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‘We propose a novel method to sequentially optimize arbitrary single-qubit gates in parameterized
quantum circuits for simulating real and imaginary time evolution. The method utilizes full degrees
of freedom of single-qubit gates and therefore can potentially obtain better performance. Specifically,
it simultaneously optimizes both the axis and the angle of a single-qubit gate, while the known meth-
ods either optimize the angle with the axis fixed, or vice versa. Furthermore, we demonstrate how
it can be extended to optimize a set of parameterized two-qubit gates with excitation-conservation
constraints. We perform numerical experiments showing the power of the proposed method to find
ground states of typical Hamiltonians with quantum imaginary time evolution using parameterized
quantum circuits. In addition, we show the method can be applied to real time evolution and discuss
the tradeoff between its simulation accuracy and hardware efficiency.

I. INTRODUCTION

Quantum simulations of materials, which are becoming
popular as promising applications of quantum comput-
ing, are practically useful in designing functional materi-
als. One can track the time evolution of a quantum sys-
tem by the real time evolution (RTE) algorithm, which is
important to investigate, for example, the quantum dy-
namics under the irradiation of laser [1, 2]. In addition
to the quantum phase estimation (QPE) algorithm [3, 4],
and the variational quantum eigensolver (VQE) [5-7], the
imaginary time evolution (ITE) algorithm [8, 9] might
be applied to obtain the ground state energy and wave-
function. Although it is hard to run the QPE on cur-
rent noisy intermediate-scale quantum devices, the VQE
and ITE may be more realizable [5, 10-18]; actually sev-
eral experimental studies on small systems have been re-
ported [19, 20].

The basic ingredients for running quantum-classical
hybrid algorithms are first to set a parameterized quan-
tum circuit (PQC), sometimes called the trial wave func-
tion or simply the ansatz, and then to iteratively up-
date its parameters by classical optimizers so that its
final output state approximates the target state. The
approximation accuracy of the target state achieved via
quantum-classical hybrid algorithms heavily depends on
the choice of PQC and the classical optimization strat-
egy. Recent great efforts have revealed several essential
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properties of the components of quantum-classical hy-
brid algorithms [21-23]. Among those literature works,
we find interesting gradient-free optimizers that make full
use of the specific parameterization of standard PQCs.

More precisely, those optimizers can analytically op-
timize a subset of the parameters at each iteration by
exploiting the special type of analytic form of the cost
function. Specifically, Nakanishi et al. [24] and Os-
taszewski et al. [25] showed that the cost of VQE be-
comes a sinusoidal function of a single-qubit rotation,
and thus we can determine the optimal rotational an-
gle. Ostaszewski et al. also proposed a sequential op-
timization method for selecting the best rotational axes
of qubits from the z, y, or z rotations. Going further
to relax the ansatz-dependency of VQE, a generalization
of such gradient-free optimizers called the free-axis selec-
tion (or, Fraxis) [26] was proposed. The Fraxis algorithm
analytically determines the best rotational axis for each
single-qubit gate when the rotational angles are fixed.

In this article, with a particular attention to the task
of simulating real and imaginary time evolution on a
PQC, we make a further progress of this gradient-free
optimization method. That is, for simulating time evo-
lution we prove that both the rotational axis and an-
gle of each single-qubit gate in the PQC can be analyti-
cally optimized in a coordinate-wise manner. This means
that the PQC now acquires the ability for searching the
quantum state in the Hilbert space that best approxi-
mates the time evolution in the coordinate-wise sense,
and hence opening the new path to efficiently approxi-
mate the target state being driven via the time evolv-
ing propagators. Moreover, we show that this method
can be applied to optimize some multi-qubit gates, in-
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cluding the excitation-conserving two-qubit gates which
play important roles in the quantum chemistry applica-
tions. We conducted numerical simulations of ITE for
1-dimensional (1D) Heisenberg model and H, molecule,
and showed that the proposed algorithm could approxi-
mate the target ground state faster and better than some
previous methods. In addition, we also conducted nu-
merical simulations of RTE for 1D Ising model using the
proposed algorithms, and confirmed the reproduction of
more accurate dynamics in our methods.

II. METHODS

We first review the hardware-efficient objective
function for time evolving simulation proposed by
Benedetti et al. [27] and introduce a measure of hardware-
efficiency of objective function. Then, we introduce Free
Quaternion Selection for Quantum Simulation (abbre-
viated as FQS, where QS has two meanings: Quater-
nion Selection and Quantum Simulation), which can fully
optimize an arbitrary single-qubit gate with hardware
efficiency. Next, we show that the FQS can be ex-
tended to special multi-qubit gates such as the excitation-
conserving gates.

