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Abstract. We show in this paper that every series-parallel graph
with maximum degree at most 4 has a 1-bend 2-D orthogonal draw-
ing. We also show that every series-parallel graph with maximum
degree at most 6 has a 2-bend 3-D orthogonal drawing.

1 Introduction

We consider the problem of generating orthogonal drawings of series-parallel graphs in the plane
and space. The problem has obvious applications in the design of 2-D and 3-D VLSI circuits and
optoelectronic integrated systems.

Throughout this paper, we consider simple connected graphs G with vertex set V (G) and edge
set E(G). We denote by dG(v) the degree of a vertex v in G, and by ∆(G) the maximum degree
of vertices of G. G is called a k-graph if ∆(G) ≤ k.

It is well-known that every graph can be drawn in the space so that its edges intersect only at
their ends. Such a drawing of a graph G is called a 3-D drawing of G. A graph is said to be planar
if it can be drawn in the plane so that its edges intersect only at their ends. Such a drawing of a
planar graph G is called a 2-D drawing of G.

A 2-D orthogonal drawing of a planar graph G is a 2-D drawing of G such that each edge
is drawn by a sequence of contiguous horizontal and vertical line segments. A 3-D orthogonal
drawing of a graph G is a 3-D drawing of G such that each edge is drawn by a sequence of
contiguous axis-parallel line segments. Notice that a graph G has a 2-D[3-D] orthogonal drawing
only if ∆(G) ≤ 4[∆(G) ≤ 6]. An orthogonal drawing with no more than b bends per edge is called
a b-bend orthogonal drawing.

Biedl and Kant [2], and Liu, Morgana, and Simeone [7] showed that every planar 4-graph has
a 2-bend 2-D orthogonal drawing with the only exception of the octahedron, which has a 3-bend
2-D orthogonal drawing. Moreover, Kant [6] showed that every planar 3-graph has a 1-bend 2-D
orthogonal drawing with the only exception of K4. Nomura, Tayu, and Ueno [8] showed that every
outerplanar 3-graph has a 0-bend 2-D orthogonal drawing if and only if it contains no triangle
as a subgraph. On the other hand, Garg and Tamassia proved that it is NP-complete to decide
if a given planar 4-graph has a 0-bend 2-D orthogonal drawing [5]. Battista, Liotta, and Vargiu
showed that the problem can be solved in polynomial time for planar 3-graphs and series-parallel
graphs [1]. We show in Section 3 the following theorem.

Theorem 1. Every series-parallel 4-graph has a 1-bend 2-D orthogonal drawing. ut

Eades, Symvonis, and Whitesides [4], and Papakostas and Tollis [9] showed that every 6-graph
has a 3-bend 3-D orthogonal drawing. Moreover, Wood showed that every 5-graph has a 2-bend
3-D orthogonal drawing [11]. Nomura, Tayu, and Ueno [8] showed that every outerplanar 6-graph
has a 0-bend 3-D orthogonal drawing if and only if it contains no triangle as a subgraph. On
the other hand, Eades, Stirk, and Whitesides proved that it is NP-complete to decide if a given
5-graph has a 0-bend 3-D orthogonal drawing [3]. We show in Section 4 the following theorem.

Theorem 2. Every series-parallel 6-graph has a 2-bend 3-D orthogonal drawing. ut
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2 Preliminaries

A series-parallel graph is defined recursively as follows:

(1) A graph consisting of two vertices joined by a single edge is a series-parallel graph. The
vertices are the terminals.

(2) If G1 is a series-parallel graph with terminals s1 and t1, and G2 is a series-parallel graph with
terminals s2 and t2, then a graph G obtained by either of the following operations is also a
series-parallel graph:
(i) Series composition: identify t1 with s2. Vertices s1 and t2 are the terminals of G.
(ii) Parallel composition: identify s1 and s2 into a vertex s, and t1 and t2 into a vertex t.

Vertices s and t are the terminals of G.

