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What Can Data-driven Calibration Do
for 6DOF Inertial Odometry?

Huakun Liu1,a) Monica Perusqúıa-Hernández1,b) Naoya Isoyama1,c)

Hideaki Uchiyama1,d) Kiyoshi Kiyokawa1,e)

Abstract: For low-cost IMU, the uncalibrated bias and noise will quickly propagate 6DOF odometry errors
over time. This paper proposes a data-driven accelerometer calibration method based on a dilated convo-
lution network. Then, with a state-of-the-art gyroscope calibration method, we comprehensively analyze
the impact of data-driven calibration on 6DOF inertial odometry. The experimental results show that our
data-driven accelerometer calibration can reduce the bias by a factor of 5 to 10 and decreases the noise by
a factor of 2 to 5. Through our exhaustive evaluations and analysis of data-driven calibration methods, the
primary finding is that the data-driven calibration methods can slow down the error growth rate by 40-200
times. However, the effect of accelerometer calibration is only noticeable after calibrating the gyroscope.
This fact would be experimental support for the design of future data-driven 6DOF inertial odometry.
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1. Introduction

Six degrees of freedom (6DOF) inertial odometry is a

process that uses an inertial measurement unit (IMU) to

track the 3D space position and 3D orientation of the track-

ing target relative to its starting pose. An IMU consists

of a triaxial accelerometer that measures acceleration and

a triaxial gyroscope that measures the angular velocity in

the body frame. The 6DOF inertial odometry based on

sensor fusion is widely used in intelligent aerial robots [1],

underwater drone navigation [2, 3], and a variety of other

applications [4–6]. Existing methods typically rely on a

high-precision IMU to achieve highly-accurate 6DOF inertial

odometry [7]. However, the high cost limits its application

scenarios.

Over the last two decades, low-cost, small-size microelec-

tromechanical system (MEMS) IMUs are installed in various

smart devices, such as smartphones, AR/VR glasses, and

drones. Accordingly, they have enabled an ever-increasing

diversity of applications based on inertial sensors [8–10]. In

particular, recent research has shown that integrating in-

ertial sensors with machine learning techniques is able to

achieve highly accurate pedestrian dead reckoning, a 2D

space 3DOF inertial odometry [11, 12]. However, the rapid

accumulation of the errors from noise and biases of IMU
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signals makes 6DOF inertial odometry a challenge.

The MEMS IMU errors include scale factor, axis misalign-

ment, zero bias, and noise. During the integration process,

these errors explode exponentially with time. Hence, it is

necessary to perform IMU calibration to measure the error

parameters as accurately as possible. Classical calibration

methods, such as the multi-position method, can accurately

identify the unknown error parameters, remove errors, and

reduce noise [13]. However, they have strict requirements

for expensive experimental equipment or complex setups.

Recent data-driven-based calibration methods, such as

Denoising IMU Gyro (DIG) [14] and Temporal Convolu-

tional Network Denoising IMU Gyro (TCN-DIG) [15] use

supervised learning to directly output the target correction

term, i.e., bias and noise. They demonstrated the effec-

tiveness of data-driven calibration methods. However, only

gyroscope calibration is involved. Engelsman et al. did an

exhaustive literature review of data-driven MEMS-IMU cal-

ibration techniques [16]. They showed that data-driven ac-

celerometer calibration is more challenging than data-driven

gyroscope calibration. This is because gyroscope data is self-

contained, and the offset can be simply optimized to zero. In

contrast, an accelerometer measures the specific force that

contains both linear acceleration and gravity. In this re-

view, they also proposed four data-driven models based on

LSTM, RNN, GRU, and kNN to calibrate accelerometer sig-

nals. However, they only verified the proposed methods on

static and simulated data. In addition, all the data-driven

calibration methods are limited to validating the improve-

ment on the original signal data or the orientation without

actually analyzing how the method affects the inertial odom-
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etry results.

To fill this gap, we propose a data-driven accelerometer

calibration method based on a dilated convolution network.

We design a new loss function for training the model from

the ground truth trajectory. Then, we evaluate the method

using a public dataset that captured with a micro aerial ve-

hicles (MAV). Furthermore, we explore the impact of data-

driven calibration methods on odometry with a state-of-the-

art data-driven gyroscope calibration method. To the best

of our knowledge, this is the first detailed evaluation of the

data-driven calibration methods on 6DOF inertial odome-

try. The main contributions of this paper are as follows:

• An accelerometer calibration method based on a dilated

convolution network for calibrating real and dynamic

motion data.

