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Abstract. We show in this paper that every series-parallel graph
with maximum degree at most 4 has a 1-bend 2-D orthogonal draw-
ing. We also show that every series-parallel graph with maximum
degree at most 6 has a 2-bend 3-D orthogonal drawing.

1 Introduction

We consider the problem of generating orthogonal drawings of series-parallel graphs in the plane
and space. The problem has obvious applications in the design of 2-D and 3-D VLSI circuits and
optoelectronic integrated systems.

Throughout this paper, we consider simple connected graphs G with vertex set V(G) and edge
set E(G). We denote by dg(v) the degree of a vertex v in G, and by A(G) the maximum degree
of vertices of G. G is called a k-graph if A(G) < k.

It is well-known that every graph can be drawn in the space so that its edges intersect only at
their ends. Such a drawing of a graph G is called a 3-D drawing of G. A graph is said to be planar
if it can be drawn in the plane so that its edges intersect only at their ends. Such a drawing of a
planar graph G is called a 2-D drawing of G.

A 2-D orthogonal drawing of a planar graph G is a 2-D drawing of G such that each edge
is drawn by a sequence of contiguous horizontal and vertical line segments. A 3-D orthogonal
drawing of a graph G is a 3-D drawing of G such that each edge is drawn by a sequence of
contiguous axis-parallel line segments. Notice that a graph G has a 2-D[3-D] orthogonal drawing
only if A(G) < 4]A(G) < 6]. An orthogonal drawing with no more than b bends per edge is called
a b-bend orthogonal drawing.

Biedl and Kant [2], and Liu, Morgana, and Simeone [7] showed that every planar 4-graph has
a 2-bend 2-D orthogonal drawing with the only exception of the octahedron, which has a 3-bend
2-D orthogonal drawing. Moreover, Kant [6] showed that every planar 3-graph has a 1-bend 2-D
orthogonal drawing with the only exception of K4. Nomura, Tayu, and Ueno [8] showed that every
outerplanar 3-graph has a 0-bend 2-D orthogonal drawing if and only if it contains no triangle
as a subgraph. On the other hand, Garg and Tamassia proved that it is NP-complete to decide
if a given planar 4-graph has a 0-bend 2-D orthogonal drawing [5]. Battista, Liotta, and Vargiu
showed that the problem can be solved in polynomial time for planar 3-graphs and series-parallel
graphs [1]. We show in Section 3 the following theorem.

Theorem 1. Fvery series-parallel 4-graph has a 1-bend 2-D orthogonal drawing. O

Eades, Symvonis, and Whitesides [4], and Papakostas and Tollis [9] showed that every 6-graph
has a 3-bend 3-D orthogonal drawing. Moreover, Wood showed that every 5-graph has a 2-bend
3-D orthogonal drawing [11]. Nomura, Tayu, and Ueno [8] showed that every outerplanar 6-graph
has a 0-bend 3-D orthogonal drawing if and only if it contains no triangle as a subgraph. On
the other hand, Eades, Stirk, and Whitesides proved that it is NP-complete to decide if a given
5-graph has a 0-bend 3-D orthogonal drawing [3]. We show in Section 4 the following theorem.

Theorem 2. FEvery series-parallel 6-graph has a 2-bend 3-D orthogonal drawing. O
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2 Preliminaries

A series-parallel graph is defined recursively as follows:

(1) A graph consisting of two vertices joined by a single edge is a series-parallel graph. The
vertices are the terminals.

(2) If Gy is a series-parallel graph with terminals s; and t1, and G is a series-parallel graph with
terminals sy and t9, then a graph G obtained by either of the following operations is also a
series-parallel graph:

(i) Series composition: identify ¢; with sg. Vertices s; and ty are the terminals of G.
(ii) Parallel composition: identify s; and sy into a vertex s, and ¢; and ¢y into a vertex t.
Vertices s and t are the terminals of G.

A series-parallel graph G is naturally associated with a binary tree T'(G), which is called a
decomposition tree of G. The nodes of T(G) are of three types, S-nodes, P-nodes, and @-nodes.
T(G) is defined recursively as follows:

(1) If G is a single edge, then T'(G) consists of a single )-node.