A series-parallel graph G is naturally associated with a binary tree T (G), which is called a
decomposition tree of G. The nodes of T (G) are of three types, S-nodes, P -nodes, and Q-nodes.
T (G) is defined recursively as follows:

(1) If G is a single edge, then T (G) consists of a single Q-node.
(2-i) If G is obtained from series-parallel graphs G1 and G2 by the series composition, then the

root of T (G) is a S-node, and T (G) has subtrees T (G1) and T (G2) rooted at the children of
the root of G.

(2-ii) If G is obtained from series-parallel graphs G1 and G2 by the parallel composition, then
the root of T (G) is a P -node, and T (G) has subtrees T (G1) and T (G2) rooted at the children
of the root of G.

Notice that the leaves of T (G) are the Q-nodes, and an internal node of T (G) is either an
S-node or P -node. Notice also that every P -node has at most one Q-node as a child, since G is
a simple graph. If G has n vertices then T (G) has O(n) nodes, and T (G) can be constructed in
O(n) time [10].

3 Proof of Theorem 1 (Sketch)

Let G be a series-parallel 4-graph with terminals s and t. We generate for G several 1-bend 2-D
orthogonal drawings of distinct types depending on dG(s) and dG(t). The number of distinct types
ν(dG(s), dG(t)) is no more than 4 for every pair of dG(s) and dG(t). We denote by τ(dG(s), dG(t), i)
a type of drawing for G, where 0 ≤ i ≤ ν(dG(s), dG(t)). Fig. 1 shows the types of 1-bend 2-D
orthogonal drawings of G, where terminals are indicated by circles. We denote by Γi(G) a 1-bend
2-D orthogonal drawing of type τ(dG(s), dG(t), i) for G. The drawings Γi(G) are generated by
Algorithm 1 below.

Algorithm 1 (Outline)
Input: a series-parallel 4-graph G with terminals s and t.
Output: 1-bend 2-D orthogonal drawings Γi(G), 0 ≤ i ≤ ν(dG(s), dG(t)).
Step 0 Compute T (G).
Step 1 If G consists of a single edge, let Γ0(G) be a drawing of type τ(1, 1, 0) and Γ1(G) be a

drawing of type τ(1, 1, 1) for G.
Step 2 If G is the series composition of G1 and G2, drawings Γj(G1) and Γk(G2) are first re-

cursively generated for 0 ≤ j ≤ ν(dG1(s1), dG1(t1)) and 0 ≤ k ≤ ν(dG2(s2), dG2(t2)). Then for
each i, 1 ≤ i ≤ ν(dG(s), sG(t)), generate Γi(G) by combining appropriate Γj(G1) and Γk(G2)
as shown in Table 1.
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τ(1,1,0) τ(1,1,1) τ(1,1,2) τ(1,2,3) τ(1,2,4)τ(1,2,2)τ(1,2,1)

τ(1,3,2)τ(1,3,1) τ(1,4,1) τ(2,2,2)τ(2,2,1) τ(2,3,1) τ(2,3,2)

τ(2,4,1) τ(3,3,1) τ(3,3,2) τ(3,4,1) τ(4,4,1)

Fig. 1. Types of 1-bend 2-D orthogonal drawings, where τ(i, j, k) = τ(j, i, k).

Step 3 If G is the parallel composition of G1 and G2, drawings Γj(G1) and Γk(G2) are first
recursively generated for 1 ≤ j ≤ ν(dG1(s1), dG1(t1)) and 1 ≤ k ≤ ν(dG2(s2), dG2(t2)). Then
for each i, 1 ≤ i ≤ ν(dG(s), sG(t)), generate Γi(G) by combining appropriate Γj(G1) and
Γk(G2) as shown in Table 2. ut

The correctness of the algorithm is guaranteed by the following lemma.