A. HARDWARE-EFFICIENT QUANTUM
SIMULATION OF TIME EVOLUTION

Suppose a time evolution simulation based on the
Hamiltonian given as H = Zszl hkék, where Ok de-
notes a tensor product of Pauli operators for m-qubit
O € {00 = I,04,04,0.}®™, hy, is a real valued coeffi-
cient, and K ~ O(poly(m)). The time evolving propa-
gator e *H! is approximated with the first-order Trotter
decomposition as

o e N
e—th _ (e—zHAt)

efihkékAt .

. A i A N
~ (ef’LhKOKAt . e*lhlolAt) ) (1)

where N is the number of time steps and At = ¢/N. Now

a propagator e~ ihkOkAt g applied to an arbitrary state

|thp—1), which results in a state |¢y) as

i) = e~ PRORDE [y (2)

Suppose an initial state |1/)k 1) is approximated by a PQC
as U(ﬁ[k 1) 10), where 79[1@ ;) is an optimal parameter

set, and |0) is the computational basis state. Provided
that a PQC has sufficient expressibility, there exists an
optimal parameter set Jf;, such that [1x) ~ U(J[;)|0).
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Therefore, a time evolution can be simulated if parame-
ter sets that reproduce the time evolving propagator are
somehow found. Hereafter, we focus on a series of pro-

cesses to determine the kth optimal parameter set 19
from J* k1" For readability, we write 19[1@] and ﬁ[k 1] as

19*, o , respectively, when it is obvious from the context.

To determine the optimal parameter set 5*, Benedetti et
al. [27] proposed a recursive optimization using the ob-

jective function M () based on the Euclidean distance
as

—2—2Re [<0| Ut @) OA () jo) |, (3)

and

J* = argmin M(J) = argmax F(J), (4)
e Jeo

-,

where © is the parameter space, and F(¥) is defined as

-,

F() = Re [(0]UT (@)U @) j0)] . (5)

Now we suppose a PQC U(ﬁ) consists of D parameter-
ized single-qubit gates and arbitrary unitary gates with-
out parameters such as CNOT gate. An element of the
parameter space O is given as J= (01, ,9p), where ¥4
represents the parameters for the dth parameterized gate.
To evaluate ./\/l(ﬁ), it is common to apply Hadamard tests
with controlled gates for different parameters between J
and U. Because All D elements in usually differ from
those in ¢, the Hadamard test requires additional O(D)
controlled gates and ancilla qubits, it may be difficult for
near-term quantum devices when D is large.

The Hadamard test can be replaced by direct measure-
ments as proposed by Mitarai et al. [28]. However, the
direct measurements require more types of circuits, i.e.,
replacing D controlled gates with direct measurements
incur the cost of evaluating O(4”) types of circuits.

To reduce the required quantum resources, it is possi-
ble to restrict the number of the gates to be updated in
the objective function Eq. (5). On the other hand, such

restricted updates may not be sufficient to minimize the

simulation error M (¢ ) for e="OAt To balance between

the hardware efficiency and simulation accuracy, we em-
ploy P € N series of updates procedure where parame-
terized gates are grouped into P sets, and the respective
sets are represented by A, (p =1,2,---,P). Here, A,
consists of the gate indices as A, C {1,2,---, D}. In the
P series update, we divide the propagator into P terms
maintaining total At time evolution. Although the di-
vision of At is not unique, we uniformly assign At/P
similarly as [27]. Then, the original objective function in
Eq. (5) is replaced by a series of the following objective
functions
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FO ({9a}) = Re [ (0] UT @) MO PU ({94} 07 0) [0)], d e A, (6)

where J9P~1 denotes a parameter set whose ¥4, (d €
UZ;%A(I) have been updated from those in 9O = .
Here, U({9q};0%~Y), d € A, denotes a PQC in which
the elements of A, are variable. J®) s recursively ob-
tained from J®—1) by solving the following problems

{95} = argmax .7:(”)({1901}), deA,,
{¥a}

for p:1327"'7Pa (7)

where J®) is defined by substituting {0%}, d € A, into

J®=1 . Eventually, we obtain the solution J* = JF),
which approximates the state evolved by the propagator

e~thOAt from the state with o/, This update procedure
are repeated for the total K Trotterized time propagators
to simulate time evolution of At as in Eq. (1) and (2).
The optimization method for Eq. (6) is not unique, and
classical optimizers are conventionally employed, most of
which update simultaneously multiple parameters with
the cost of Hadamard tests consisting of multiple con-
trolled gates and ancilla qubits. In the present study, in-
stead, we employ coordinate-wise update, where param-
eters are sequentially updated for respective single-qubit
gates.

Because there are at most |A,| different parameterized
gates between UT (9@~ and U ({94}; 9®V), the evalu-
ation of the objective function Eq. (6) requires additional
O(|A,]|) controlled gates and one ancilla qubit. We intro-
duce a hardware-efficiency measure 7 for an algorithm to
simulate time evolution with Eq. (6) defined as

in (s)
7 = min —.
p ‘Ap|

The measure varies in the range of 1/D <7 < 1; in case
of the lowest value n = 1/D the objective function in
Eq. (6) is regressed to the original form in Eq. (5). On the
other hand, in the highest value = 1, namely, the most
hardware-efficient case, the variables in each objective
function are parameters of one single-qubit gate.

