
Electronic Preprint for Journal of Information Processing Vol.30

Regular Paper

SPGC: Integration of Secure Multiparty Computation and
Differential Privacy for Gradient Computation on

Collaborative Learning

Kazuki Iwahana1,a) Naoto Yanai1,b) Jason Paul Cruz1,c) Toru Fujiwara1,d)

Received: May 31, 2021, Accepted: December 3, 2021

Abstract: Achieving differential privacy and utilizing secure multiparty computation are the two primary approaches
used for ensuring privacy in privacy-preserving machine learning. However, the privacy guarantee by existing integra-
tion protocols of both approaches for collaborative learning weakens when more participants join the protocols. In this
work, we present Secure and Private Gradient Computation (SPGC), a novel collaborative learning framework with a
strong privacy guarantee independent of the number of participants while still providing high accuracy. The main idea
of SPGC is to create noise for the differential privacy within secure multiparty computation. We also created an imple-
mentation of SPGC and used it in experiments to measure its accuracy and training time. The results show that SPGC
is more accurate than a naive protocol based on local differential privacy by up to 5.6%. We experimentally show that
the training time increases in proportion to the noise generation and then demonstrate that the privacy guarantee is
independent of the number of participants as well as the accuracy evaluation.

Keywords: collaborative learning, privacy-preserving machine learning, secure multiparty computation, differential
privacy

1. Introduction

1.1 Backgrounds
Collaborative learning also known as federated learning is a

kind of machine learning where multiple participants pool all
training data, and a model is trained on this communal pool. In
general, each participant trains a local model with its data and
then periodically exchanges and updates model parameters with
other participants. Therefore, privacy is an essential issue in col-
laborative learning because training data are collected and pooled
from many sources. When sensitive data, such as genome data or
private images are utilized as training data, their privacy should
be protected. Inference attacks on training data privacy that reveal
information about the training data [39], [46] have been found in
the past years.

A typical approach to guarantee privacy in collaborative learn-
ing is to achieve differential privacy [19], that is, informally, each
participant gives data noise in local [17], [61] and then updates
a model with the data from all participants. However, such an
approach often generates significant amounts of noise that de-
grade the accuracy of its resultant model. In contrast, the privacy
guarantee weakens when the noise generated in local is slight
because the training data can be inferred from model parame-
ters [39], [46].

1 Graduate School of Information Science and Technology, Osaka Univer-
sity, Suita, Osaka 565–0871, Japan

a) k-iwahana@ist.osaka-u.ac.jp
b) yanai@ist.osaka-u.ac.jp
c) cruz@ist.osaka-u.ac.jp
d) fujiwara@ist.osaka-u.ac.jp

A potential solution to the privacy issues mentioned above is
the integration [51] of differential privacy and secure multiparty

computation, which computes a function on inputs given by par-
ticipants without revealing the inputs themselves. In the integra-
tion approach, model parameters are protected by the use of se-
cure multiparty computation before they are exchanged among
participants, and small amounts of noise for differential privacy
are generated and added when the model is updated [65], [67].
Intuitively, the integration approach enables participants to adjust
the total amount of noise they generate and thus supports both the
privacy guarantee and the inference accuracy.

However, the privacy guarantee in existing integration proto-
cols [65], [67] on collaborative learning weakens when the num-
ber of participants increases. In collaborative learning, many par-
ticipants are expected to join the network, given that the primary
motivation for collaborative learning is to collect data from many
sources. Therefore, a protocol that offers a privacy guarantee in-
dependent of the number of participants is desirable. This paper
aims to answer the following fundamental question: Can a new

integrated protocol of differential privacy and secure multiparty

computation for collaborative learning which maintains a strong

privacy guarantee and accuracy without depending on the num-

ber of participants be constructed?

This paper is a full version of our previous work published at
DPM 2021 [28]. We proposed an integrated protocol of differen-
tial privacy and secure multiparty computation for collaborative
learning, SPGC, and analyzed the privacy guarantee of SPGC for-
mally. We also evaluated the accuracy and training time via ex-
periments in our previous work. In the current version, the lack of

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

the correctness of the protocol by Chase et al. [9], which is essen-
tial existing work, is presented formally. We have also presented
training loss values to analyze the training time of SPGC in detail.
Furthermore, related works are discussed in terms of develop-
ments on privacy-preserving machine learning, secure multiparty
computation, and differential privacy, which were not presented
in the previous work.