Lemma 1. If G contains more than one edge, then for any τ(dG(s), dG(t), i), 1 ≤ i ≤ ν(dG(s),
dG(t)), there always exist a drawing Γj(G1), 0 ≤ j ≤ ν(dG1(s1), dG1(t1)), and a drawing Γk(G2),
0 ≤ k ≤ ν(dG2(s2), dG2(t2)), such that we can generate Γi(G) by combining Γj(G1) and Γk(G2)
with the only exception of τ(3, 3, 2) for G with edge (s, t). ut

The proof of the lemma is obvious from the tables 1 and 2 below, which show types of such Γj(G1)
and Γk(G2) for each type of Γi(G), where τ(i, j, k) is indicated by (i, j, k) in the tables. It is tedious
but easy to check the tables.

4 Proof of Theorem 2 (Sketch)

Let G be a series-parallel 6-graph with terminals s and t. We use a vector R(G) ∈ {+1,−1}3

to represent relative positions of terminals in the space. For vectors a = (a1, a2, a3) and b =
(b1, b2, b3), define that a ∗ b = (a1b1, a2b2, a3b3). Let D+ = {X,Y, Z}, D− = {−X,−Y,−Z},
D = D+ ∪ D−, and let DG(s) and DG(t) be subsets of D satisfying the following conditions:

1. |DG(s)| = dG(s) and |DG(t)| = dG(t).
2. There exist A ∈ DG(s) and B ∈ DG(t) such that A 6= −B.

The conditions above implies that the elements of DG(s) and DG(t) can be ordered A1, A2, . . . ,
AdG(s) and B1, B2, . . . BdG(t), respectively, such that Ai 6= −Bi for each i, 1 ≤ i ≤ min{dG(s), dG(t)}.
We denote by [DG(s)] and [DG(t)] such sequesces of elements. DG(s) and DG(t) are said to be
inner-directed if there exist A ∈ DG(s) and B ∈ DG(t) satisfying the following conditions:
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1. A ∈ D− and B ∈ D+

2. A 6= −B
3. If DG(s) − {A} 6= φ and DG(t) − {B} 6= φ then there exist A′ ∈ DG(s) − {A} and B′ ∈

DG(t) − {B} such that A′ 6= −B′.

A 2-bend 3-D orthogonal drawing Γ (G) of G is generated by Algorithm 2 in section 4.1.

4.1 Algorithm 2: 3D-DRAW(G, DG(s), DG(t), R(G)) (Outline)

3D-DRAW(G,DG(s), DG(t), R(G))
Input: a series-parallel 6-graph G with terminal s and t, DG(s), DG(t), and R(G)
Output: 2-bend 3-D orthogonal drawing Γ (G)
begin

Compute T (G)
if G consists of a single edge then draw Γ (G) depending on DG(s), DG(t), and R(G)
else

if G is the series composition of G1 and G2

SER-DECOM(G,G1, G2, DG(s), DG(t), R(G)) (in Section 4.1.1)
end if
if G is the parallel composition of G1 and G2,

PAR-DECOM(G,G1, G2, DG(s), DG(t), R(G)) (in Section 4.1.2)
end if
Γ (G1) =3D-DRAW(G1, DG1(s1), DG1(t1), R(G1))
Γ (G2) =3D-DRAW(G2, DG2(s2), DG2(t2), R(G2))
if G is the seires composition of G1 and G2,

SER-COM(Γ (G1), Γ (G2)) (in Section 4.1.3)
end if
if G is the parallel composition of G1 and G2,

PAR-COM(Γ (G1), Γ (G2)) (in Section 4.1.4)
end if

end if
end

4.1.1 SER-DECOM(G, G1, G2, DG(s), DG(t), R(G))

Input: G, G1, G2, DG(s), DG(t), R(G)
Output: DG1(s1), DG1(t1), DG2(s2), DG2(t2), R(G1), R(G2)
Step 1 Define that (XG, YG, ZG) = (X,Y, Z)∗R(G), D+

G = {XG, YG, ZG}, and D−
G = {−XG,−YG,

−ZG}.
Step 2 If DG(s) and DG(t) are inner-directed, then select A ∈ DG(s) and B ∈ DG(t) such that

A ∈ D−
G and B ∈ D+

G. Else select A ∈ DG(s) and B ∈ DG(t) such that A 6= −B.
Step 3 Output DG1(s1), DG1(t1), DG2(s2), DG2(t2), R(G1), and R(G2) depending on A and B

as follows:
Case 1 A ∈ D−

G, B ∈ D+
G :