(2-i) If G is obtained from series-parallel graphs G; and G2 by the series composition, then the
root of T'(G) is a S-node, and T'(G) has subtrees T'(G1) and T'(G2) rooted at the children of
the root of G.

(2-ii) If G is obtained from series-parallel graphs G; and G2 by the parallel composition, then
the root of T'(G) is a P-node, and T'(G) has subtrees T'(G1) and T'(G2) rooted at the children
of the root of G.

Notice that the leaves of T'(G) are the @-nodes, and an internal node of T(G) is either an
S-node or P-node. Notice also that every P-node has at most one Q-node as a child, since G is

a simple graph. If G has n vertices then T'(G) has O(n) nodes, and T(G) can be constructed in
O(n) time [10].

3 Proof of Theorem 1 (Sketch)

Let G be a series-parallel 4-graph with terminals s and t. We generate for G several 1-bend 2-D
orthogonal drawings of distinct types depending on dg(s) and dg(t). The number of distinct types
v(dg(s),dg(t)) is no more than 4 for every pair of dg(s) and dg(t). We denote by 7(dg(s), da(t),1)
a type of drawing for G, where 0 < i < v(dg(s),dg(t)). Fig. 1 shows the types of 1-bend 2-D
orthogonal drawings of G, where terminals are indicated by circles. We denote by I;(G) a 1-bend
2-D orthogonal drawing of type 7(dg(s),dg(t),i) for G. The drawings I;(G) are generated by
Algorithm 1 below.

Algorithm 1 (Outline)

Input: a series-parallel 4-graph G with terminals s and t.

Output: 1-bend 2-D orthogonal drawings [3(G), 0 <1i < v(dg(s),dg(t)).

Step 0 Compute T'(G).

Step 1 If G consists of a single edge, let IH(G) be a drawing of type 7(1,1,0) and I'1(G) be a
drawing of type 7(1,1,1) for G.

Step 2 If G is the series composition of G and G3, drawings I';(G1) and I (G2) are first re-
cursively generated for 0 < j < v(dg, (s1),de, (t1)) and 0 < k < v(dg,(s2),da,(t2)). Then for
each i, 1 <1i < v(dg(s),sc(t)), generate I;(G) by combining appropriate I;(G1) and I, (G2)
as shown in Table 1.
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1(1,1,0) T(1,1,1) 1(1,2,1) 7(1,2,2)

7(1,3,1) 7(1,3,.2) ©(1.4,1) ©(2,2,1) 7(2.2.2) (2,3,1) 1(2,3,2)

1(2,4,1) 7(3,3,1) 1(3,3,2) 1(3,4,1) 1(4,4,1)

Fig. 1. Types of 1-bend 2-D orthogonal drawings, where 7(3, j, k) = 7(j,4, k).

Step 3 If G is the parallel composition of G and Go, drawings I;(G1) and I} (G2) are first
recursively generated for 1 < j < v(dg,(s1),dg, (t1)) and 1 < k < v(dg,(s2),dg,(t2)). Then
for each i, 1 < i < v(dg(s),sq(t)), generate I3(G) by combining appropriate I;(G1) and
I'.(G2) as shown in Table 2. 0

The correctness of the algorithm is guaranteed by the following lemma.

Lemma 1. If G contains more than one edge, then for any 7(dg(s),dg(t),1), 1 <i < v(dg(s),
dg(t)), there always exist a drawing I';(G1), 0 < j < v(dg,(s1), dg,(t1)), and a drawing I',(G2),
0 <k <v(dg,(s2),da,(t2)), such that we can generate I';(G) by combining I';(G1) and I'(Ge)
with the only exception of 7(3,3,2) for G with edge (s,t). O

The proof of the lemma is obvious from the tables 1 and 2 below, which show types of such I';(G1)
and I'y(G2) for each type of I;(G), where 7(3, j, k) is indicated by (i, j, k) in the tables. It is tedious
but easy to check the tables.