1.2 Contribution
In this paper, we present SPGC, pronounced as “speak” and

which is an abbreviation for Secure and Private Gradient Com-
putation. SPGC is an integrated protocol of differential privacy
and secure multiparty computation for collaborative learning that
provides a privacy guarantee independent of the number of par-
ticipants. As another contribution, we conducted extensive exper-
iments on SPGC with academic and medical diagnosis datasets to
evaluate its performance.

The construction of SPGC is significantly different from ex-
isting works [65], [67]. Existing works adopt local differential
privacy [17] (LDP) in which each participant generates noise in
local and then removes the noise via secure multiparty computa-
tion. However, an LDP-based construction will weaken the pri-
vacy guarantee even by the use of any secure multiparty compu-
tation. In contrast, the main idea behind SPGC is the creation of

noise within secure multiparty computation.
The idea mentioned above was inspired by the collaborative

gradient computation (CGC) protocol of Chase et al. [9], in which
the noise is generated by using secure multiparty computation.
However, we note that CGC is incomplete, and that SPGC is quite
an improvement over CGC. In particular, we found a negative
case in the training method of CGC where the positive and neg-
ative gradients become indistinguishable from each other. SPGC
can avoid such an issue as well. Moreover, Chase et al. did not
discuss experimental evaluation in detail, more specifically they
only provided the inference accuracy on the MNIST dataset and
they did not provide training time. Detailed experimental evalu-
ation is crucial for an integration protocol for differential privacy
and secure multiparty computation machine learning. How noise
on the differential privacy affects evaluation on each dataset is es-
sential for accuracy, and communication overhead on the secure
multiparty computation is significant for training time. We for-
mally show that SPGC overcomes the negative case described,
and then present the experimental evaluation in detail includ-
ing evaluations on medical diagnosis datasets in addition to the
MNIST dataset and those training times. (See Section 4 and Sec-
tion 5 for more detail). We then show that the training time in-
creases with respect to the noise generation through the experi-
mental results. We also demonstrate that the privacy guarantee is
independent of the number of participants compared to an LDP-
based construction as a naive approach. (See Section 6 for more
details).

1.3 Paper Organization
The remaining parts of this paper are organized as follows.

Background knowledge to help understand this work is presented
in Section 2, and the main problem statement is presented in Sec-

tion 3. The design of SPGC is presented in Section 4, and then
the details of our experiments are presented in Section 5. A dis-
cussion on the results is presented in Section 6, and related works
of SPGC are presented in Section 7. Finally, a conclusion is pre-
sented in Section 8.

2. Preliminaries

In this section, we provide backgrounds on deep learning and
collaborative learning. We then describe differential privacy and
secure multiparty computation as building blocks of SPGC.

2.1 Deep Learning and Collaborative Learning
Deep learning is composed of a training phase to find opti-

mal weight parameters on a model to be trained and an inference

phase to solve a task via inference on the trained model. The goal
of the training phase is to find weight parameters that yield an
acceptably small loss on a loss function between an output of the
model and its training data. Let the current weight parameters be
wt. A loss function L is defined as an average of outputs of the
function with data samples {x1, x2, · · · , xu}, and thus the function
is defined as L(wt) = 1

u

∑u
i=1 L(wt, xi). The stochastic gradient de-

scent (SGD) algorithm is often utilized to minimize L. The SGD
algorithm computes a gradient g = 1

u

∑
xi∈X ∇wt L(wt, xi) and up-

dates the current weight parameter wt to wt+1 = wt − ηg, where
η is a learning rate. In general, the update process of weight pa-
rameters is done for each data group called a batch. One of the
well-known implementations to instantiate the SGD algorithm is
AdamOptimizer(), which is also utilized in this work.

A typical deep learning algorithm considers a centralized set-
ting whereby a central server gathers data for training. In con-
trast, a deep learning algorithm to train a model distributively by
multiple participants is called collaborative learning.

The motivation for collaborative learning is to train a model so
that even if training data is distributed to multiple participants,
each participant trains a local model on its data and then ex-
changes model parameters with other participants. The main ad-
vantage of collaborative learning is to collect training data from
multiple participants. In other words, in a situation where training
data is distributed to each participant, a participant can share the
training with the other participants. To do this, for each step in
training a model, each participant sends model parameters, such
as gradients or weights, to n central servers. Hereafter, we focus
on gradients as model parameters.