Case 1-1 B ∈ {XG, ZG}: Let DG1(s1) = DG(s). If DG1(t1) ≤ 2, let DG1(t1) be any set
S such that |S| = DG1(t1) and S ⊆ D+

G − {−A}. If DG1(t1) ≥ 3, let DG1(t1) be any
set S such that |S| = DG1(t1) and D+

G ⊆ S ⊆ D − {−YG}. If DG2(s2) ≤ 3, let DG2(s2)
be any set S′ such that |S′| = DG2(s2), {−Y } ⊆ S′ ⊆ D−

G, and DG1(t1) ∩ S′ = ∅. If
DG2(s2) ≥ 3, let DG2(s2) be any set S′ such that |S′| = DG2(s2) and D−

G ⊆ S′ ⊆ D−S.
Let DG2(t2) = DG(t). Let R(G1) = R(G) and R(G2) = R(G).
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Case 1-2 B = YG: Let DG1(s1) = DG(s). If DG1(t1) ≤ 2, let DG1(t1) be any set S such
that |S| = DG1(t1) and S ⊆ D+

G − {−A}. If DG1(t1) ≥ 3, let DG1(t1) be any set S
such that |S| = DG1(t1) and D+

G ⊆ S ⊆ D − {−XG}. If DG2(s2) ≤ 3, let DG2(s2)
be any set S′ such that |S′| = DG2(s2), {−X} ⊆ S′ ⊆ D−

G, and DG1(t1) ∩ S′ = ∅. If
DG2(s2) ≥ 3, let DG2(s2) be any set S′ such that |S′| = DG2(s2) and D−

G ⊆ S′ ⊆ D−S.
Let DG(t2) = DG(t). Let R(G1) = R(G) and R(G2) = R(G).

Case 2 A ∈ D+
G, B ∈ D−

G:
Case 2-1 A = XG: Let DG1(s1) = DG(s). If DG1(t1) ≤ 2, let DG1(t1) be any set S such

that |S| = DG1(t1) and S ⊆ D+
G − {A}. If DG1(t1) ≥ 3, let DG1(t1) be any set S such

that |S| = DG1(t1) and D+
G ⊆ S ⊆ D − {−A}. If DG2(s2) ≤ 3, let DG2(s2) be any set

S′ such that |S′| = DG2(s2), {−A} ⊆ S′ ⊆ D−
G, and DG1(t1) ∩ S′ = ∅. If DG2(s2) ≥ 3,

let DG2(s2) be any set S′ such that |S′| = DG2(s2) and D−
G ⊆ S′ ⊆ D − S. Let

DG(t2) = DG(t). Let R(G1) = (−1,+1, +1) ∗ R(G) and R(G2) = (+1,−1,−1) ∗ R(G).
Case 2-2 A = YG: DG1(s1),DG1(t1), DG2(s2), and DG2(t2) are same as Case 2-1. Let

R(G1) = (+1, +1,−1) ∗ R(G) and R(G2) = (−1,−1,+1) ∗ R(G).
Case 2-3 A = ZG: DG1(s1),DG1(t1), DG2(s2), and DG2(t2) are same as Case 2-1. Let

R(G1) = (+1,−1, +1) ∗ R(G) and R(G2) = (−1, +1,−1) ∗ R(G).
Case 3 A ∈ D−

G, B ∈ D−
G:

Case 3-1 A = B = −ZG: Let DG2(t2) = DG(t). If DG2(s2) ≤ 2, let DG2(s2) be any set
S′ such that |S| = DG2(s2) and S ⊆ D−

G − {B}. If DG2(s2) ≥ 3, let DG2(s2) be any
set S′ such that |S| = DG2(s2) and D−

G ⊆ S′ ⊆ D − {XG}. Let DG1(s1) = DG(s). If
DG1(t1) ≤ 3, let DG1(t1) be any set S such that |S′| = DG1(t1), {X} ⊆ S′ ⊆ D+

G, and
DG2(s2)∩S = ∅. If DG1(t1) ≥ 3, let DG1(t1) be any set S such that |S| = DG1(t1) and
D+

G ⊆ S ⊆ D − S′. Let R(G1) = R(G) and R(G2) = (+1, +1,−1) ∗ R(G).
Case 3-2 A = B = −YG: DG1(s1),DG1(t1), DG2(s2), and DG2(t2) are same as Case 3-1.