• A reasonably designed mean-variance loss function

based on the sensor error model for training the net-

work.

• A comprehensive analysis on the impact of both data-

driven gyroscope and accelerometer calibration meth-

ods on the 6DOF inertial odometry. The evaluation

from sensor readings comparison to position estimation

reveals the secret of data-driven calibration methods.

2. Related Work

Calibration should be conducted before or during the esti-

mate process to suppress the negative impact of IMU errors

on inertial odometry results. MEMS IMU calibration can be

divided into two categories: classical calibration and data-

driven calibration.

2.1 Classical Calibration

Classical calibration methods use parameter state estima-

tion algorithms, such as least squares [17], maximum likeli-

hood estimation [18] to solve the error coefficient by fusing

the IMU readings and external reference information. They

are further divided into two categories: non-autonomous and

autonomous calibration [19], based on the source of reference

information. The reference information of non-autonomous

calibration is obtained from high-precision equipment such

as high-precision turntables [13]. Autonomous calibrations

rely on the external reference excitation, such as the local

gravity, magnetic fields, the Earth’s rotation rate. For de-

tails about traditional calibration, a survey on MEMS iner-

tial sensor calibration is a reference [19].

2.2 Data-driven Gyroscope Calibration

Deep learning has provided new possibilities for unimodal

position estimation from IMU. For instance, it is used to

extract latent features from IMU signals to estimate the ve-

locity [11], orientation [20], and displacement [21–24]. These

methods have seen great success in 6DOF inertial odometry

owing to avoiding the accumulation of errors caused by the

integration process.

Additionally, using data-driven deep learning to calibrate

IMU has become popular. In [25], the first LSTM-RNN-

based denoising method was proposed to denoise IMU gyro-

scope signals. Compared with an autoregressive and moving

average model, the standard deviation of the denoised sig-

nals decreased by at most 42.4% with deep learning. Bras-

sard et al. proposed a convolutional neural network to pre-

dict the gyroscope correction term, i.e., zero bias and noise,

and to find the optimal coefficients of scale factor and axis-

misalignment during training from measured accelerometer

and gyroscope readings [14]. Then, Huang et al. used a tem-

poral convolutional network to improve the performance of

gyroscope calibration further [15]. They showed that the ori-

entation estimated from the calibrated gyroscope data could

be used to improve the accuracy of position estimation from

visual-inertial odometry (VIO). To solve the low general-

izability problem of data-driven denoising model, Yao [26]

proposed a few-shot domain adaptation gyroscope calibra-

tion method that consists of Embedding module, Restructor

module and Generator module.

2.3 Data-driven Accelerometer Calibration

Compared with data-driven gyroscope calibration, fewer

works address accelerometer calibration through the data-

driven method. The main reason would be the increased

difficulty of predicting biases. MEMS accelerometer senses

not only the linear acceleration of itself but also the local

gravity. As a result, the presence of non-zero values results

in accelerometers with a wider dynamic range and larger

noise densities compared to gyroscopes [16].

Chen et al. [27] used a convolutional neural network

to reduce errors from both accelerometer and gyroscope

simultaneously in a laboratory environment. Engelsman

and Klein [16] implemented and modified several learn-

ing algorithms, including unidirectional bi-layer LSTM,

bi-directional one-layer RNN, and bi-directional one-layer

GRU, for calibrating the accelerometer. The evaluation of

a simulated dataset and static accelerometer data showed

clear advantages of the data-driven accelerometer calibra-

tion method over classical methods.

3. Data-Driven Accelerometer Calibra-

tion

In this section, we first present the sensor error model and

the kinematic motion model used in inertial odometry, fol-

lowed by our data-driven accelerometer calibration method.

3.1 Preliminaries

The MEMS IMU consists of an accelerometer and a gyro-

scope measuring the acceleration a and angular velocity ω

of the carrier. However, the measurement contains not only

the target a and ω, but also other error terms. These er-

rors are mainly caused by imperfect assembling procedures

and the influence of temperature on the MEMS IMU’s sili-

con [19].

Sensor error model Given a three-axis strapdown ac-

celerometer and gyroscope, a commonly used error model is

established as follows [19]:
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ũ = (S +N)u+ b+ n (1)

where ũ,u denote the measurement output and ideal value

of acceleration or angular velocity, respectively.

