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ABSTRACT

This paper proposes a parallel processing scheme of
variable-step and variable-order implicit integration algorithnm,
Backward Differentiation Formula (BDF), for solving systems
of stiff nonlinear differential-algebraic equations; The BDF
method composeé of processes, namely, transformation of nonlinear
ODE to nonlinear algebraic equations, solution of nonlinear
algebraic equations by Newton-Raphson method and computation of
the next step size and order. The effectiveness and practicality
of the proposed schenme vere successfully tested on an actual

multiprocessor system OSCAR
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1. Introduction

Many dynamic system simulations involve the
solution of a set of stiff nonlinear
differential-algebraic equations which require
very high computing power to achieve the
required performance. To obtain high computing
power, the use of parallel processing [1-2] has
attracted much attention. Various parallel
processing schemes for solving a set of
differential equations have been proposed [3-8].
These approaches can be divided into two basic
categories: namely parallelization of the well-
known sequential integration algorithms [3-5]
and development of parallel algorithms [6-8].
This paper concerns only the former one because
comparing to sequential integration algorithms,
most parallel algorithms provide poor stability
characteristics [9].
moderately stiff this is a concern [4]. ' Among
parallelization of sequential integration
algorithms that have been proposed, the
differences lie in the choice of a task size.
For example, Yura[3] and Franklin[4] used a
large task size level or equations segmentation
level. Yoshikawa [5] used a small task size
level where each fundamental arithmetic
operation was assigned to one processor. The
common difficulty left unsolved of these
approaches was the lack of methods which
allocate generated tasks onto an arbitrary
number of processors in an optimal manner. The
other problem is the use of integration methods
which are not suitable for stiff problems
because solution of stiff differential equations
require implicit methods. In general, implicit
techniques result in systems of nonlinear
algebraic equations to be solved at each
consecutive time level. Between consecutive
iterations, there exist data dependencies [10-
11} from the end of an iteration to the
beginning of the next iteration. These data
dependencies are more complicated when varying
order and step size integration method is
employed. Taking into consideration these facts,
parallel processing can be carried out Iin a
block of arithmetic assignment statements or
basic block. However, the parallel processing of
the basic block on a multiprocessor system has
been thought to be very difficult since data
transfer overhead and synchronization overhead
are relatively large.

This paper proposes the parallel processing
scheme of the solution of stiff nonlincar
differential equations. The implicit backward

differentiation formula (BDF)[12] is used to
transform nonlinear ODE to nonlinear algebraic
equations. The generated nonlinear algebraic
equations is solved by Newton-Raphson method
which involve solution of linear equations. The
proposed scheme parallelizes full parts of BDF
in statement level or relative fine grain task.
The scheme consists of the following processes:
task partitioning and generation of parallel
intermediate codes, block partitioning, data
flow analysis and task graph representation,
task scheduling and machine code generation.

2. Solution of Differential-Algebraic Equations

This section describes very briefly the use
of backward differential formula algorithm for
solving a system of differential-algebraic
equations, (For further details, the reader is
advised to refer to the literature [12]). The

For systems which are

scheme uses the backward differential formula
for discretization in time domain and the
Newton-Raphson method to solve the resulting
nonlinear algebraic equations. The system of
nonlinear differential equations is usually
described by a set of differential-algebraic
equations

f(x,%,t) = 0 (1)

where f and x are vectors. Suppose the solution
x(t) of Eg.(1) had been found at t=t

pr--+» and tp,_p, where the step size %

tj need not %e uniform. If x(t;) is denote& %y
xj, the solution xp,, of Eq. (11 at t=t;,; must
sgtisfy

f(xn-tl'i(tn'el)'tml) =0 (2)

If Xp+1 denotes the approximate value of
X(tn+1)’ the BDF of order k is given by

ns1= "772%“’Xn+1—1=g(xn+1) 1sks6  (3)

Substituting Eq.(3) into Eq.(2) obtains
£ (Xps1-8(Xpaq) v tpeg) = 0 T)

Eq.(4) is now a system of nonlinear algebraic
equations in term of the unknown variable xp,;.
Hence, the solution Xp+1 10 Eq.(1) can be found
by solving Eq.(4) using the Newton-Raphson
algorithm. The solution of nonlinear algcbraic
equations Involve solution of sparse linear
equations to be solved at each iteration. In
solving sparse llnegr equations, Ax = b, the
symbolic code generation method [13] has been
used in LU decomposition and back and forward
substitution. The method of generates codes for
these calculation - beforehand provide explicit
data dependencies which can be identified by the
use of data flow analysis.