Let R(G1) = R(G) and R(G2) = (+1,−1, +1) ∗ R(G).
Case 3-3 A = B = −XG: Let DG2(t2) = DG(t). If DG2(s2) ≤ 2, let DG2(s2) be any set

S′ such that |S| = DG2(s2) and S ⊆ D−
G − {B}. If DG2(s2) ≥ 3, let DG2(s2) be any

set S′ such that |S| = DG2(s2) and D−
G ⊆ S′ ⊆ D − {ZG}. Let DG1(s1) = DG(s). If

DG1(t1) ≤ 3, let DG1(t1) be any set S such that |S′| = DG1(t1), {ZG} ⊆ S′ ⊆ D+
G, and

DG2(s2)∩S = ∅. If DG1(t1) ≥ 3, let DG1(t1) be any set S such that |S| = DG1(t1) and
D+

G ⊆ S ⊆ D − S′. Let R(G1) = R(G) and R(G2) = (−1, +1, +1) ∗ R(G).
Case 3-4 A 6= B: Let DG1(s1) = DG(s). If DG1(t1) ≤ 2, let DG1(t1) be any set S such that

|S| = DG1(t1) and S ⊆ D+
G −{−A}. If DG1(t1) ≥ 2, let DG1(t1) be any set S such that

|S| = DG1(t1) and D+
G − {−A} ⊆ S ⊆ D − {−A}. If DG2(s2) ≤ 3, let DG2(s2) be any

set S′ such that |S′| = DG2(s2), {−A} ⊆ S′ ⊆ D−
G −{A}+{−A}, and DG1(t1)∩S′ = ∅.

If DG2(s2) ≥ 4, let DG2(s2) be any set S′ such that |S′| = DG2(s2) and D−
G + {−A} ⊆

S′ ⊆ D−S. Let DG(t2) = DG(t). Let R(G1) = R(G) and R(G2) = (−1,−1,−1)∗R(G).
Case 4 A ∈ D+

G, B ∈ D+
G:

Case 4-1 A = B = ZG: Let DG1(s1) = DG(s). If DG1(t1) ≤ 2, let DG1(t1) be any set S
such that |S| = DG1(t1) and S ⊆ D+

G − {A}. If DG1(t1) ≥ 3, let DG1(t1) be any set
S such that |S| = DG1(t1) and D+

G ⊆ S ⊆ D − {−Y }. If DG2(s2) ≤ 3, let DG2(s2)
be any set S′ such that |S′| = DG2(s2), {−Y } ⊆ S′ ⊆ D−

G, and DG1(t1) ∩ S′ = ∅. If
DG2(s2) ≥ 3, let DG2(s2) be any set S′ such that |S′| = DG2(s2) and D−

G ⊆ S′ ⊆ D−S.
Let DG(t2) = DG(t). Let R(G1) = (−1, +1, +1) ∗ R(G) and R(G2) = R(G).

Case 4-2 A = B = YG: Let DG1(s 1) = DG(s). If DG1(t1) ≤ 2, let DG1(t1) be any set S
such that |S| = DG1(t1) and S ⊆ D+

G − {A}. If DG1(t1) ≥ 3, let DG1(t1) be any set
S such that |S| = DG1(t1) and D+

G ⊆ S ⊆ D − {−ZG}. If DG2(s2) ≤ 3, let DG2(s2)
be any set S′ such that |S′| = DG2(s2), {−ZG} ⊆ S′ ⊆ D−

G, and DG1(t1) ∩ S′ = ∅. If
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DG2(s2) ≥ 3, let DG2(s2) be any set S′ such that |S′| = DG2(s2) and D−
G ⊆ S′ ⊆ D−S.