Note that the objective function in Eq. (6) does not
prescribe any optimization methods and PQC structures.
In general, it is important to employ a PQC with suf-
ficient expressibility to describe the state of interest.
While it is common to extend a quantum circuit by
adding parameterized gates, the correlation among pa-
rameters emerges as a new obstacle for optimization upon
increase of parameters. To circumvent this problem, it
is required to both (1) simultaneously update correlating
parameters and (2) construct a high-expressibility PQC
with as fewer number of parameters as possible. To this
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(

end, we propose a new optimization method for time evo-
lution simulation by generalizing the free-axis selection
(Fraxis) algorithm [26], which makes full use of degree
of freedom with respect to a single-qubit gate. It is dif-
ferent from the previous work [27], where the objective
function is analytically optimized for axis-fixed rotation
gates by the analog of the NFT(Rotosolve) method. The
three parameters of a single-qubit gate corresponds to a
three-dimensional rotation which is best captured by the
selection of quaternion system, and hence the name free
quaternion selection of our proposed method.

In the next subsections, we firstly introduce the FQS
formulation based on imaginary time evolution using the
objective function for the most hardware-efficient case
n = 1, where real time ¢ is replaced by imaginary time 7
as t — —i7. More specifically, in imaginary time evolu-
tion, a target state as in Eq. (2) becomes

Lefh()A'r q7
NG U@’ 1oy, (9)

where A7 = 7/N, and N is a normalization factor as
N = [le"hOATy(§") |0) |2, which can be ignored in op-
timization problem of the objective function Eq. (5). In
the Result section, we demonstrate the applications of
imaginary time evolution for finding the ground state of
the 1D Heisenberg model and H, molecule.

Although we supposed n = 1 and imaginary time evo-
lution for simplicity in the following derivation, we em-
phasize that the FQS algorithm is neither limited to the
most hardware-efficient objective functions of n = 1 nor
imaginary time evolution. Note that the FQS algorithm
with n # 1 is a simple extension of n = 1 by using
a coordinate-wise update for each general single-qubit
gate in the same A,. In particular, we also demonstrate
the FQS application to simultaneous optimization for an
excitation-conserving gate consisting of two parameter-
ized single-qubit gates, and thus n = 1/2.

The appropriate hardware efficiency 7 should be de-
termined from the trade-off between the performance
of quantum devices and the required simulation accu-
racy. To demonstrate this point, we also applied FQS to
real time evolution of the 1D Ising model with several
hardware-efficiency levels.
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B. THE PROPOSED METHOD
Free Quaternion Selection for Quantum Simulation

A general single-qubit gate with parameters of a rota-
tional angle # and a rotational axis n is written as

R, (0) = e~ = cos (Z)O’o —isin (Z)n -o, (10)

where oq is identity and o = (0,0,,0,). Here, n =
(ng,ny,n.) denotes a normalized vector corresponding

to the rotational axis. Suppose a PQC U (5) consisting
of D general single-qubit gates. In the PQC, a parameter

set ¥4 of the dth parameterized gate denotes
19d = (ed; nd) - (9da Nz, Ndy ndz)a (11)

where 04 € R and ||ng4|| = 1. For simplicity, we suppose
the dth gate set Ay contains only the dth parameterized
gate (i.e., the most hardware-efficient case n = 1) and
the total number of the gate sets is D. Then, the unitary
operator with Ag in Eq. (6) is written as

U(04; 9 V) = VaRn, (00) V1, (12)
where Vi and V5 denotes the unitary operators corre-
sponding to the partial circuits prior and posterior to

the Ry, in the PQC, respectively. Substituting Eq. (12)
into Eq. (6) we obtain

FD0g,nq0) =1/ g3 + (na- g)°

6
X sin {; + arctan2 (go, ng - g)} , (13)

where go and g = (g, gy, g-) are defined as

gu = Re [<o| Ut (§(d=1)e=hOAT/DY, 17 |0>}
= cosh <%Th> Re {tr (gﬂRL& (Qé)p/)}
— sinh <A’5—h> Re [tr (OA/%RL; (Gé)p')] ,  (14)

where ¢/, = (0, n};) is the dth component of 9@=1 and
sy € {00, —i04, —ioy, —io,} (See [29] for detailed deriva-
tion). Here, we used the following notations,

O0' = ViOVs, o = Ry (03)V1[0) (0| V{ B, (6)). (15)

Because the objective function Eq. (13) has sinusoidal
form, the optimal parameter ¥ = (65, n}) are trivially
obtained as

g

Tal’ 05 = 7 — 2arctan2 (go, ||g||) + 4lm,  (16)
g

n; =
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Algorithm 1 Imaginary Time Evolution with Free