When the Newton-Raphson iteration converges
to the solution of current time, local
truncation errors are estimated. If the errors
are within some tolerance, the next step size
and order are computed. In other case, the step
size is cut to a smaller value and the analysis
is repeated.

3. Architecture of OSCAR

This section describes the architecture of
the multiprocessor system OSCAR [14] used in the
implementation. OSCAR is a hierarchical
multiprocessor system which has a plurality of
processor clusters as shown in Fig.1. One
processor cluster(PC) involves up to 16
processor elements(PEs), 3 common memories, a
local control processor and 3 shared buses. Each
PE consists of a 32-bit custom-made RISC-like
processor with 64 general purpose registers
which executes all instructions ( about 90
instructions in one clock (200ns)) including a
few floating point operation, as well as a 256-
kw local data memory, a 2-kw dual port memory to
communicate with other PEs, two banks of 128-kw
instruction memory and a direct memory access
(DMA) controller. The one-clock execution of all
instructions facilitates precise estimation of
task processing time needed for task scheduling.
For interprocessor communication, three types of
data transfer modes. Namely, broadcast mode,
direct data transfer mode to a dual port memory




of another PE and indirect data transfer mode
via a common memory which accepts simultaneous
accesses from three buses are provided. The data
transfer speed of the three buses totals to 60
MByte/s.
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Fig.1l Architecture of OSCAR

4. Parallel Processing Scheme

This' section describes the process to
achieve parallel processing of the procedure in
section 2 on a multiprocessor system. The scheme
composes of five steps: (1) task partitioning
and parallel intermediate code generation (2)
block partitioning, (3) data flow analysis and
task graph representation, (4) task scheduling,
and (5) machine code generation. The details are
as follows:

4.1 Task Partitioning and parallel code
generation

In order to solve a problem in parallel
processing, a solution process has to be
decomposed into tasks (the unit assigned to the
processor elements) in such a way that
parallelism is extracted to the maximum extent
and the overhead related with data transfer and
synchronization is minimized. There exists no
general rule applicable to all applications for
the best selection of task granularity.
Attention must be given to such factors as the
ratio of processor speed to interprocessor data
transfer speed, the size and parallelism
inherent to the problem in hand, and
complexities of scheduling mechanisms [15]. 1In
other words, the task granularity must be chosen
prudently with careful consideration given to
the multiprocessor system to be used.

In the present application, the statement
level granularity or relatively fine granularity
has been chosen taking into account of the
processing capability and data transfer speed of
the multiprocessor system employed.

For specifying an efficient task size and
also ease of implementation on OSCAR, a special
purpose parallel intermediate 1language 1is
developed. The language has a format as shown in
Fig.2. An operator can have as many operands as
needed. Each task is separated by an assignment
operator(:= The control statements, viz.

OPCODE | OPERAND 1 OPERAND 2 e OPERAND N

Fig.2 Format of a parallel Intermedlate language

WHILE, REPEAT-UNTIL and IF-THEN-ELSE are
implemented.
As an example, an arithmetic equation

3
T = f‘v__,l avbi (5)

can be written in the parallel intermediate
language as follows:

t+ a; by a; by ag Dy
™

The above two lines are considered as a task.
The meaning of the first 1line is the same as
that of the right hand side of Eq.(5). The
second line, t-1 1s the result of the
calculation of a line before this line.
Therefore, the meaning of the second line is the
assignment of the value of the result calculated
in the line before this line into the variahjle
T. With the intermediate language, it is also
easy to convert to a triple form which is used
in machine code generation process. For ease of
utilization in solving a wide variety of linear
and nonlinear differential- algebraic systems,

an automatic parallel intermediate code
generator has also been developed. After the
differential-algebraic equations and its
Jacobian matrix are put into the systenm,
parallel intermediate codes are generated
automatically. Fig.3 shows an example of
generated tasks .for the Crout algorithm used for
solving a system of linear equations in the
Newton-Raphson iteration process. Each element
a of the matrix is considered as a task. As
sﬁgwn in the figure, a total of seventeen tasks
are generated for the Crout algorithm including

. the triangulation process and the forward and

backward substitution processes.