For a set P = {p1, p2, · · · , pk} of participants and a set X =

{Xp1 , Xp2 , · · · , Xpk } of data, a participant p j for any j ∈ [1, k] com-
putes a gradient g(Xpj) for data Xpj in local and then sends it to
the central servers.

Roughly speaking, collaborative learning updates a model Y =

f (g(Xp1), g(Xp2), · · · , g(Xpk)) of gradients sent from all the partic-
ipants on n central servers H = {H1,H2, · · · ,Hn}. Afterwards, the
servers return Y to all the participant. After receiving the model
Y from the central servers, the participants utilize Y in the next
training. At the end of the training, each participant owns the
same model as the other participants and the central servers.

After the training phase of the collaborative learning is fin-
ished, the final model Y often becomes publicly available for in-

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

ference by a client. In doing so, a client can give the model Y a
query on inference with any data z and then obtain the inference
from Y . Hereafter, we denote by Y(z) inference on Y with z for a
client.

2.2 Differential Privacy
Differential privacy [19] is a mathematical notion that guaran-

tees privacy theoretically. Recall the definition below.
Definition 1. A randomized mechanism M : D→ R with domain

D and range R satisfies (ε, δ)-differential privacy if, for any two

adjacent inputs d, d′ ∈ D and for any subset of outputs S ⊆ R,

the following equation holds:

Pr(M(d) ∈ S) ≤ exp(ε) Pr(M(d′) ∈ S) + δ.

Note that ε-differential privacy is identical to a special case for
δ = 0 in the definition above. When a deterministic real-valued
function is defined as f : D→ R, a typical way to satisfy the dif-
ferential privacy for f is to perturb the output of a function f by
adding noise. More precisely, a mechanism M is instantiated via
additive noise calibrated to f ’s sensitivity S f , which is defined
as the maximum of the absolute distance | f (d) − f (d′)| where
d and d′ are adjacent inputs. The Gaussian mechanism or the
Laplace mechanism is often utilized for generating noise. Here-
after, we focus on the Gaussian mechanism which is defined by
M(d) = f (d)+N(0, (S fσ)2), whereN(0, (S fσ)2) is the Gaussian
distribution with mean 0 and standard deviation S fσ. Accord-
ing to Theorem 3.22 in [20], the Gaussian mechanism for func-
tion f of the sensitivity S f satisfies (ε, δ)-differential privacy for
δ ≤ 4

5 exp
(
−(σε)2/2

)
and ε < 1.

2.3 Secure Multiparty Computation
Secure multiparty computation is a cryptographic tool that is

commonly used for evaluating a function between multiple par-
ticipants without leaking any information beyond what is re-
vealed by the output of the computation. We describe garbled
circuits [69] and secret sharing [59] as building blocks of the se-
cure multiparty computation below.
2.3.1 Garbled Circuit

A garbled circuit is a secure multiparty computation protocol
used for evaluating any function as well as preserving the privacy
of inputs. Garbled circuits are often utilized in a two-party set-
ting. In this protocol, a function is presented as Boolean circuits
to be encrypted. TinyGarble [64] is a publicly available library of
garbled circuits.
2.3.2 Secret Sharing

Secret sharing is a cryptographic tool used for encoding data
into multiple shares such that each share reveals nothing about the
original data. The original data itself can then be recovered when
shares more than a threshold designated in advance are gathered.

We describe how smod operations defined by Chase et al. [9]
can be computed with secret sharing below. The smod op-
eration is defined as x smod C = ((x + C) mod 2C) − C. For
instance, for any integer x ∈ [−C,C), shares of x are generated by
〈x〉1 = (x + 〈x〉2) smod C, where 〈x〉2 is uniformly distributed in
[−C,C). The resulting share 〈x〉1, 〈x〉2 then reveals nothing about
x. Then, x is recovered by computing x = 〈x〉1 − 〈x〉2 smod C.

3. Problem Description

In this section, we describe privacy-preserving collaborative
learning as the primary problem setting and its technical difficulty
to be solved in this paper.

