230-237.

[11]J. R. Greene, "A Role for Simple, Robust ‘Black-
box’ Optimizers in the Evolution of Engineering
Systems and Artifacts," in Proc. of the Second
IEE/IEEE Int. Conference on Genetic Algorithms in
Engineering Systems, 1997, pp. 427-432.

[12]D. Whitley, R. Beveridge, C. Graves and K.
Mathias, "Test Driving Three 1995 Genetic Algo-
rithms: New Test Functions and Geometric Match-
ing," Journal of Heuristics, Vol. 1, pp. 77-104,
1995.

[13]H. Shimodaira, "DCGA: A Diversity Control Ori-
ented Genetic Algorithm,” in Proc. of the Second
IEE/IEEE Int. Conference on Genetic Algorithms in
Engineering Systems, 1997, pp. 444-449.

[14]H. Shimodaira, "DCGA: A Diversity Control Ori-
ented Genetic Algorithm," in Proc. of the Ninth
IEEE Int. Conference on Tools with Artificial Intel-

ligence, 1997, pp. 367-374.

[15]H. Shimodaira, "A Diversity-Control-Oriented
Genetic Algorithm (DCGA): Development and Ini-
tial Results," 1EHRALEEF S5 CRE, Vol. 40, No. 6,
1999.

[16]H. Shimodaira, "A Diversity-Control-Oriented
Genetic Algorithm (DCGA): Development and Ex-
perimental Results,” in Proc. of the Genetic and
Evolutionary Computation Conference (GECCO-
99) Volume I, Morgan Kaufmann, 1999, pp.603-
611.

[17] http://www.hi-ho.ne.jp/shimo-hi/new_ga.htm

[18]J. H. Holland, Adaptation in Natural and Artificial
Systems, Massachusetts: MIT Press, 1992, p. 111.

[19]R. A. Caruana and J. D. Schaffer, "Representation
and Hidden Bias: Gray vs. Binary Coding for Ge-
netic Algorithms," in Proc. of the SthInt. Confer-
ence on Machine Learning, Morgan Kaufmann,
1988, pp. 153-161.

[20]7. D. Schaffer, R. A. Caruana, L. J. Eshelman and R.
Das, "A Study of Control Parameters Affecting
Online Performance of Genetic Algorithms
for Function Optimization," in Proc. of the Third
International Conference on Genetic Algorithms,
Morgan Kaufmann, 1989, pp. 51-60.

[21]D. Whitley, K. Mathias, S. Rana and J. Dzubera,
"Building Better Test Functions," in Proc. of the
Sixth International Conference on Genetic Algo-
rithms, Morgan Kaufmann, 1995, pp. 239-246.

[22]H. Miihlenbein, M. Schomisch and J. Born, "The
Parallel Genetic Algorithm as Functional Opti-
mizer," Parallel Computing, Vol. 17, pp. 619-632,
1991.

[23]T. Bick and H. Schwefel, "An Overview of Evolu-
tionary Algorithms for Parameter Optimization,"
Evolutionary Computation, Yol. 1, No. 1, pp. 1-23,
1993.

[24]K. E. Mathias and D. Whitley, "Transforming the
Search Space with Gray Coding," in Proc. of the
first IEEE Conference on Evolutionary Computa-
tion, 1994, pp. 513-518.

[25]R. Hinterding, H. Gielewski and T. C. Peachery,
"The Nature of Mutation in Genetic Algorithms," in
Pro. of the Sixth International Conference on Ge-
netic Algorithms, Morgan Kaufmann, 1995, pp. 65-
72.

[26]R. Hinterding, "Gussian Mutation and Self-
adaptation for Numeric Genetic Algorithms," in Pro.
of the 1995 IEEE International Conference on
Evolutionary Computation, 1995, pp. 384-389.

[271L. J. Eshelman and J. D. Schaffer, "Real-Coded
Genetic Algorithms ™ and Interval-Schemata," in
Foundations of Genetic Algorithms 2, L. D.
Whitley Ed., California: Morgan Kaufmann, 1993,
pp. 187-202.