S =

sx 0 0

0 sy 0

0 0 sz


is the scale factor that refers to the ratio between the out-

put quantity and the input quantity. This ratio is caused

mainly by sensitivity of the circuit on each axis. It is a 3×3

identity matrix in the ideal condition.

N =

 0 γxy γxz

γyx 0 γyz

γzx γzy 0


denotes the axis-misalignment error results from the

nonorthogonality between each axis, which is caused by the

manufacturing technique limitations.

b =

bxby
bz


is called zero-bias: the output values from the accelerome-

ter or gyroscope when the measured physical quantity equals

zero.

n =

nx

ny

nz


is commonly assumed the high-frequency random sensor

white noise that follows the zero-mean Gaussian distribu-

tion.

Kinematic motion model Inertial odometry estimates

the trajectory from the acceleration and angular velocity ob-

tained from IMU using a kinematic motion model. The key

point is to rotate the acceleration from IMU frame to a fixed

global frame, then accumulate it to compute the velocity and

moving distance.

Given the angular velocity ω obtained from gyroscope,

the rotation matrix R ∈ SO(3) that maps from IMU frame

to global frame at timestamp k can be expressed as:

Rk = Rk−1 exp(ωk−1∆t) (2)

where exp(·) is SO(3) exponential map and ∆t is the time

interval of two consecutive frames. The velocity v in global

frame is then calculated by rotating the measured accelera-

tion a and removing the local gravity g.

vk = vk−1 + (Rk−1ak−1 + g)∆t (3)

Finally, the position in the fixed global frame is calculated.

pk = pk−1 + vk−1∆t+
1

2
(Rk−1ak−1 + g)∆t2 (4)

3.2 Network Structure

According to the sensor error model in (1), the measured

acceleration ãk of an IMU accelerometer at timestamp k

can be expressed as follows:

ãk = (S +N)ak + bk + nk

Then, the ideal acceleration ak can be estimated as

ak = (S +N)−1(ãk − (bk + nk)) (5)

To simplify the problem, we denote (S+N)−1 and (bk+nk)

in (5) by C ∈ R3×3 and ϵk ∈ R3, respectively. C contains

both scale factor and axis-misalignment, ϵk is the correc-

tion term contains zero bias and noise. They are expressed

as follows:

C =

 sx γxy γxz

γyx sy γyz

γzx γzy sz


−1

ϵk =

bx + nx

by + ny

bz + nz

 (6)

Then, we have

ak = C(ãk − ϵk) (7)

We define the neural network structure as

ϵ̂k = f
(
(ãk−N , ω̃k−N ), · · · , (ãk, ω̃k)

)
where f(·) is the function defined by a dilated convolutional

neural network, which is a convolutional neural network that

achieves a quasi-temporal neural network by using the di-

lated gap and is widely used for data-driven gyroscope cali-

bration [14,15,26,28].

Compared with recurrent neural network (RNN) which

are commonly used to process the time sequence data, the

dilated convolutional neural network not only maintains the

temporal ordering of the data as RNN, but also achieves

higher computational efficiency due to the fewer parame-

ters. In addition, the dilated convolutional neural network

achieved higher accuracy in terms of gyroscope calibration

with simpler network architecture compared to LSTM.

Leveraging the past N frames information, i.e., 3-axis ac-

celerations and 3-axis angular velocities, we predict the cor-

rection term ϵ̂k for acceleration ak. Then, as similar to [14],

we initialize the Ĉ in (7) as 3 × 3 identity matrix, and op-

timize it during training. Finally, the corrected acceleration

âk is estimated by

âk = Ĉ(ãk − ϵ̂k) (8)

3.3 Loss Function Design

Defining a loss function for calibrating accelerometer is

more difficult than gyroscope calibration. Acquiring the

ground truth acceleration a and angular velocity ω at IMU

frequency (200Hz or more) is not feasible in practice because

the high-precision tracking systems are normally 20-120 Hz.

The loss function of data-driven gyroscope calibration nor-

mally defined by computing the difference of integrated ori-

entation increments to reduce the frequency of IMU to the

same as the tracking systems. However, for accelerometer
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calibration, (3) shows that the velocity calculation is not

only related to the acceleration, but also to the angular ve-

locity. Thus, computing the integrated increments of veloc-

ity requires both the measured acceleration and the ground

truth angular velocity ω at IMU frequency.