3.1 Privacy-preserving Collaborative Learning
Privacy-preserving collaborative learning is collaborative

learning where the privacy of training data provided by k

participants P = {p1, · · · , pk} is preserved against n servers in the
training phase and a client in the inference phase. For a privacy-
preserving mechanism M and a model Y = f (g(Xp1), g(Xp2), · · · ,
g(Xpk)) trained by collaborative learning for the entire training
datasets X = {Xp1 , Xp2 , · · · , Xpk }, all participants try to compute
M(Y) and a client can utilize M(Y) for an inference on any
chosen input z, that is, M(Y(z)) is computed.

In this paper, the requirements for achieving training data pri-
vacy against an adversary are described below. These require-
ments are the same as in HybridAlpha [67]. In the following re-
quirements, we assume that a participant p1 and a server H1 are
honest for the sake of convenience.

Privacy of computation: An adversary can collude with n − 1
servers and k−1 participants in the training phase, and the servers
and participants follow a protocol under the honest-but-curious
setting. Then, any information except for M(Y) concerning train-
ing data Xp1 provided by an honest participant p1 is not revealed
to the adversary.

Privacy of output: An adversary can collude with a client who
follows a protocol under the honest-but-curious setting in the in-
ference phase. Then, no information with respect to training data
Xp1 provided by p1 is revealed to the adversary except for M(Y(z))
for any chosen z.

As discussed in Section 1, attacks that infer training data from
gradients during training have been proposed [39], [46]. To pro-
tect training data from such attacks, the privacy to protect gradi-
ents in the training phase, or more specifically the privacy of com-
putation, is necessary. In addition, even when the privacy of com-
putation is achieved, some attacks [22], [62] can reveal the origi-
nal training data from inference results. This means that privacy
in the inference phase, or in other words the privacy of output,
should be guaranteed to protect the training data. Therefore, by
achieving both the privacy of computation and the privacy of out-
put, a collaborative learning algorithm that achieves the privacy
guarantee for training data in the training and inference phases
can be realized.

3.2 Technical Difficulty
The privacy guarantee of existing integration protocols [65],

[67] of secure multiparty computation and differential privacy for
collaborative learning weakens as the number of participants in-
creases. These protocols allow each participant to perturb model
parameters locally by adding noise to these parameters. These
then require a central server to compute the mean of the per-
turbed parameters via secure multiparty computation. Then, the
amount of noise in the existing protocols is is often excessively
reduced instead of improving accuracy. Consequently, the pri-

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

vacy guarantee becomes weaker in exchange for improved accu-
racy. However, the privacy must be guaranteed to prevent infer-
ence attacks [22], [62] as described in the previous section.

The aforementioned problem on existing protocols [65], [67] is
difficult to solve. Local differential privacy is used to guarantee
privacy in collaborative learning [17] in general. Indeed, the ex-
isting protocols [65], [67] are extensions of local differential pri-
vacy. According to their experimental results [65], [67], accuracy
of the local differential privacy decreases significantly in compar-
ison with other settings, for example the non-privacy setting and
an integration protocol with secure multiparty computation. More
specifically, the existing protocols have utilized secure multiparty
computation to remove the noise of local differential privacy for
maintaining accuracy. In other words, if local differential privacy
is adopted, removing noise by using secure multiparty compu-
tation is necessary to maintain accuracy because each user indi-
vidually generates noise. Besides, when an adversary colludes
with participants, the adversary may request the participants to
reduce noise in order to infer target participant p1’s training data
Xp1 . Consequently, an approach based on removing the noise will
blatantly reveal Xp1 .

Thus, besides the existing works [65], [67] described above,
any protocol based on local differential privacy will sacrifice ei-
ther the privacy guarantee or the accuracy even if it uses secure

multiparty computation.

4. Design of SPGC

In this section, we present SPGC, a privacy-preserving collabo-
rative deep learning protocol based on the integration of differen-
tial privacy and secure multiparty computation. We first describe
an overview of SPGC, including the main idea for overcoming
the problems described in the previous section and then show its
construction and privacy analysis.

Fig. 1 Overview of SPGC protocol.

4.1 Overview
The key concept of SPGC is to perturb gradients by creat-

ing noise for gradients within secure multiparty computation on

servers in contrast to the existing works [65], [67] which remove

the noise via secure multiparty computation. Intuitively, both
privacy guarantee and accuracy of SPGC are independent of the
number of participants because it does not include a process for
removing noise. Thus, SPGC can maintain a strong privacy guar-
antee even if many participants join the protocol. We show the
overview of SPGC in Fig. 1.