Quaternion Selection for Quantum Simulation

Input (1) Trotter-decomposed time
{eORATHS,, () 2 PQC U(D)
single-qubit gates, J = (91,---,9p), ¥4 = (fa,na) €
R*, ||ng4|| =1, and (3) the number of time step N.

propagators

with D general

Initialize Choose initial gate parameters J.
repeat
fork=1,2,..., K do
ford=1,2,..., D do
Determine Q4 0, Q4,z, Qi ,y, Q2
Set Ga(0,n) by Q4.,0, Qt.0, Qi ,y, Q.2
for u=0,z,y,2 do
Compute ., 1,
Compute g, = (go, g) from ¥4, Ga(vp, u)
Set ¥4 < (m — 2arctan2 (go, [|lg1l) , g/llgl))

until NA7 time evolution

Output Gate parameters J

where we choose | € Z satisfying 07 € [0,4r]. Thus, the
optimal value of ¥}; can be determined from g,,.

The first term in Eq. (14) can be determined by a pa-
rameter ¥, = (0, n};) without quantum computation as
(See [29] for derivation)

Re [t (5. L, (9)0') ] = {< VD, n=0

n:iu sin ( (/1/2)7 pw#0 .
(17)

On the other hand, quantum computations are required
for the second term of Eq. (14). In general, the evaluation
of the second terms requires four types of measurements
in total using the Hadamard test with controlled opera-
tion on guRL;(%). For n = 1, however, we can replace
the Hadamard test with modest number of direct mea-
surements.

In the following part of this section, we describe the
details of the direct measurement protocol. First, we

note §uRL/ (0,) in the second term of Eq. (14) can be
d

transformed into single-qubit gate as Ry, (¢,), where ¢,
and 7, are determined with 6" and n/, that are obtained
in the previous processes as for =0

Tig = 1y, (18)
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and for u #0
0 o’
¢, = 2arctan2 1—n, sin? (261), ny, sin (;) ,
_ 1
Nyt =

2 [ Ya :
x |cos |3 dut — sin 3 Z €ustNgs |

S=T,Y,z

t=ux,y,z, (19)

where 6, and €, denotes the Kronecker delta and the
three-dimensional Levi-Civita symbol, respectively [29].
Next, we define a generator G, as a function of rotation
angle # and axis n

Ga(6,m) = Re [tr (O/Rn(e)p’)} (20)

Furthermore, the generator is transformed as
0
Ga(0,n) = cos 5 Q10

+sin <Z> 3 n% (21)

s=z,y,z
where

Qi,=tr (O’e:Fi”"”/4p/eiiU””/4) , v=0,z,9,2. (22)

Note that Q. ,, is independent of (¢, ) and can be evalu-
ated by direct measurement with a PQC, where a single-
qubit gate e¥i7+™/4 is inserted after the gate of interest.
The generator agrees with the second term in Eq. (14)
when (p,,7n,) is substituted into (#,m). Hence, once
Q40,9+, 9+ y, Dt . are obtained for the dth gate, we
can evaluate the second term in Eq. (14) without addi-
tional quantum computation as shown in Algorithm 1.
Therefore, the optimal values of single-qubit gate pa-
rameters can be analytically determined with only seven
types of expectation values in the direct measurement
scheme: no ancilla qubits, no additional CNOT gates,
which is rather advantageous on present real devices with

J
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limited qubit connectivity and significant error from con-
trol operation. Therefore, we believe the direct measure-
ment scheme of FQS as the one of the most hardware-
efficient protocol for time evolving simulation.

In the following, for simplicity we refer to the algo-
rithm described in this section as FQS(1q, 3p), where
the 1q denotes its targeting parameterized single-qubit
gates, and the 3p denotes the full parameterization of
each gate: the (unit) quaternion which can be identified
with a set of rotational angle and axis or direct param-
eters of a single-qubit gate [30]. We emphasize the fact
that all parameters of a single-qubit gate are simultane-
ously optimized in FQS(1q, 3p). Thus, the time evolu-
tion is more accurately simulated by making full use of
expressibility of a target gate. Obviously, FQS can be
used to optimize the specific single-qubit gates such as
rotation gates with fixed axis (i.e., NFT [24] or Roto-
solve [25]) and the Fraxis [26] gate, which is equivalent
to Ry (). For simplicity, we also refer to the FQS(1q, 1p)
and the FQS(1q, 2p) as NFT and Fraxis, respectively.

Free quaternion selection for multi-qubit gate

Here, we extend the FQS to special multi-qubit gates
that can be decomposed as

A-Rn,(0)-B-RL()-C, (23)

where A, B, and C denote arbitrary unitary gates with-
out parameters (such as the CNOT and Pauli gates), and
R and R share the same parameter ¥ = (§,mn). Table I
lists some examples of the well-known gates in this class.
They are excitation-conserving, swap, Hop, and Recon-
figurable Beam Splitter (RBS) gates.