In our method, we derive a pseudo ground truth acceler-

ation a in IMU frame from the interpolated ground truth

velocity and orientation as

ai = RT
i

(
(vi+1 − vi)

∆t
− g

)
(9)

According to the sensor error model, the difference between

measured acceleration and pseudo ground truth acceleration

approximately follows a Gaussian distribution with zero-bias

as the mean. The variance of the distribution represents the

signal-noise level. Based on this, we define the loss function

L as minimizing the mean and variance of the difference

between predicted acceleration and pseudo ground truth ac-

celeration. In addition, zero bias and Gaussian noise change

over time as they are affected by temperature, pressure, vi-

brations, and so forth. Therefore, with window size t, we

split the sequence into m segments and optimize it based on

the assumption that the zero-bias and noise level are con-

stant within each segment. The loss function L are defined

as follows:

L1,j =
1

t

t∑
i=1

(âi − ai) (10)

L2,j =
1

t

t∑
i=1

(âi − ai − L1,j)
2 (11)

L =

m∑
j=1

(λ1L1,j + λ2L2,j) (12)

where λ1 and λ2 are two hyper-parameters to balance the

influencing of mean and variance losses.

4. Benchmark Setup

To reveal the secrets of data-driven calibration methods

and analyze their impact on the 6 DOF inertial odome-

try, we designed and conducted comprehensive experiments.

The experiments are based on EuRoC dataset [29] that is

commonly used by data-driven calibration methods with a

classic data-driven gyroscope calibration method and our

accelerometer calibration proposed in Section 3.

4.1 Dataset

The analysis is based on the EuRoC, a visual inertial

dataset collected on a micro aerial vehicle. There are two

Table 1 Train and test sequences of EuRoC.

Train sequences Test sequences (No.)

MH 01 easy MH 02 easy (1)
MH 03 medium MH 04 difficult (2)
MH 05 difficult V1 03 difficult (3)
V1 02 medium V1 01 easy (4)
V2 01 easy V2 02 medium (5)

V2 03 difficult

types of data provided in EuRoC. The first batch contains

five sequences recorded in a large machine hall. Angular

velocity and specific force were measured using an uncali-

brated ADIS16448 IMU with 200 Hz. A Leica Nova MS50

laser tracker provided ground truth positions at a rate of

20 Hz. The second batch contains six sequences recorded in

a Vicon room equipped with a motion capture system. In

addition to the data from the laser tracker and IMU, the 6D

pose of the MAV was recorded by the Vicon motion capture

system at a rate of 100 Hz.

All data from the laser tracker and Vicon are precisely

time-space aligned with the IMU measurements. Then, a

classic maximum likelihood state estimator incorporated all

ground truth and IMU measurements to estimate the final

ground truth orientation, position, velocity, and the biases

of the gyroscope and accelerometer.

The data was split into a training set and a test set, as

shown in Table 1 [14]. The first 1.5 minutes of each training

sequence is used to train the model, and the remaining data

is used as the validation dataset.

4.2 Evaluation Process and Metrics

We conduct the evaluation following the process of kine-

matic motion model as introduced in Section 3.1. This en-

ables a detailed evaluation of the impact of data-driven cali-

bration methods on inertial odometry. To simplify the com-

putation, we assume that the acceleration and angular veloc-

ity are constant within two consecutive frames, the gravity

field is uniform, and the Coriolis forces and the earth’s cur-

vature are ignored. The evaluation process is structured into

three steps, as illustrated in Table 2.

Evaluation on the Signal: First, we measure the cali-

bration effectiveness by comparing the first three of the fol-

lowing signals with the pseudo ground truth signals:

• raw signals (RAW), that is the measurements of un-

calibrated accelerometer and gyroscope.

• calibrated signals with neural network-based

methods (NN), which is calibrated using data-driven

methods. This is the main focus in this study.

• debiased signals with provided zero-bias (PB),

which removed the zero-bias near-completely with the

biases provided in the dataset.

• derived pseudo ground truth signals (PGT),

which is derived from the interpolated ground truth ve-

locity and orientation.

For each test sequence, RAW signals, that is, raw acceler-

ation and angular velocity, are used as input to the data-

driven calibration models and output the NN acceleration

and angular velocity. For the accelerometer calibration, we

use the method we proposed in Section 3. For the gyroscope,

we choose DIG [14]. This method outperformed top-ranked

calibration algorithms, and the orientation estimation re-

sults almost achieved the same level as VIO.