4 Proof of Theorem 2 (Sketch)

Let G be a series-parallel 6-graph with terminals s and ¢. We use a vector R(G) € {+1,—1}3
to represent relative positions of terminals in the space. For vectors a = (a1,a2,a3) and b =
(bl,bg,bg), define that a * b = (albl,ang,agbg). Let DT = {X, Y, Z}, D~ = {—X, —Y,—Z},
D =Dt UD, and let Dg(s) and Dg(t) be subsets of D satisfying the following conditions:

L. |Dg(s)| = da(s) and [Dg(t)| = dg(t)-
2. There exist A € Dg(s) and B € Dg(t) such that A # —B.

The conditions above implies that the elements of D¢ (s) and D¢ (t) can be ordered Ay, Ag, . . .,
Agg(s) and By, Ba, . .. By, ), respectively, such that A; # —B; for each i, 1 <4 < min{dg(s),dg(t)}.
We denote by [Dg(s)] and [Dg(t)] such sequesces of elements. Dg(s) and Dg(t) are said to be
inner-directed if there exist A € Dg(s) and B € Dg(t) satisfying the following conditions:
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1. Ae D™ and Be D"

2. A+—-B

3. If Dg(s) — {A} # ¢ and Dg(t) — {B} # ¢ then there exist A’ € Dg(s) — {A} and B’ €
D¢ (t) — {B} such that A" # —B'.

A 2-bend 3-D orthogonal drawing I'(G) of G is generated by Algorithm 2 in section 4.1.

4.1 Algorithm 2: 3D-DRAW (G, Dg(s), Dg(t), R(G)) (Outline)

3D-DRAW (G, Dg(s), Da(t), R(G))
Input: a series-parallel 6-graph G with terminal s and t, Dg(s), Dg(t), and R(G)
Output: 2-bend 3-D orthogonal drawing I'(G)
begin
Compute T'(G)
if G consists of a single edge then draw I'(G) depending on Dg(s), Dg(t), and R(G)
else
if G is the series composition of G; and G
SER-DECOM(G, G1, G2, Dg(s), Da(t), R(G)) (in Section 4.1.1)
end if
if G is the parallel composition of G; and Ga,
PAR-DECOM(G, G1, G2, Dg(s), Dg(t), R(G)) (in Section 4.1.2)
end if
F(Gl) :3D—DRAW(G1, DG1 (81), DG1 (t1)7 R(Gl))
F(Gg) :3D—DRAW(G2, DG2 (82), DG2 (tg), R(Gg))
if GG is the seires composition of G1 and Go,
SER-COM(I'(G1),I'(G2)) (in Section 4.1.3)
end if
if GG is the parallel composition of G; and Ga,
PAR-COM(I'(G1), I'(G2)) (in Section 4.1.4)
end if
end if
end