Because Ry, (0) and R}, (0) gates share the same param-
eters in those multi-qubit gates, these gates are simul-
taneously updated with an optimization scheme similar
to the FQS method. In this case, each A includes two
single-qubit gates making the hardware-efficiency mea-
sure n < 1/2. Although in the following, we suppose the
simple case that each A, consists of only two single-qubit
gates, namely n =1/2 (|[A,| =2, Vp=1,2,--- , P), with
shared parameters which are written as ¥, = (6,,mn,),
it is straightforward to generalize it to |A| > 2 by us-
ing a coordinate-wise update with a multi-qubit gate in
Eq. (23).

Given the excitation-conserving gate in Table I, the
objective function for the pth gate set is rewritten by
substituting Eq. (23) and 6§ = 7 into Eq. (6) as

F@)(x,m,)  Re [<0‘ U (§0-0)e=hOA/PY, AR, (x)BR), (m)CVi |0>]

= > npnpRe <0|UT(5(”’1))e’hOAT/PVQAatBascvl|0>}, (24)

sit=w,y,z

(© 2022 Information Processing Society of Japan
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TABLE 1. Examples of the special two-qubit gates in the form of AR, (#)BRL(6)C. The
parameterized single-qubit gate R, (0) is supposed to act on the second qubit (more precisely,
Ry (0) denotes [1Q Ry (0)). The arbitrary gates A, B, and C without parameters are represented
by Zs (Pauli Z), X7 ; (CNOT), Z;; (CZ) gates, and their products, where the superscript c
represents a controlled-gate with the first (control) and second (target) subscripts. In the
right-most column, the direct sum of matrices 1 & M & £1 denotes the block diagonal matrix
Diag (1, M, £1).

Gate Type A B c R, (0) AR, (0)BRL(0)C
_ _ i o
excitation-conserving® X5, Zf, X5, o=m 1® cosy  esiny &1
n(y, @) e @sinty  cosp
swap xe xe e 0 1@ 0 e o1
2,1 1,2 2,1 n=(0,0,1) =i
Hop DLX5) Z5s  Xsi OTT o aa (80 TS g
n(y, ¢ =0) siny  cos
RBS XS1 Zis XsuZaZiz " Y G -
n(y, ¢ =0) —sinYy cosvy

# excitation-conserving gate with 2 parameters (v, ¢) are represented by the polar coordinate

Vol.2022-QS-5 No.26

2022/3/25

of the rotational axis n such as n(¢, ¢) = (sin (1p/2) cos (¢), sin (¢/2) sin (¢), cos (¢ /2)).

where V7 and V5 denotes the parts of the PQC as in the
previous subsection. By definition of a 3 x 3 asymmetric
matrix G as

G®) = Re [(0| UT(§P~1)e=hOAT/PY, Ag, Bo, OV, |o>] ,

st € {z,y, 2}, (25)

Eq. (24) is transformed in a quadratic form as
FP) (7, my) = nfGPn,, (26)

where superscript 7' denotes a transpose operation. The
optimal value can be computed from the symmetric ma-

trix S defined as S®) = (GP) + (G(p))T)/Q, so that
the optimal parameter becomes

*

ny

argmax nZS(p)np7 (27)

where the eigenvector corresponding to the largest eigen-
value of S is the analytical solution. As for the objec-
tive function Eq. (6) with respect to Swap, Hop, or RBS
gates, we also derive the analytical optimization form as
in [29)].

To obtain a solution of Eq. (27), we need to evaluate
the elements of G(®) in Eq. (25), which can be written in
an unified expression similarly to the previous subsection,
as

Re <0| UT (5(p—1))e—héA‘r/P

X WaRs,(p2)WpRa, (p1)We [0)],  (28)

(© 2022 Information Processing Society of Japan

where W4, Wg, and W are defined as

Wa =VoA, Wp = Rn, (0,)BR}, (0,), Wc=CVi.
(29)

Note that (¢1,71), (v2,72) are determined by each ele-
ment of G as in the previous subsection. In addition,
an analytical solution of the objective function for Swap,
Hop, or RBS gates also requires quantities in the same
form as Eq. (28). In principle, these quantities in Eq. (28)
can be evaluated with Hadamard test with two control
operations on Rp,(y2) and Ry, (p1). However, direct
measurements without ancilla qubits and CNOT gates
are available similarly as proposed in literature [28].

Here, we denote the FQS method for optimizing
Eq. (27) as FQS with u-qubit gates of 2 parameters;
FQS(uq, 2p), where u is the number of qubits subject
to nontrivial action of A, B, and C. On the other hand,
the FQS method to optimize only one degree of free-
dom out of three in ¥, = (6, n(¢p, ¢p)) is termed FQS
with u-qubit gates of 1 parameter; FQS(uq, 1p), which
can be applied to Hop, RBS, swap, and the excitation-
conserving gate with one fixed degree of freedom.