In addition to the NN signals, we use the biases provided

in the dataset to perform a debias operation on the RAW sig-

nals to obtain PB signals. The provided bias is estimated us-
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Table 2 Overview of the evaluation.

Evaluation elements Description Metrics

Step 1
acceleration compare the mean and variance of mean, variance of

angular velocity the differences between RAW, NN, and PB signals and the PGT ({RAW, NN, PB} − PGT)

Step 2
velocity

calculate the velocity from RAW, NN, PB acceleration with
AVE, RVE

GT orientation, then compare with GT velocity

orientation
calculate the orientation from RAW, NN, and PB angular velocity,

AOE, ROE
then compare with GT orientation

Step 3 position
calculate the position from sixteen combinations of RAW, NN,

ATE, RTEPB, and PGT acceleration and angular velocity,
then compare with GT position

ing a classic maximum likelihood state estimator that fuses

all ground truth data and measurements. It shows the best

results after a near-complete calibration, thus showing the

effect of calibration on inertial odometry.

Since there is no possibility to obtain the real accelera-

tion and angular velocity, we derived pseudo ground truth

acceleration and angular velocity, PGT, from the interpo-

lated ground truth velocity and orientation. In this step,

we evaluate the RAW, NN, and PB signals by calculating

the mean and variance of the differences between them and

PGT signals. The closer the mean is to zero, the smaller the

variance is, the better.

Evaluation on the Velocity and Orientation: The

second evaluation is to measure the impact of calibrated sig-

nals on the intermediate data, i.e., velocity and orientation,

of the kinematic motion model. We calculate the orientation

according to (2) from RAW, NN, and PB angular velocity.

We also compute the velocity based on (3) from RAW, NN,

and PB acceleration with GT orientation. Then, we com-

pare the inferred velocity and orientation with the ground

truth (GT) velocity and orientation. The following metrics

are used:

• Absolute Velocity Error (AVE): the root mean squared

error (RMSE) between the ground truth velocity and

estimated velocity for a whole sequence as

AVE =

√√√√ 1

n

n∑
i=1

||vi − v̂i||22

where i is the time step and n is the total frames. vi

denotes the ground truth velocity at time i, and v̂i is

the velocity estimated through (3) from RAW, NN, and

PB acceleration.

• Time-Normalized Relative Velocity Error (RVE): the

RMSE between the ground truth velocity and estimated

velocity over window size t as

RVE =

√√√√ 1

n

n∑
i=1

||(vi+t − vi)− (v̂i+t − v̂i)||22

As demonstrated in [14], relative error is more appropri-

ate for comparing odometry results. Because the abso-

lute error is highly related to the length of the sequence,

the relative error focuses more on measuring the accu-

racy within a certain time span. In this analysis, we use

t = 1, 10, 20, 30, 40, 50, 60s for all relative error metrics.

• Absolute Orientation Error (AOE): the RMSE between

the ground truth and estimated orientation for a whole

trajectory sequence as

AOE =

√√√√ 1

n

n∑
i=1

|| log(RT
i R̂i)||22

where Ri and R̂i denote the ground truth and estimated

rotation matrices from RAW, NN, and PB angular ve-

locity at timestamp i through (2), respectively. log(·)
is the SO(3) logarithm map.

• Time-Normalized Relative Orientation Error (ROE):

the RMSE between ground truth orientation and es-

timated orientation over window size t as

ROE =

√√√√ 1

n

n∑
i=1

|| log(δRT
i,i+tδR̂i,i+t)||22

where δRi,i+t and δR̂i,i+t are the increment rotation

matrices over t timesteps and can be expressed as

δRi,i+t = RT
i Ri+t

δR̂i,i+t =

i+t−1∏
j=i

exp(ω̂j)

where ω̂ denotes RAW, NN, and PB angular velocity.

Evaluation on the Position: We finally measure the

impact of calibrated signals on the position estimation by

comparing the inferred and ground truth positions. In or-

der to explore the respective effects of the acceleration and

angular velocity on the position estimation, we calculate the

position from 16 different combinations of RAW, NN, PB,

PGT acceleration, and angular velocity. Similar to the inter-

mediate data evaluation, we use absolute and relative error

to evaluate it. They are defined as follows:

• Absolute Translation Error (ATE): the RMSE between

the ground truth and estimated position. To compare

different sequences, we calculate the ATE for the first

60 seconds rather than the whole sequence.