4.2 Block Partitioning

A block is defined as a sequence of
consecutive statements in which the flow of
control enters at the beginning and leaves at
the end without halt or possibility of branching
except at the -end. Each block 1s connected by
edges that represent the flow of control. The
information about each block is represented by
a record consisting of a count of the number of
triples in the block, followed by a pointer to
the leader (first triple) of the block, and by a
l1st of predecessors and successors of the
block. In each block, the execution order of
tasks depends on the data dependencies between
the tasks, not on the order of programming.
Using this concept, the tasks in each block can
be scheduled and executed in parallel. To ensure
that all of the tasks in the same block are
executed before the execution of the tasks in a
successor block or the repetitive execution of
the tasks in the same block, a barrier
synchronization code is appended at the end of
each block. The information obtained from the
determination of blocks and barrier
synchronization are utilized to reduce overheads
in machine code generation process.
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Flg.3 An example of generated tasks

4.3 Data Flow Analysis and Task Graph
Representation

This process begins with data flow
analysis [10-11] of generated tasks, followed by
the description of task precedence relations by
the so called task graph which essentially is a
directed acyclic graph (DAG). The precedence
constraints represent the restrictions existing
among tasks regarding the execution order of
tasks. The precedence relation can be examined
by the data flow analysis among tasks. The
example of task graph is shown in Fig.4. Each
node in a task graph stands for a task and an

arc between a pair of nodes for the precedence
constraint. Nodes 0 and 20 are not actual nodes
but dummy nodes introduced for the sake of
convenience. They represent the entry node and
the exit node, respectively. The flgure beside
each node represents the estimated processing
time of the corresponding task.

Once a task graph is generated, the minimum
possible processing time . achieved by parallel
processing of a set of tasks (the marginal time
that cannot be shortened even 1f as many
processors as wanted are employed in parallel)
can be estimated as the critical path length t.
of the task graph. In Fig.4, the critical patﬁ
is shown by double-line segments.

4.4 Task Scheduling )

In order to process a set of tasks on a
multiprocessor system efficiently, the
assignment of tasks onto the parallel processors
and the execution order among the tasks assigned

multiprocessor system, the

Flg.4 An example of task graph

to the same processor have to be determined
optimally. The determination of the optimal
assignment and execution order can be treated as
the traditional multiprocessor scheduling
problem of which the objective function is the
minimization of the parallel processing time
or schedule length [16]1[17]. This problen,
however, has been known as a "strong" NP-hard
problem [15]. With this fact in mind, a
practical heuristic algorithm named CP/MISF {15]
has been proposed. The algorithm can provide
very precise approximate solutions for task
allocation and its result has been used for
generating machine codes.

4.5 Machine Code Generation

For the efficient execution on an actual
machine codes are
generated using all of the information obtained
from the previous processes. The information
allows us to minimize synchronization overhead,
data transfer overhead and to efficiently use
registers to pass the shared data among the
tasks assigned to the same processor. For
example, the scheduled results give the
information about tasks to be executed on each
processor element and the execution order of
tasks on the same processor element allow
efficiently use of the registers for passing
data when the tasks allocated to the same
processor element. The information from a task
graph and a block determination indicate how
and when data transfer will occur and where a
synchronization code is necessary. It can also

give an estimate of waiting time of the task in
any processors for the data from other tasks
assigned to the other processors. One of the
major difficulties common to all multiprocessor
structures is the sharing of the required data
between processors. To reduce the amount of
sharing to a minimum, only the data required by
more than one processor is shared.

Although OSCAR has both the local and
common memories, the cost to access the data
from the common memory is more expensive than
that from the local memory. To achieve high
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speed computation, the machine codes are
generated using only local memory and data
transfer is performed using dual port memory.
Each processor can check the completion of
preceding tasks by checking the flags in its
dual port memory without having to access to any
common bus. This approach helps reduce bus
conflict which arise from bus access for
checking the completion of preceding tasks.
"version number” method and the barrier
synchronization method are employed for
synchronization among tasks. The version number
corresponds to the number of times of iterations
or integration steps. Each "writer" task updates
the version number to the number of current
integration step for itself after it finishes
writing shared data. And each "reader" task
checks the version number if the number is the
same as number of current integration step to
the reader task. All processor elements (PE's)
have the same version number during one
integration step and update or increase the
number at the end of the integration step.
Updating the version number on each PE by
respective PE's allows us to eliminate the need
to update the version number attached to each
shared data when the next integration step is
started. Therefore, the version number method
can minimize the frequency of access to common
buses for task synchronization in this
application.

vl-vs = 0;
vl-v2-vd = 0;
v2-vr = 0;
v2-ve = 03
1s-1d = 0;
irede-1d = 03
vs-1 = 0y
1.0E-5« (exp{10svd)-1}-1d = 0;
10#ir-vr = 0;
1.0E-042(dve/dL)-ic =