SPGC allows each participant to conceal gradients, which are
computed local, via secret sharing at the beginning of the proto-
col. Then, SPGC requires central servers to gather and aggregate
the concealed gradients via secret sharing without recovering the
original gradients. The aggregation process for gradients can be
executed fast because the secret sharing provides servers with fast
arithmetic operations for secure multiparty computation.

Next, the servers recover the aggregated gradients and simul-
taneously add noise to the gradients within a garbled circuit. The
process of recovering the aggregated gradients and simultane-
ously adding noise to the gradients involves complicated compu-
tations on the secret sharing. Thus, we focused on using garbled
circuits because they can evaluate any function, and the number
of servers is two in SPGC because a garbled circuit is a fast pro-
tocol between two parties.

Based on the aforementioned construction, SPGC can provide
both the privacy guarantee independent of the number of partici-
pants and a practical accuracy in comparison with the use of the
local differential privacy.

The construction described above was inspired by the col-
laborative gradient computation (CGC) by Chase et al. [9], but
CGC cannot distinguish positive and negative gradients from
each other when a gradient is equal to a modulus of the protocol.
We show the incorrectness of CGC in Appendix A.1. In contrast,

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Algorithm 1 Participant-Side Process of SPGC.
Input: The current batch Bt,p j in a training step, the current weight wt in a

training step, the entire batch size m, gradient norm bound C > 0, modu-

lus 2N where N > log2(mC + 1), loss function L(·, ·) used in training.

Output: 〈G〉1 sent to a server H1, 〈G〉2 sent to a server H2.

1: for xi ∈Bt,p j do

2: g(xi) = ∇wt L(wt , xi)

3: g̃(xi) = min(1, C
||g(xi)|| 2)g(xi)

4: end for

5: g =
∑

xi∈Bt,p j
g̃(xi)

6: G = 2N−1
mC g

7: r = Uni f orm[−2N , 2N)

8: 〈G〉1 = G + r smod 2N

9: 〈G〉2 = r smod 2N

SPGC is constructed in a manner where the gradients are always

smaller than the value of a modulus and therefore it can always
train a model correctly.

4.2 Construction
SPGC consists of two algorithms, more specifically one for the

participant-side and another for the server-side. Hereafter, we as-
sume the following preconditions of SPGC:
• each participant p j ∈ P utilizes a dataset Xpj as a form of

batches {B1,p j , B2,p j , ..., B�,p j } of random examples where � is
the number of batches;

• let the entire batch size obtained from P be m =
∑

j∈[1,k] |Bt,p j |
for any t ∈ [1, �];

• each participant p j for j ∈ [1, k] owns an initial model,
whose weights w0 and architecture are identical to those of
each other.

The update of weights, more specifically the update of the model
itself, is conducted on each batch. In other words, we describe
only a gradient computation for a single step as the algorithms of
SPGC below.

4.3 Participant-side Process
All the participants run Algorithm 1 in parallel. A participant

p j ∈ P computes their per-example gradient g(xi) in local. Then,
p j clips the L2 norm for each gradient g(xi) and computes a sum-
mation g of the gradients. This clipping decides the sensitivity
S f , which is utilized for the range of noise, and this is S f = C in
SPGC. Then, p j converts a floating-point gradient g into a fixed-
point gradient G in line 8 because of secret sharing for training.
Therefore, p j encodes G into two shares 〈Gpj〉1 and 〈Gpj〉2. Fi-
nally, outputs 〈Gpj〉1 and 〈Gpj〉2 of Algorithm 1 are sent to servers
H1 and H2, respectively.

4.4 Server-side Process
After all the participants have run Algorithm 1, the servers H1

and H2 run Algorithm 2. H1 and H2 receive shares 〈Gpj〉1 and
〈Gpj〉2 from each participant p j, respectively. In doing so, H1 and
H2 need to wait until they receive the shares from all participants.
Moreover, H1 and H2 compute 〈GH1〉1 and 〈GH2〉2 , respectively.
Then, H1 and H2 execute garbled circuits.

Next, in line 5, both the recovery of gradients and the gen-
eration of noise are executed within the garbled circuits. In

Algorithm 2 Server-Side Process of SPGC.
Input: The participant sets P, 〈Gpj 〉1 output from participant p j ∈ P, 〈Gpj 〉2

output from participant p j ∈ P, the deviation σ of the Gaussian distribu-

tion, the entire batch size m, gradient norm bound C > 0, modulus 2N

where N > log2(mC + 1).