In contrast to the conventional excitation-conserving
gate where only rotational angle v is the optimization
target, the FQS(2q, 2p) can simultaneously update not
only v but also ¢, which seems to be advantageous to
exhibit higher expressibility and to avoid local minimum
and saddle points. To verify this feature, we also carry
out controlled experiments where the two parameters
1, ¢ of an excitation-conserving gate are sequentially and
separately optimized.
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III. RESULTS AND DISCUSSION

In this section, we verify the performance of the pro-
posed FQS methods in real and imaginary time simu-
lations of typical Hamiltonians. The ITE simulations
were executed with 7 = 1 to find the ground state of
the 1D Heisenberg model and H, molecule. As for real
time evolution, we simulated the 1D Ising model with
various hardware-efficiency. All simulations presented in
the paper were carried out using statevector simulator of
Qiskit [31]. The settings of each experiments are detailed
in [29].

A. 1D HEISENBERG MODEL WITH FQS(1Q, 3P)

Here, we consider a 5-qubit 1D Heisenberg model un-
der the periodic boundary condition. The Hamiltonian
is given as

H=1J Y (XiX;+YiY;+ ZZ;)+hY_ Zi, (30)
(i,j)EE eV

where the coupling constant J and the external fields h
satisfy J = h = 1, and G = {V, E} is the undirected
graph of the lattice with 5 nodes. The imaginary time
propagators were prepared under the first-order Trotter
decomposition with fixed time step A7 = 0.50.

The advantage of FQS is its simultaneous optimiza-
tion of multi parameters. To confirm it, we carried out
30 independent ITE simulations for the Hamiltonian in
Eq. (30) with different initial parameters, which were ran-
domly generated. We employed a 2-layer ansatz with
ladder-like entangler, where one parameterized single-
qubit gate is placed at each qubit in the layer.

For fair comparison, we prepared two settings such that
two simulations were performed on PQC with equivalent
expressibility. In the first condition (Setting-A), all D =
15 single-qubit gates Uy(¥) in the ansatz were treated by
FQS(1q, 3p). On the other hand, in the second condition
(Setting-B), these 15 gates were decomposed into 15 R,
and 30 R, gates (D = 45) as U(¥) = R.(¢)Ry (V)R (N),
and the 45 gates were sequentially optimized with NFT.

Figure 1 shows the cumulative distributions of the fi-
delity between the ground state and the resulting state
at 40, 80, 160, and 320 time step. It is obvious that FQS
reproduced ITE paths more accurately than NFT, which
shows the importance to simultaneously optimize multi-
ple parameters. It should be also noted that NFT and
FQS(1q, 3p) require three and seven types measurements
per gate update, respectively (see Section II-B). As a re-
sult, the NFT optimization of a general single-qubit gate
requires nine measurement types because the gate is de-
composed into three fixed-axis rotation gates, e.g., one
R, and two R, gates. Therefore, the computational cost
for a general single-qubit gate by FQS(1q, 3p), which re-
quires seven measurement types, is actually smaller than
that of NF'T while achieving higher accuracy due to tak-
ing into account correlation among parameters.

(© 2022 Information Processing Society of Japan
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FIG. 1. Cumulative distributions of the fidelity between the
ground state and the imaginary time evolved state in 1D
Heisenberg model. Orange and blue lines represent the cu-
mulative distributions of NFT and FQS(1q, 3p), respectively.

B. H, MOLECULE WITH FQS(2Q, 2P)

In this section, we confirm performance of the FQS
for excitation-conserving gates useful for quantum chem-
ical calculation. We chose Hy; molecule with the atomic
distance of 0.74 A as a benchmark system, where the
molecular Hamiltonian obtained by Hartree-Fock method
with STO-3G basis was mapped to 4-qubit Hamiltonian
by Jordan-Wigner transformation. The imaginary time
propagators were prepared as well as in the previous sec-
tion with fixed time step A7 = 1.0. In this section, we
employed an ansatz with a cascade of the 5 excitation-
conserving gates N; (¢, ¢;), (i =1,2,---,5).

When compared to the Hop and RBS gates, the
excitation-conserving gate has an additional degree of
freedom, which allows to express relative phase in com-
plex space. However, the advantage is not unveiled triv-
ially in treatment of molecular Hamiltonian. This is be-
cause the eigenstates can be represented by vectors in real
space. To confirm this point, we compared two ITE simu-
lations, where 1 and ¢ are variable for FQS(2q, 2p), while
¢ = m for FQS(2q, 1p). Here, we refer the simulation
conditions for FQS(2q, 1p) and FQS(2q, 2p) as Setting-
C and -D, respectively, (See Table I). For FQS(2q, 2p)
simulations we randomly chose the initial value of ¢. On
the other hand, FQS(2q, 1p) and FQS(2q, 2p) shared the
same initial values of 1, which were randomly generated.