4.1.1 SER-DECOM(G, G1, G2, Dg(s), Da(t), R(G))

Input: G,G1,G2,Dg(s), Da(t), R(G)
Output: DG1 (51)7 DG1 (tl)a DG2 (SQ)a DG2 (tQ)’ R(G1)7 R(GQ)
Step 1 Define that (X¢g, Yg, Z¢g) = (X,Y, 2)xR(G), 'Dg ={Xag,Ys, Z¢}, and D = {—-Xa, —Ye,
—Za}.
Step 2 If Dg(s) and Dg(t) are inner-directed, then select A € Dg(s) and B € Dg(t) such that
A € D; and B € Df. Else select A € Dg(s) and B € Dg(t) such that A # —B.
Step 3 Output Dg,(s1), Dg,(t1), Da,(s2), Da,(t2), R(G1), and R(G2) depending on A and B
as follows:
Case 1 A€D,, B eDg :
Case 1-1 B € {Xq,Zg}: Let Dg,(s1) = Dg(s). If Dg,(t1) < 2, let Dg,(t1) be any set
S such that |S| = D¢, (t1) and S C DS, — {—A}. If D¢, (t1) > 3, let Dg, (t1) be any
set S such that |S| = D¢, (t1) and D, C S C D — {=Yg}. If Dg,(s2) < 3, let Dg, (s2)
be any set S’ such that [S'| = Dg,(s2), {-Y} C 8" C Dg, and D¢, (t1) NS = 0. If
Dg,(s2) > 3, let Dg,(s2) be any set S’ such that |S’| = Dg,(s2) and D, € S" CD-S.
Let Dg,(t2) = Dg(t). Let R(G1) = R(G) and R(G2) = R(G).
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Case 1-2 B = Yg: Let Dg,(s1) = Dg(s). If Dg, (t1) < 2, let D¢, (t1) be any set S such
that |S| = D¢, (t1) and S € DL — {—A}. If D¢, (t1) > 3, let D¢, (t1) be any set S
such that |S| = D¢, (t1) and D, C S C D — {—X¢}. If Dg,(s2) < 3, let Dg,(s2)
be any set S’ such that |S’| = Dg,(s2), {—X} € 8" C Dg, and Dg, (t1) N S" = 0. If
Dg,(s2) > 3, let Dg,(s2) be any set S’ such that |S’| = Dg,(s2) and D, € 8" CD—S.
Let D¢g(t2) = Dg(t). Let R(G1) = R(G) and R(G2) = R(G).

Case 2 A € Dg,B € Dg:

Case 2-1 A = X¢: Let Dg,(s1) = Da(s). If Dg, (t1) < 2, let D¢, (t1) be any set S such
that |S| = D¢, (t1) and S C D — {A}. If D¢, (t1) > 3, let D, (t1) be any set S such
that |S| = D¢, (t1) and DS, C S C D — {—A}. If D¢, (s2) < 3, let Dg,(s2) be any set
S’ such that |S"| = Dg,(s2), {—A} € 5" C D, and Dg, (t1) N S" = 0. If Dg,(s2) > 3,
let Dg,(s2) be any set S’ such that |S'| = Dg,(s2) and D € S" € D — S. Let
D¢ (t2) = Dg(t). Let R(G1) = (—1,+1,+1) x R(G) and R(G2) = (+1,—1,—1) x R(G).

Case 2-2 A = Yg: Dg,(s1),Da, (t1), Da,(s2), and Dg,(t2) are same as Case 2-1. Let
R(G1) = (+1,41,—-1) * R(G) and R(G3) = (—1,—1,+1) x R(G).

Case 2-3 A = Zg: Dg,(s1),Dq,(t1), Dg,(s2), and Dg,(t2) are same as Case 2-1. Let
R(G1) = (+1,-1,+1) * R(G) and R(Gs2) = (—1,+1,—1) * R(G).

Case 3 AcD,,BecDg:

Case 3-1 A = B = —Zg: Let Dg,(t2) = Dg(t). If Dg,(s2) < 2, let Dg,(s2) be any set
S’ such that |S| = Dg,(s2) and S C D, — {B}. If Dg,(s2) > 3, let Dg,(s2) be any
set S" such that |S| = Dg,(s2) and D, € S" € D — {Xg}. Let Dg,(s1) = Dg(s). If
De, (t1) < 3, let D¢, (t1) be any set S such that |S'| = D¢, (t1), {X} € S’ C D/, and
D¢, (s2) NS =0.1f Dg, (t1) > 3, let D¢, (t1) be any set S such that |S| = D¢, (t1) and
DL CSCD- 9. Let R(G1) = R(G) and R(G2) = (+1,+1, 1) x R(G).

Case 3-2 A = B = —Yg: Dg,(s1),Dg,(t1), Dg,(s2), and Dg,(t2) are same as Case 3-1.
Let R(G1) = R(G) and R(G2) = (+1,—1,+1) = R(G).

Case 3-3 A = B = —Xg: Let Dg,(t2) = Dg(t). If Dg,(s2) < 2, let Dg,(s2) be any set
S’ such that [S| = Dg,(s2) and S € D — {B}. If Dg,(s2) > 3, let Dg,(s2) be any
set S’ such that |S| = Dg,(s2) and D € S C D — {Zg}. Let Dg,(s1) = Dg(s). If
Dg, (t1) < 3, let D, (t1) be any set S such that |S’| = Dg, (t1), {Za} € S’ C D, and
D¢, (s2) NS = 0. If Dg,(t1) > 3, let D¢, (t1) be any set S such that |S| = Dg, (1) and
DL CSCD- 8. Let R(G1) = R(G) and R(G2) = (—1,+1,41) x R(G).