Let DG(t2) = DG(t). Let R(G1) = (+1,−1, +1) ∗ R(G) and R(G2) = R(G).
Case 4-3 A = B = XG: DG1(s1),DG1(t1), DG2(s2), and DG2(t2) are same as Case 4-1.

Let R(G1) = (−1, +1, +1) ∗ R(G) and R(G2) = R(G).
Case 4-4 A 6= B: If DG2(s2) ≤ 2, let DG2(s2) be any set S′ such that |S′| = DG2(s2),

S′ ⊆ D−
G − {−B}. If DG2(s2) ≥ 3, let DG2(s2) be any set S′ such that |S′| = DG2(s2)

and D−
G −{−B}+ {B} ⊆ S′ ⊆ D−{−B}. Let DG(t2) = DG(t). Let DG1(s1) = DG(s).

If DG1(t1) ≤ 3, let DG1(t1) be any set S such that |S| = DG1(t1) and {−B} ⊆ S ⊆
D+

G −{B}+{−B}, and DG1(t1)∩S′ = ∅. If DG1(t1) ≥ 4, let DG1(t1) be any set S such
that |S| = DG1(t1) and D+

G + {−B} ⊆ S ⊆ D − S′. Let R(G1) = (−1,−1,−1) ∗ R(G)
and R(G2) = R(G).

4.1.2 PAR-DECOM(G, G1, G2, DG(s), DG(t), R(G))

Input: G,G1, G2, DG(s), DG(t), R(G)
Output: DG1(s1), DG1(t1), DG2(s2), DG2(t2), R(G1), R(G2)
Step 1 Define that (XG, YG, ZG) = (X,Y, Z)∗R(G), D+

G = {XG, YG, ZG}, and D−
G = {−XG,−YG,

−ZG}.
Step 2 Construct [DG(s)] = (A1, A2, . . . , ADG(s)) and [DG(t)] = (B1, B2, . . . , BDG(t)) such that

Ai 6= −Bi, 1 ≤ i ≤ min{dG(s), dG(t)}. If DG(s) and DG(t) are inner-directed, we assume
without loss of generality that A1 ∈ D−

G and B1 ∈ D+
G.

Step 3 Output DG1(s1), DG1(t1), DG2(s2), DG2(t2), R(G1), and R(G2) depending on dG1(s1)
and dG1(t1) as follows:
Case 1 k1 = dG1(s1) ≤ dG1(t1):

Case 1-1 e = (s, t) ∈ G1 : DG1(s1) = {A1, A2, . . . , Ak1},
DG1(t1) = {B1, B2, . . . , Bk1 , Bk1+DG2

(t2)+1, . . . , BDG(t)},
DG2(s2) = {Ak1+1, Ak1+2, . . . , ADG(s)}, DG2(t2) = {Bk1+1, Bk1+2, . . . , Bk1+DG2

(t2)},
R(G1) = R(G2) = R(G).

Case 1-2 e = (s, t) ∈ G2 : DG1(s1) = {A2, A3, . . . , Ak1+1},
DG1(t1) = {B2, B3, . . . , Bk1+1, Bk1+DG2

(t2)+1, . . . , BDG(t)},
DG2(s2) = {A1, Ak1+2, Ak1+3, . . . , ADG(s)},
DG2(t2) = {B1, Bk1+2, Bk1+3, . . . , Bk1+DG2

(t2)}, and R(G1) = R(G2) = R(G).
Case 2 dG1(s1) ≥ dG1(t1) = k1 :

Case 2-1 e = (s, t) ∈ G1 : DG1(s1) = {A1, A2, . . . , Ak1 , Ak1+DG2
(s2)+1, . . . , ADG(s)},

DG1(t1) = {B1, B2, . . . , Bk1}, DG2(s2) = {Ak1+1, Ak1+2, . . . , Ak1+DG2
(s2)},

DG2(t2) = {Bk1+1, Bk1+2, . . . , BDG(t)}, and R(G1) = R(G2) = R(G).
Case 2-2 e = (s, t) ∈ G2 : DG1(s1) = {A2, A3, . . . , Ak1+1, Ak1+DG2

(s2)+1, . . . , ADG(s)},
DG1(t1) = {B2, B3, . . . , Bk1+1}, DG2(s2) = {A1, Ak1+2, Ak1+3, . . . , Ak1+DG2

(s2)},
DG2(t2) = {B1, Bk1+2, Bk1+3, . . . , BDG(t)}, and R(G1) = R(G2) = R(G).