Figure 3(a) shows all simulations started from the sim-
ilar energy level, which implies the initial states contain
the ground state with amplitude in the same scale. Note
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FIG. 2. Decomposition of the excitation-conserving gate
N (¢, ¢) using R, and R, gates.

that FQS(2q, 1p) with ¢ = 7 reached to the chemical
accuracy (AE = 1073 a.u.) in the best case. However,
in the worst case of FQS(2q, 1p), the energy was not
improved from the HF level, which implies that the ex-
pressibility for the ground state does not necessarily guar-
antee sufficient expressibility to reproduce accurate ITE
path. In contrast, FQS(2q, 2p) initiating from a state in
complex space outperformed FQS(2q, 1p) with ¢ = .
This is presumably because FQS initiating from complex
vector can make use of larger Hilbert space which in-
cludes not only complex space represented by ¢ # m but
also extended real space caused by the phase cancellation
among ¢’s in excitation-conserving gates. Thus, the time
evolution in FQS can possibly be described better with

¢ Fm

Next, we evaluated the correlation of two parameters
(1, @) in each excitation-conserving gate. To this end, we
decomposed an excitation-conserving gate into R, and
R, gates as Fig. 2 according to [32]. Then we sequentially
updated ¥ and ¢ with FQS(2q, 1p) in different gate sets
(Setting-F). Since these multiple R, and R, gates share
the parameters ¥ and ¢, respectively, required controlled
operations still remain two for one excitation-conserving
gate, namely n = 0.5, even after the gate decomposition.
On the other hand, the number of optimization is doubled
as P = 10, which can lead to overestimation of its perfor-
mance through scaling effect of the propagator e "#OAL/P
in Eq. (6). Hence, for fair comparison with FQS(2q, 1p)
and FQS(2q, 2p), we carried out twice sweep update for
each optimization of Eq. (6) in the FQS(2q, 2p) method,
where we employed P = 10 allowing overlap of A. We
refer this simulation condition as Setting-E.

For statistical accuracy, we independently conducted
20 ITE simulations by using randomly-generated com-
mon initial states for both FQS(2p, 1p) and FQS(2q, 2p)
methods. Figure 3 showed a boxplot of the energy in
course of simulation time, which exhibits distinct differ-
ence where FQS(2q, 2p) reached to lower energy states
when compared to FQS(2q, 1p). This discrepancy im-
plies the importance of taking into account correlation
between 1 and ¢.

FQS(2q, 2p) requires eight-type measurements to eval-
uate Eq. (28), because G, = —G,, holds for the
excitation-conserving gate. On the other hand, four-type
measurements are required in FQS(2q, 1p) for the respec-
tive gates. Therefore, the number of required measure-
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FIG. 3. Energy in the course of simulation steps N with A7 =
1. Black and red lines correspond to the results of FQS(2q,
1p) and FQS(2q, 2p), respectively. Box and whisker plot
denote quantiles obtained from the ITE simulation results
with 20 different initial parameter sets. Dash line represents
the HF energy level.

ments for a single excitation-conserving gate in Eq. (23)
with FQS(2q, 2p) is equivalent to that in separate opti-
mization with FQS(2q, 1p).

Considering the twice sweep, FQS(2q, 2p) simulation
in Fig. 3(b) are twice as expensive with respect to the
measurement cost. To evaluate the simulation accu-
racy with consistent measurement cost, FQS(2p, 1p) with
Setting-F should be compared with FQS(2q, 2p) with
Setting-D. Eight types of measurements are required in
both simulations. As shown in Fig. 3, notably, the per-
formance of FQS(2q, 2p) (Setting-D) was almost retained
in this case when compared to the twice-sweep simula-
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tion (Setting-E) in Fig. 3(b), although the worst case
in single sweep resulted in slightly larger energy. Alto-
gether, the FQS(2q, 2p) application to the excitation-
conserving gate realizes incorporation of the parameter
correlation without any additional cost when compared
to FQS(2q, 1p), which remarkably outweighs the time
scaling of the propagator according to the number of the
parameterized gates.

C. REAL TIME EVOLUTION FOR 1D ISING
MODEL WITH FQS(1Q, 3P)

We applied FQS algorithm to real time evolution of a
4-qubit 1D Ising model with transverse-field under the
open boundary condition. The Hamiltonian is given as

N-2 N-—-1
H=-J Z ZiZiz1—h Z X;, (31)
1=0 =0

where J = h = 1. We employed the ground state [0)®*
of the Hamiltonian without transverse-field as the initial
state at t = 0. The time propagators were prepared using
the first-order Trotter decomposition with fixed time step
At = 0.01. We used the 2-layer PQC with a linear entan-
gler, where each qubit in the layer has one single-qubit
gate, and the single-qubit gate Uy is a general single-
qubit gate in FQS and R.-R,-R, gates in NFT so that
FQS and NFT simulations were performed on PQC with
equivalent expressibility as in the previous section.