Output: gDP =
∑

p j∈P g
p j +N(0,C2σ2)

1: H1 : 〈GH1 〉1 =
∑

p j∈P〈Gpj 〉1 smod 2N

2: H1 : generate a random seed s1

3: H2 : 〈GH2 〉2 =
∑

p j∈P〈Gpj 〉2 smod 2N

4: H2 : generate a random seed s2

5: GDP =
(
〈GH1 〉1 − 〈GH2 〉2 smod 2N

)
+Ns1⊕s2 (0, (2N−1

m σ)2)

6: gDP = mC
2N−1 GDP

particular, the gradients are recovered by computing (〈GH1〉1 −
〈GH2〉2) smod 2N . Simultaneously, via a xor computation of
s1 and s2, a seed for generating noise of the differential privacy
is computed. The xor computation within the garbled circuit is
performed to conceal the generated noise itself from each server.
GDP is then obtained with a noise generated from the seed s1 ⊕ s2

and the recovered gradient (〈GH1〉1 − 〈GH2〉2) smod 2N . Finally,
gDP is obtained as a floating-point value.

Note: SPGC may look similar to CGC [9], but its construction
is strictly different from CGC, which contains a theoretical prob-
lem. CGC might compute a gradient imprecisely when the value
of a gradient is equal to a modulus α. To overcome this problem,
SPGC restricts the range of fixed-point gradients to be smaller
than a modulus by setting 2N > mC + 1. Therefore, SPGC can
always compute gradients because their values are not equal to a
modulus. We also prove in Theorem 1 that SPGC can compute
gradients precisely. Our idea enables SPGC to achieve higher ac-
curacy than CGC as well. Furthermore, by creating a modulus in
the smod operation in the form of 2N , the smod operation within
garbled circuits becomes faster.

4.5 Correctness
The correctness of gradient computation in SPGC is proven as

shown in Theorem 1. To prove Theorem 1, we first present the
following lemma.
Lemma 1. For any modulus α ∈ N such that α > mC > 1 holds,

|∑m
i=1
α−1
mC g̃(xi)| < α holds.

Proof. The proof is shown in Appendix A.2. �

The above lemma restricts a summation of gradients in SPGC
to the range of values less than ±α. Here, a modulus α is defined
as 2N in SPGC as shown in Section 4.2. Then, the following the-
orem is proven.
Theorem 1. If all servers and participants follow the SPGC pro-

tocol, an output of Algorithm 2 is
∑

p j∈P g
p j +N(0,C2σ2).

Proof. H1 and H2 compute as follows:

〈GH1〉1 =
∑
p j∈P
〈Gpj〉1 smod 2N

=
∑
p j∈P

(Gpj + rpj smod 2N) smod 2N

= (
∑
p j∈P

Gpj smod 2N +
∑
p j∈P

rpj smod 2N) smod 2N ,

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

and

〈GH2〉2 =
∑
p j∈P
〈Gpj〉2 smod 2N

=
∑
p j∈P

rpj smod 2N .

Moreover, the following equation is computed within garbled cir-
cuits:

(〈GH1〉1 − 〈GH2〉2) smod 2N =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑
p j∈P

Gpj smod 2N

⎞⎟⎟⎟⎟⎟⎟⎟⎠ smod 2N

=
∑
p j∈P

Gpj smod 2N (1a)

=
∑
p j∈P

Gpj . (1b)

For each batch, a summation of gradients provided by each par-
ticipant p j is equal to a summation of per-example gradients com-
puted from Algorithm 1. That is,

∑m
i=1
α−1
mC g̃(xi) =

∑
p j∈P Gpj

holds. Then, the conversion from Eq. (1a) to Eq. (1b) is based
on Lemma 1 described above and Lemma 4 in Ref. [9].

Next, the noise N(0, d2) generated from the Gaussian
distribution is added to the recovered gradients (〈GH1〉1 −
〈GH2〉2) smod 2N . The output of GDP is expanded by 2N−1

mC , which
means to scale back a floating point by multiplying mC

2N−1 . After
scaling back GDP to gDP, the generated noise is almost equal to
the noise generated from the Gaussian distribution N(0,C2σ2).