Case 3-4 A # B: Let D¢, (s1) = Dg(s). If Dg, (t1) < 2, let Dg, (t1) be any set S such that
|S| = D¢, (t1) and S C D, — {—A}. If D¢, (t1) > 2, let D, (t1) be any set S such that
|S| = D¢, (t1) and Df — {—A} C S C D —{—A}. If Dg,(s2) < 3, let Dg,(s2) be any
set S” such that |S"| = Dg,(s2), {—A} € 8" € D —{A}+{—A}, and D¢, (t1)NS" = 0.
If Dg,(s2) > 4, let Dg,(s2) be any set S such that |S’| = Dg,(s2) and D, + {—-A} C
S" CD—S.Let Dg(ta) = Da(t). Let R(G1) = R(G) and R(G2) = (—1,—1,-1)xR(G).

Case 4 A € DE,B € Dg:

Case 4-1 A = B = Zg: Let Dg,(s1) = Dg(s). If Dg, (t1) < 2, let D¢, (t1) be any set S
such that |S| = D¢, (t1) and S C DF, — {A}. If D¢, (t1) > 3, let D¢, (t1) be any set
S such that |S| = D¢, (t1) and D5 € S C D — {=Y}. If Dg,(s2) < 3, let Dg,(s2)
be any set S” such that |S'| = Dg,(s2), {-Y} € 8" C Dg, and D¢, (t1) N S" = 0. If
Dg,(s2) > 3, let Dg,(s2) be any set S’ such that |S’| = Dg,(s2) and D, € 8" CD-S.
Let Dg(t2) = Dg(t). Let R(G1) = (—1,+1,+1) * R(G) and R(G2) = R(G).

Case 4-2 A = B = Yg: Let D¢, (s-1) = Dg(s). If Dg,(t1) < 2, let Dg, (t1) be any set S
such that |S| = D¢, (t1) and S C Df — {A}. If D¢, (t1) > 3, let D¢, (t1) be any set
S such that |S| = D¢, (t1) and D5 C S € D — {—Zg}. If Dg,(s2) < 3, let Dg,(s2)
be any set S’ such that |S'| = Dg,(s2), {—Zq} € 8" € D, and D¢, (t1) N S" = 0. If
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Dg,(s2) > 3, let Dg,(s2) be any set S’ such that |S’| = Dg,(s2) and D, € 8" CD—-S.
Let Dg(t2) = Dg(t). Let R(G1) = (+1,—1,+1) * R(G) and R(G2) = R(G).

Case 4-3 A = B = Xg: D¢, (s1),Da, (t1), Da,(s2), and Dg,(t2) are same as Case 4-1.
Let R(G1) = (—1,41,41) x R(G) and R(G32) = R(G).

Case 4-4 A # B: If Dg,(s2) < 2, let Dg,(s2) be any set S’ such that |S’| = Dg,(s2),
S" C D — {—B}. If Dg,(s2) > 3, let Dg,(s2) be any set S” such that |S’| = Dg,(s2)
and D —{—B}+{B} C S’ C D—{-B}. Let Dg(t2) = Dg(t). Let Dg,(s1) = Dg(s).
If Dg,(t1) < 3, let D¢, (t1) be any set S such that |S| = D¢, (t1) and {—B} C S C
DL —{B}+{-B}, and D¢, (t1)NS" = 0. If D¢, (t1) > 4, let D¢, (t1) be any set S such
that |S| = D¢, (t1) and D} + {—B} C S C D — 8. Let R(G1) = (—1,—-1,—-1) * R(G)
and R(G2) = R(G).