4.1.3 SER-COM(Γ (G1), Γ (G2))

Input: Γ (G1), Γ (G2)
Output: Γ (G)
Step 1 Translate Γ (G1) and Γ (G2) so that t1 and s2 can be identified.
Step 2 Generate Γ ′(G) by identifying t1 with s2.
Step 3 Generate Γ (G) by modifying Γ ′(G) so that there are no overlaps.
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4.1.4 PAR-COM(Γ (G1), Γ (G2))

Input: Γ (G1), Γ (G2)
Output: Γ (G)
Step 1 Modify and translate Γ (G1) and Γ (G2) so that the terminals can be identified.
Step 2 Generate Γ ′(G) by identifying s1 with s2, and t1 with t2.
Step 3 Generate Γ (G) by modifying Γ ′(G) so that there are no overlaps.

4.2 Analysis of Algorithm 2

Omitted.

5 Concluding Remarks

It should be noted that K2,3, which is a series-parallel 3-graph, has no 0-bend 2-D orthogonal
drawing. It is an interesting open problem to decide if every series-parallel 6-graph has a 1-bend
3-D orthogonal drawing.
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Γi(G) Γj(G1) Γk(G2) Γi(G) Γj(G1) Γk(G2) Γi(G) Γj(G1) Γk(G2)

(1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 2, 1) (2, 2, 2) (2, 2, 1) (1, 3, 2)
(1, 1, 1) (2, 1, 2) (1, 3, 1) (1, 2, 1) (2, 2, 1) (2, 3, 1)
(1, 1, 1) (3, 1, 2) (1, 3, 1) (1, 1, 1) (1, 3, 1) (2, 3, 1) (1, 3, 2)
(1, 2, 2) (1, 1, 1) (1, 1, 1) (2, 3, 1) (2, 3, 2) (2, 1, 1) (1, 3, 1)
(1, 2, 1) (2, 1, 2) (1, 1, 1) (3, 3, 1) (2, 1, 2) (2, 3, 2)
(1, 3, 2) (1, 1, 1) (1, 2, 2) (1, 3, 1) (2, 1, 1) (3, 3, 1)

(1, 1, 2) (1, 1, 1) (1, 1, 1) (1, 2, 1) (2, 3, 1) (2, 2, 2) (1, 3, 2)
(1, 1, 1) (2, 1, 1) (1, 3, 1) (1, 3, 2) (2, 2, 1) (2, 3, 2)
(1, 1, 1) (3, 1, 1) (1, 3, 2) (1, 1, 1) (1, 3, 1) (2, 3, 2) (1, 3, 2)
(1, 2, 1) (1, 1, 1) (1, 1, 1) (2, 3, 1) (2, 4, 1) (2, 1, 2) (1, 4, 1)
(1, 2, 1) (2, 1, 1) (1, 1, 1) (3, 3, 1) (2, 1, 2) (2, 4, 1)
(1, 3, 1) (1, 1, 1) (1, 2, 2) (1, 3, 2) (2, 1, 2) (3, 4, 1)

(1, 2, 1) (1, 1, 1) (1, 2, 1) (1, 2, 2) (2, 3, 1) (2, 2, 1) (1, 4, 1)
(1, 1, 1) (2, 2, 1) (1, 3, 2) (1, 3, 2) (2, 2, 1) (2, 4, 1)
(1, 1, 1) (3, 2, 1) (1, 4, 1) (1, 1, 1) (1, 4, 1) (2, 3, 1) (1, 4, 1)
(1, 2, 1) (1, 2, 2) (1, 1, 1) (2, 4, 1) (3, 3, 1) (3, 1, 2) (1, 3, 2)
(1, 2, 1) (2, 2, 1) (1, 1, 1) (3, 4, 1) (3, 1, 2) (2, 3, 1)
(1, 3, 1) (1, 2, 2) (1, 2, 1) (1, 4, 1) (3, 1, 2) (3, 3, 1)