In order to demonstrate the trade-off between sim-
ulation accuracy and hardware efficiency, we prepared
several simulation settings with different values of hard-
ware efficiency 7. In the most hardware-efficient case
(n = 1), a propagator is divided by the total number
of single-qubit gates D, and the respective single-qubit
gates are updated according to Eq. (6) with respect to a
divided propagator e~ #OxA/D where D = 12 in FQS
and D = 36 in NFT.

As the next hardware-efficient case, we employed a
group update for a propagator of e~ "OrA/P with the
objective function in Eq. (6). Here, the respective gate
sets Ap, (p = 1,...,P) consist of single-qubit gates
in identical layers (|JA] = m and Hardware efficiency
n = 1/m, where m is the number of qubits). Then,
in the respective optimizations, we conducted FQS al-
gorithm |A| times in coordinate-wise fashion.

For comparison, we also carried out the simulations of
n = 1/D using either NFT or FQS(1q, 3p), where all
parameterized gates are sequentially updated to approx-
imate the action of one propagator e~ ""*OrAt  We refer
to such simulations as NFT(All) and FQS(ALL).

Figure 4 shows total magnetization per site
(N=13°.Z;) and infidelity at each time step with
different levels of hardware-efficiency, where the infi-
delity is defined as

1 — || (dras/ner(t)] e HH0) %112, (32)
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FIG. 4. Dynamics of (Top) total magnetization per site and
(Bottom) the infidelity of simulation for 4-qubit 1D Ising
model, where the initial states were |0)®*. The solid lines and
dashed lines represent the results of FQS and NFT, respec-
tively. The red dotted line represents the exact simulation.
"[A] = 1", "Layer", and "All" denote the level of hardware-
efficiency determining the gate set in one optimization prob-
lem in Eq. (7).

The NFT method failed to reproduce dynamics of the
total magnetization for all three cases, in particular with
n = 1/D and 1. Although NFT improved with the
use of different initial state [29], FQS still outperformed
NFT for all cases. Considering equivalent expressibil-
ity of PQC between NFT and FQS, the results imply
parameter correlations within a single gate (intragate
correlation) are more important in real time dynamics
than in imaginary time evolution. In addition, although
the performance of FQS with = 1 was not necessar-
ily satisfactory, it was drastically improved with group
update in FQS with n = 1/m and 1/D. The improve-
ment was due to incorporation of the correlations be-
tween multiple gates in one group (intergate correlation).
In FQS (n = 1), the divided propagators are uniformly
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assigned to all parameterized gates. However, although
the error with respect to one divided propagator can be
suppressed by fine-grained time steps, the action of each
divided propagator may not be sufficiently represented
by a single gate update. On the other hands, in FQS
with 7 = 1/m and 1/D, the description of action of one
propagator reproduced better by multi-gate update in
one optimization.

IV. CONCLUSION

In this paper, we proposed a new method called FQS
for time evolution simulation with full optimization of
a single-qubit gate with respect to its rotational an-
gle and axis. The time evolution is reproduced by se-
quential optimization of Euclidean norm between tar-
get and trial states, instead of the conventional gradient
based approach. Because FQS can incorporate correla-
tion among parameters into optimization, it can achieve
more accurate simulation. We extended FQS to the
excitation-conserving gates that have been widely em-
ployed in quantum chemical applications. To verify the
performance of the proposed method, we applied it to
quantum imaginary time evolution for 1D Heisenberg
model and H, molecule and confirmed that it effectively
led to quantum states that were closer to the true ground
states. We also applied FQS to real time evolution of 1D
Ising model. Unlike imaginary time evolution, the most
hardware-efficient setting with FQS did not reproduce
the dynamics with satisfactory accuracy in real time evo-
lution, although the advantage of FQS over other meth-
ods was significant. However, its dynamics accuracy was
drastically improved when the hardware efficient condi-
tion was relaxed with the use of O(m) controlled gates,

Vol.2022-QS-5 No.26
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where m is the number of qubits.

Although in the present work the gate updating or-
der is fixed from left to right (from the one closest to
the input qubits to that closest to the output qubits) of
the quantum circuit assuming generality of ansatz and
Hamiltonian, the order may not be optimal and there
remain rooms for improvement. One way to determine
the order is based on the support of the time propaga-
tor. These technical improvement may allow the use of
FQS in real applications implemented on a bigger size
circuit; for instance, calculation of broad vibrational ab-
sorption spectra of floppy molecules [33], simulation of
short time molecular dynamics observed by femto-second
time-resolved spectroscopy [34]. Lastly note that, other
than time evolution simulation, FQS is applicable to gen-
eral optimization problems whose objective functions are
given by Euclidean norm between a target state and a
trial state of a PQC. Therefore, an improved FQS may
also be potentially applicable to such optimization prob-
lems in a practical level.
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