ATE =

√√√√ 1

n

n∑
i=1

∣∣∣∣p̂i − pi
∣∣∣∣2
2

• Relative Translation Error (RTE): the RMSE of the po-

sition differences over a window of duration t.
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x-axis y-axis z-axis
RAW
NN

Fig. 1 RAW and NN angular velocity of the MH 04 difficult.

RTE =

√√√√ 1

n

n∑
i=1

||p̂i,t − pi||22

The RTE defined in this study differs from that used

to evaluate the methods that directly output positions.

The errors in velocity, orientation, and position are con-

tinuously accumulated when using the kinematic mo-

tion model for position estimation. Therefore, we cor-

rect the estimates with the ground truth every interval

t and calculate the position p̂i,t for each frame to accu-

rately measure the accumulated error over a specified

time interval t.

5. Results

This section presents the findings of the detailed experi-

mental evaluation of data-driven calibration methods on the

effect of signals, velocity, orientation, and position estima-

tion.

5.1 Evaluation on the Signal

The focus of this evaluation is to show how data-driven

calibration methods affect the signal quality. As shown

in Table 3, the data-driven gyroscope calibration method

removes the biases more than 90% along three axes on all

test sequences compared with RAW. Particularly, without

using any reference data, it achieves almost the accuracy ob-

tained by PB. The variance, on the other hand, are the same

as the raw signals. This is due to the fact that the noise of

gyroscope in EuRoC is small. Figure 1 illustrates the com-

parison of raw and data-driven-based calibrated signals for

one test sequence. We note that the key to data-driven gy-

roscope calibration is to shift the signals and reduce the bi-

ases, which is regarded as one of the most important inertial

errors in IMU.

Our data-driven accelerometer calibration, as shown

in Table 4, also reduces biases on most test sequences by

a factor 5 to 10. Furthermore, unlike data-driven gyro-

scope calibration, accelerometer calibration also decreases

x-axis y-axis z-axis
RAW
NN

Fig. 2 RAW and NN acceleration of the MH 04 difficult.

RAW

NN

Fig. 3 Signal error distribution of MH 04 difficult.

the noise by a factor 2 to 5. As shown in Figure 2 and Fig-

ure 3, the difference between NN acceleration and the de-

rived acceleration has a higher likelihood of approaching zero

compared to the raw signal. This indicates that the variance

term in the loss function we designed is able to optimize the

noise level.

However, we notice that the biases reduction on the y-axis

acceleration of V1 01 easy was not noteworthy. The NN sig-

nals on the x-axis and y-axis acceleration of V2 02 medium

have larger biases than RAW signals by a factor 2. We an-

alyze this phenomenon by studying the provided biases of

train and test sequences. As shown in Figure 4, we cal-

culate the mean bias of each sequence. Then, we discov-

ered that the acceleration bias of V1 01 easy in the y-axis

is three times greater than other sequences. Similarly, the

acceleration bias of V2 02 medium in the x-axis is larger,
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Table 3 Differences in term of mean/variance of the angular velocity (×10−3 rad/s).

x-axis y-axis z-axis

No. RAW NN PB RAW NN PB RAW NN PB

1 2.55/0.10 0.18/0.10 0.01/0.10 -21.15/1.09 0.03/1.04 0.03/1.09 -77.15/0.43 0.60/0.42 0.004/0.43
2 2.15/0.14 -0.08/0.15 0.01/0.14 -21.04/1.43 0.05/1.39 0.02/1.44 -76.65/0.75 0.61/0.73 -0.004/0.75
3 2.23/0.15 0.12/0.16 0.01/0.15 -20.75/2.05 0.02/1.95 0.05/2.05 -76.28/0.48 0.19/0.47 0.03/0.48
4 2.29/0.16 -0.01/0.17 -0.07/0.16 -21.70/5.82 -1.39/5.75 0.11/5.82 -76.55/1.00 -0.08/1.02 0.06/1.00
5 1.34/0.21 -0.71/0.23 -0.05/0.21 -25.67/1.54 -2.61/1.66 0.09/1.54 -78.90/0.44 -0.27/0.53 -0.03/0.44

Table 4 Differences in terms of mean/variance of the acceleration (×10−2/×1 m/s2).