(1, 2, 2) (1, 1, 1) (1, 2, 2) (1, 2, 1) (2, 4, 1) (3, 2, 1) (1, 3, 2)
(1, 1, 1) (2, 2, 1) (1, 3, 1) (1, 4, 1) (3, 2, 1) (2, 3, 1)
(1, 1, 1) (3, 2, 1) (2, 2, 1) (2, 1, 2) (1, 2, 2) (3, 3, 1) (1, 3, 2)
(1, 2, 2) (1, 2, 2) (2, 1, 2) (2, 2, 1) (3, 3, 2) (3, 1, 1) (1, 3, 1)
(1, 2, 2) (2, 2, 1) (2, 1, 2) (3, 2, 1) (3, 1, 1) (2, 3, 1)
(1, 3, 2) (1, 2, 2) (2, 2, 1) (1, 2, 2) (3, 1, 2) (3, 3, 2)

(1, 2, 3) (1, 1, 1) (1, 2, 2) (2, 2, 1) (2, 2, 1) (3, 2, 1) (1, 3, 1)
(1, 1, 1) (2, 2, 2) (2, 3, 1) (1, 2, 2) (3, 2, 2) (2, 3, 2)
(1, 1, 2) (3, 2, 1) (2, 2, 2) (2, 1, 1) (1, 2, 1) (3, 3, 2) (1, 3, 2)
(1, 1, 0) (3, 2, 2) (2, 1, 1) (2, 2, 1) (3, 4, 1) (3, 1, 1) (1, 4, 1)
(1, 2, 1) (1, 2, 2) (2, 1, 1) (3, 2, 1) (3, 1, 1) (2, 4, 1)
(1, 2, 2) (2, 2, 2) (2, 2, 1) (1, 2, 1) (3, 1, 2) (3, 4, 1)
(1, 3, 1) (1, 2, 2) (2, 2, 1) (2, 2, 2) (3, 2, 1) (1, 4, 1)

(1, 2, 4) (1, 1, 1) (1, 2, 1) (2, 3, 1) (1, 2, 1) (3, 2, 1) (2, 4, 1)
(1, 1, 1) (2, 2, 2) (2, 3, 1) (2, 1, 2) (1, 3, 2) (3, 3, 1) (1, 4, 1)
(1, 1, 1) (3, 2, 2) (2, 1, 2) (2, 3, 1)
(1, 2, 1) (1, 2, 1) (2, 1, 2) (3, 3, 1)

Table 1. Series composition.

Γi(G) Γj(G1) Γk(G2) Γi(G) Γj(G1) Γk(G2) Γi(G) Γj(G1) Γk(G2)

(2, 2, 1) (1, 1, 1) (1, 1, 1) (1, 2, 2) (2, 1, 3) (4, 4, 1) (1, 1, 1) (3, 3, 2)
(2, 2, 2) (1, 1, 1) (1, 1, 2) (3, 3, 2) (1, 1, 2) (2, 2, 2) (1, 1, 2) (3, 3, 1)
(2, 3, 1) (1, 1, 1) (1, 2, 1) (1, 2, 1) (2, 1, 4) (1, 2, 1) (3, 2, 2)
(2, 3, 2) (1, 1, 1) (1, 2, 4) (3, 4, 1) (1, 1, 1) (2, 3, 2) (1, 3, 1) (3, 1, 1)
(2, 4, 1) (1, 1, 1) (1, 3, 1) (1, 2, 1) (2, 2, 2) (2, 2, 2) (2, 2, 2)
(3, 3, 1) (1, 1, 1) (2, 2, 2) (1, 3, 1) (2, 1, 1)

Table 2. Parallel composition.
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