4.1.2 PAR-DECOM(G, G1, G2, Dg(s), Dg(t), R(G))

Input: G,G1,G2,Dg(s), Da(t), R(G)

Output: DG1(31)7DG1(t1)7DG2(52)7DGz(t2)7R(G1)7R(G2)

Step 1 Define that (X¢, Yg, Z¢g) = (X,Y, 2)xR(G), ’Dg ={Xqg,Ys, Z¢g}, and D, = {—-Xa, —Yg,
—~Za}.

Step 2 Construct [Dg(s)] = (A1, Az, ..., Ap(s)) and [Dg(t)] = (B1, B, ..., Bpg)) such that
A; # —B;, 1 < i < min{dg(s),dg(t)}. If Dg(s) and Dg(t) are inner-directed, we assume
without loss of generality that A; € D, and By € Dg.

Step 3 Output D¢, (s1), Da, (t1), Da,(s2), Da,(t2), R(G1), and R(G2) depending on dg, (s1)
and dg, (t1) as follows:

Case 1 k1 =dg,(s1) < dg,(t1):
Case 1-1 e = (s,t) € Gy : D, (s1) = {A1, A, ..., A, },
D¢, (t1) = {Bi1, Ba, . .. s Brys By Dy (82) 415 -+ Bpew}
DGQ(SQ) = {Ak1+17Ak1+27 e 7ADg(s)}7 Dg, <t2) = {Bk1+17 By, 42, .. 7Bk1+DG2(t2)}7
R(G1) = R(G2) = R(G).
Case 1-2 e = (s,t) € Ga : Dg,(s1) = {A2,As, ..., Ak, 41},
D¢, (tl) = {BQ, Bs, ... ka1+17 Bk1+DG2 (ta)+1s- -+ 7BDG(t)}a
Da,(s2) = {A1, Agy+2, Ak 435 - - ADg(s)}:
De, (t2) = { B, By, 42, B 435 - - - Bk1+DG2(t2)}7 and R(G1) = R(G2) = R(G).
Case 2 dg,(s1) > dg,(t1) =k :
Case 2-1 e = (S,t) € Gy DGl(Sl) = {Al,AQ, - 7Ak17Ak1+DG2(32)+17 . 7ADg(8)}7
DG1(t1) ={B1,Bo,... ka1}a Dg, (s2) = {Akﬁ-lv Aky42, - - 7Ak1+Dc;2(82)}a
DGQ(tQ) = {Bk1+17 Biy42,- -+ BDg(t)}7 and R(Gl) = R(Gg) = R(G)
Case 2-2 ¢ = (S,t) € Gy : DGl(Sl) = {AQ,A3, e 7A]€1+17Ak1+DG2(82)+17 . ?ADg(s)}’
D, (t1) = {B2, B3, ..., Br,+1}, Day(s2) = {A1, k42, Ak 43, - - 7Ak:1+DG2(82)}a
Dg,(t2) = {B1, Bi; 12, Bry43, - -+, Bpg ) }> and R(G1) = R(G2) = R(G).

4.1.3 SER-COM(I'(G4), I'(G2))

Input: I'(G1),I'(G2)

Output: I'(G)

Step 1 Translate I'(G1) and I'(G3) so that ¢; and sg can be identified.
Step 2 Generate I''(G) by identifying ¢; with ss.

Step 3 Generate I'(G) by modifying I''(G) so that there are no overlaps.
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4.1.4 PAR-COM(I'(G4), I'(G3))

Input: I'(G1),I'(G2)

Output: I'(G)

Step 1 Modify and translate I'(G1) and I'(G2) so that the terminals can be identified.
Step 2 Generate I''(G) by identifying s; with so, and 1 with ¢o.

Step 3 Generate I'(G) by modifying I''(G) so that there are no overlaps.

4.2 Analysis of Algorithm 2

Omitted.

5

Concluding Remarks

It should be noted that K33, which is a series-parallel 3-graph, has no 0-bend 2-D orthogonal
drawing. It is an interesting open problem to decide if every series-parallel 6-graph has a 1-bend
3-D orthogonal drawing.
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Table 1. Series composition.
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Table 2. Parallel composition.
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