x-axis y-axis z-axis

No. RAW NN PB RAW NN PB RAW NN PB

1 2.43/0.66 0.08/0.17 0.01/0.66 -14.45/0.10 -1.49/0.06 -0.003/0.10 -6.76/0.31 0.22/0.12 0.01/0.31
2 2.71/0.70 0.66/0.32 -0.02/0.70 -13.73/0.13 -2.37/0.09 -0.02/0.13 -5.95/0.36 0.003/0.20 0.004/0.36
3 1.30/1.01 -0.33/0.22 -0.04/1.01 -54.94/0.20 -43.87/0.13 0.008/0.20 -6.82/0.67 0.39/0.17 0.02/0.67
4 2.33/2.79 2.29/0.57 -0.04/2.79 -17.94/0.23 -7.66/0.14 0.006/0.23 -8.98/0.82 -0.70/0.17 -0.02/0.82
5 -0.58/0.88 -1.07/0.25 -0.03/0.88 -3.64/0.20 6.82/0.13 -0.01/0.20 -9.46/0.51 -3.64/0.21 0.001/0.51
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Fig. 4 Mean biases of acceleration and angular velocity for each
sequence, estimated by fusing ground truth measure-
ments.

and the y-axis is a bit smaller than others. These can be

considered outliers. It also indicates that the data-driven

calibration methods are sensitive to outliers, i.e., low gener-

alizability. Meanwhile, the biases of the angular velocity are

more stable than the errors in acceleration among sequences

in the EuRoC dataset. We consider that this is one of the

critical reasons for the ability of the data-driven gyroscope

calibration method to remove errors on the EuRoC dataset

significantly.

Figure 3 shows the distribution of differences between

RAW, NN signals and PGT signal of one test sequence. It is

more intuitive to show the impact of the data-driven calibra-

tion on the signals. The density distribution shows not only

the mean of the distribution but also the density of each er-

ror value. A higher density indicates a higher percentage of

the corresponding value. Thus, the ideal distribution should

have the highest density at 0. We note that both accelerom-

eter and gyroscope calibration methods shift the mean value

of the difference to 0. Additionally, the accelerometer cali-

bration slightly increases the density at 0, making the error

more probable near 0.

From the evaluation on the signal, we conclude that:

• Data-driven gyroscope calibration can eliminate the

bias significantly, but does not effectively remove noise.

• Data-driven accelerometer calibration can reduce both

noise and bias on most test sequences. However, it is

sensitive to outliers.

• Data-driven gyroscope calibration is easier than ac-

celerometer calibration because of the smaller norm.

Additionally, for EuRoC dataset, it will be much easier

because the gyroscope error is more stable.

5.2 Evaluation on the Velocity and Orientation

This evaluation focuses on determining how the calibrated

signals improve the integration velocity and orientation. Ta-

ble 5 shows the absolute error of velocities estimated from

RAW, NN, and PB acceleration with GT orientation. Our

proposed accelerometer calibration method reduces the AVE

by a factor 2 to 10 except for the outlier sequence compared

with RAW. Furthermore, removing the zero bias almost

completely with the provided biases can significantly reduce

the AVE to less than 1m/s. As illustrated in Figure 5, the

inferred velocity from PB is difficult to distinguish from the

ground truth velocities.

Data-driven gyroscope calibration method leads a huge

improvement in terms of orientation estimation. As shown

Table 5 Absolute velocity error (AVE) (m/s).

RAW NN PB

MH 02 easy 11.66 0.84 0.13
MH 04 difficult 6.85 1.43 0.14
V1 01 easy 23.72 18.67 1.03

V1 03 difficult 4.86 1.74 1.10
V2 02 medium 7.20 3.16 5.35

Table 6 Absolute Orientation Error (AOE) in terms of 3D ori-
entation, in degree.

RAW NN PB

MH 02 easy 127.72 2.99 0.69
MH 04 difficult 152.05 1.69 0.47
V1 01 easy 125.61 2.19 2.45

V1 03 difficult 136.08 1.52 2.04
V2 02 medium 126.61 3.70 1.69
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RAW NN PB
x-axis
y-axis

GT

z-axis

Fig. 5 Velocity estimates on the sequence MH 04 difficult.

RAW NN PB
x-axis
y-axis

GT

z-axis

Fig. 6 Orientation estimates on the sequence MH 04 difficult.

in Table 6 and Figure 6, the orientation estimated from NN

angular velocity achieves the same accuracy as from the PB

angular velocity. This result is readily derived from the anal-

ysis of the impact on the signals, i.e., the signal performance

of NN and PB is similar. Furthermore, we note that the ori-

entation estimated from RAW signals completely unreliable.