= 15-0.0001 = 0;
E1-10 = 0;
E2-10 = 0;
3.3E-dwvri-irl = 0;
5.0F-5evr2-1r2 = 0
0.01428evr3-1r3 = 0;
2.00-4evrl1-1711 = 03
3.08-3avrel-iretl = 0
6.6E-5#vrd-Ir4 = 0;
5.0E-4svr5-1r5 = 0;
5.0E-5avr6-1r6 = 0;
0.01428#vr7-1r7 = 0;
2.0E-4evrl2-1rl12 = 0;
3.3E-3+vre2-fre2 = 0;
6.6E-5evr8-1r8 = 0;
{11-0,98+1d1 = 0;
112-0.98+1d2 = 0;
1.0E-5#(exp(10+vdl)-1)-1d1
1.0E-5#(cxp(10svd2)-1)-1d2
1.0E-6#(dvcl/dL)~fcl = 0;
1.0E-6+(dvc2/dt)-ic2 = 0;
vi-vs = 0;
El-v2 = 0;
F2-v7 = ¢;
vri-vl = 0;
vr2-visvd = 0
vrd-vievd = O
vrll-v2evd = 0;

0

,
o
R I I R

0;

case 1

vr5-v6 = 0;
vr6-v6+v8 =
vr7-v6+v9 = 0;
vrl2-v7+v8 = 0;
vre2-vio = 0;

vr8-v8 = 0;

vil-v3evd = 0;
vi2-vBevd = 0;
vill-v4:v5 = 0;
vd2-vosvio = 0;
vel-vs = 0

ve2-vio = o
Irisdr2elrd-Is = 0;
1ETedril = 0;
Iraefti-irti-tr2 = 0;
1d1-111-1r3 = 0;
frel-1di+lc = 0;
1r5-1r4+fr6+ir7 = 0;
1E2+1r12 = 0;
f12+1r8-1r12-1r6 = 0;
1d2-1r7-112 = 0;
Ire2-1d2-1e2 = 0;

case 4

Flg.5 Examples of differential-algebraie cqualions

no

The machine codes for each PE generated in
the way mentioned above are loaded onto the
local instruction memory of each PE and executed
asynchronously. The six steps of the proposed
parallel processing scheme described in this
section can be performed automatically using a
speclal purpose compiler.

5. Performance Evaluation on OSCAR

The performance of the proposed parallel
processing scheme was evaluated for four cases
of simultaneous differential equations with

varying numbers of equations (10, 16, 27 and 52
equations). The complete lists of the equations
for case 1 and case 4 are shown in Fig.5.

The tests were run on OSCAR using a UNIX-
based workstation for machine code generation.
The results of measured parallel processing time
plotted against the number of processor elements
are shown in Table 1. Fig.6 demonstrates the
effectiveness of the present parallel processing
scheme for the four cases. In case 4, for
example, the processing time with 1 PE (5.74
seconds) is reduced to 2.98 seconds with 3 PEs
(reduced to 51.9%) and further to 1.46 seconds
with 8 PEs (25.4%). Also notice that the
reduction ratio is marked for larger problems.

Table 1. Measured parallel processing Llme and

speed up factor

S§P : Speed up lactor
Thme : Sccond
No. Case 1 Case 2 Case 3 Case 4
PE .
Time| SP | Time| SP [Time|[ SP | Time| SP
1 1.1911.00 2.49(1.00 { 3.16]1.00] 5.74[1.00
2 10.83[1.43] 1.72]1.44 | 2.25|1.40| 3.83(1.49
3 |0.70[1.70] 1.27{1.96 | 1.72}1.83 | 2.98(1.92
4 0.5912.01] 1.04(2.39 | 1.40/2.25| 2.53]2.26
5 [0.52]2.28]0.92(2.70 | 1.20{2.63( 2.02}{2.84
6 [0.47]2.53] 0.83(3.00 1.08|2.92] 1.81}3.17
7 10.46(2.58| 0.7713.23 | 0.97(3.25] 1.63]|3.52
8 10.45{2.64] 0.73]3.41 ] 0.90(3.51] 1.46(3.93
0;
0;
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Fig.6 Execution time ratio and number of processors
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The method of code generation employed in
the proposed scheme is known to be executed much
faster than other techniques in sequential
computer. So that the speed-up of the scheme as
shown in the above result may well be very
useful in practical applications.

6. Conclusions

A parallel processing scheme for solving a
system of stiff nonlinear differential-algebraic
equations on a multiprocessor was proposed. The
scheme composes of five steps which are task
partitioning and parallel intermediate code
generation, block partitioning, data flow
analysis and task graph representation, task
scheduling, and machine code generation. The
proposed scheme was shown to provide efficient
parallel processing on an actual multiprocessor
system for varying numbers of processor
elements. It is expected that the effectiveness
and practicality of the proposed scheme will be
improved still further by employing faster
interprocessor connection media.
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