This further reinforces the necessity of calibrating the gyro-

scope for a low-cost MEMS IMU.

Results of RVE and ROE with different time intervals are

given in Figure 7 and Figure 8. The velocity error gradually

increases as the running time extends, and the error growth

rate of NN and PB is smaller than that of the RAW veloc-

ity by a factor 2 to 4. The orientation error has the same

changing trend as velocity error does, that is, gets larger as

the time interval increases. However, in comparison with

the velocity relative error, there are two differences. The

first is that the orientation error accumulation rate of the

RAW (an average of 50 degrees in 20s) is much faster than

that of the velocity error accumulation rate. The second

RAW

NN

PB

Fig. 7 Relative velocity error (RVE).

RAW

NN

PB

Fig. 8 Relative orientation error (ROE).

is that the improvement of the orientation estimation after

calibration is larger, from an average of 50 degrees in 20s to

1 degree, and it performs well on all test sequences. These

two differences support the importance of calibrating the gy-

roscope and the difficulty of calibrating the accelerometer,

especially for the EuRoC dataset. Furthermore, without the

correction by other reference information, the velocity and

orientation error will accumulate at an approximately linear

rate with time.

Based on the analysis we conclude that

• The data-driven calibration can effectively reduce the

velocity error and orientation error.

• Data-driven gyroscope calibration provides far more im-

provement than that provided by accelerometer calibra-

tion. This demonstrates the necessity and primacy of

calibration for the gyroscope.
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min

max

Fig. 9 Absolute translation error (ATE).

RAW

NN

PB

Fig. 10 Relative translation error (RTE).

5.3 Evaluation on the Position

The focus of this evaluation is to measure the impact of

data-driven calibrated signals on position estimation. Our

findings are as follows.

First, data-driven calibrating accelerometer and gyro-

scope significantly reduces the position estimation error,

from outrageous values, e.g., several kilometers per minute,

to less than one hundred meters per minute. Nevertheless,

there is still a twofold gap, on average, to the lowest error

achieved by the fully compensated signal.

Second, the improvement in position estimation accuracy

using data-drive calibrated acceleration increases with the

enhancement of angular velocity accuracy. Each column

of Figure 9 shows the effect of RAW, NN, and PB accel-

erations on the position estimation with the same angular

velocity. We note that there is no improvement with RAW

angular velocity even using PGT acceleration. However,

with NN angular velocity, ATE in terms of NN accelera-

tion is reduced by up to double compared with the RAW

acceleration. Furthermore, with PGT angular velocity, NN

acceleration reduces the ATE by a factor of up to 6. Com-

bining the results in Section 5.2 we conclude that an effec-

tive error compensation for the gyroscope is most important.

Not only because a slight correction can greatly improve the

accuracy of the orientation estimation, but also because the

data-driven calibrated acceleration can only improve the ac-

curacy of the position estimation with a relatively accurate

orientation.

Third, data-driven calibration methods considerably slow

down the accumulation of position estimation errors. As

shown in Figure 10, even though they have the same trend

of error accumulation, there is a 40-200 times difference in

the accumulated position errors with the same time inter-

val. Furthermore, the difference of position estimation from

the NN and the PB is no more than 5 meters when the

accumulation time is within 30s. This demonstrates that

the data-driven calibration methods are as accurate as us-

ing the near-complete denoised signal in terms of short-term

position estimation.

6. Conclusion

In this paper, we propose a data-driven method for cal-

ibrating the accelerometer. This method is based on a di-

lated convolutional network. We design a mean-variance loss

function to train the network by fully considering the sensor

error model and the characteristics of different frequencies

of real data. This loss function allows our method to re-

duce both bias and noise. Furthermore, exhaustive experi-

ments in terms of data-driven gyroscope and accelerometer

calibration methods are performed in this paper. It leads

to interesting conclusions: (1) Data-driven gyroscope cali-

bration is much easier than accelerometer calibration, espe-

cially for EuRoC dataset; (2) the improvement of odometry
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results due to the calibrated accelerometer increases grad-

ually with the increase of orientation accuracy; (3) data-

driven calibration considerably slows down the rate of error

accumulation; however, it is still far from achieving long-

term inertial odometry; (4) data-driven calibration methods

are not robust and sensitive to unknown data. According

to the analysis of the evaluations, future work will improve

the generalizability of the data-driven calibration method,

especially for gyroscopes, making the trained model quickly

adapt to the error coefficients of new IMUs.
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