An approximate computation of gDP =
∑

p j∈P g
p j +N(0,C2σ2)

is then obtained. �

4.6 Privacy Analysis
We analyze the privacy of computation and the privacy of out-

put for SPGC below.
4.6.1 Privacy of Computation

First, we assume that both the garbled circuits and secret shar-
ing achieve privacy of computation. Then, the privacy of compu-
tation in the training phase of the SPGC protocol can be achieved
following the composition theorem by Kushilevitz et al. [35]. In
other words, in Algorithm 2, the computations in lines 1 and 3
are executed via secret sharing, while the computation in line 5 is
executed within a garbled circuit. Unless an adversary colludes
with both H1 and H2, the adversary cannot identify any value ex-
cept for gDP. In addition, since noise with differential privacy is
generated within garbled circuits, an adversary cannot know the
accurate noise value. Consequently, no information with respect
to training data Xp1 is revealed even if an adversary colludes with
either H1 or H2 and any participant p j�1. More formally, follow-
ing the proof of CGC [9], we can prove the following theorem.
Theorem 2. If all servers and participants follow the protocol,

no information except for an output gDP =
∑

p j∈P g
p j+N(0,C2σ2)

of Algorithm 2 is revealed to an adversary.

Proof. In this proof, we discuss from two standpoints, more
specifically the participant-side and server-side. On the
participant-side, any participant will obtain the end result gDP

from H1,H2 and nothing else. Hence, without colluding with
H1 and H2, an adversary cannot reveal any information about

gp1 . On the server-side, 〈Gpj〉1 = Gpj + rpj smod 2N and
〈Gpj〉2 = rpj smod 2N are uniformly distributed values by virtue
of secret sharing as shown in Section 2. If there exists a mech-
anism M′ controlled by an adversary, which is given gDP and
Gpj + rpj and then predicts any property p about Gp1 , then the
following distribution is obtained from the view of the adversary:

Pr[M′(gDP, 〈Gpj〉1) = p(Gp1)]

= Pr
[
M′(gDP, 〈Gpj〉1) = p(Gp1)|〈Gpj〉1

]
= Pr

[
M(′gDP, 〈Gpj〉1) = p(Gp1)|〈Gpj〉1 ∼ Uniform[−2N , 2N)

]
.

(2)

Therefore, no mechanism M′ can reveal any more information
other than that viewed by any participant and server, who observe
only gDP. �

4.6.2 Privacy of Output
To achieve privacy of output, SPGC needs to satisfy the dif-

ferential privacy [48], [52]. When adding noise with (ε, δ)-
differential privacy in one step of training, SPGC constantly sat-
isfies (ε̃, δ̃)-differential privacy after T epochs for the number of
participants k based on the Theorem 3. In contrast, the exist-
ing works [65], [67] satisfy (

√
kε̃, δ̃)-differential privacy. In other

words, unlike existing works, SPGC can guarantee privacy inde-
pendent of the number of participants.
Theorem 3. If all servers and participants follow the proto-

col and (ε, δ)-differential privacy at each batch of the training,

SPGC satisfies (ε̃, δ̃)-differential privacy in the entire process of

the training after T epochs, where

δ̃ = 1 − (1 − δ)T (1 − δ),

ε̃ = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩T ε,
(eε − 1)T ε

eε + 1
+ ε

√
2T log

⎛⎜⎜⎜⎜⎜⎝e +
√

T ε2

δ̃

⎞⎟⎟⎟⎟⎟⎠,
(eε − 1)T ε

eε + 1
+ ε

√
2T log

(
1

δ̃

)⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
(3)

Proof. For computation on each batch,
∑

p j∈P g
p j +N(0,C2σ2)

is obtained from an output of Algorithm 2. In doing so, σ is cho-
sen so that (ε, δ)-differential privacy is satisfied with each batch.
Since a training dataset for each participant is disjointedly divided
into � batches, each sample appears at once. Then, a perturbed
gradient based on (ε, δ)-differential privacy is computed for each
batch, and then a model is updated with the gradient. In doing so,
SPGC satisfies (ε, δ)-differential privacy for each epoch follow-
ing the parallel composition theorem [27], [38]. Therefore, from
Theorem 3.4 by Kairouz et al. [32], an output of the algorithms
of SPGC after T epochs satisfies the (ε̃, δ̃)-differential privacy de-
scribed above. �

5. Experiments

In this section, we present experiments for measuring the ac-
curacy and training time of SPGC.

5.1 Implementation
We conducted experiments with several academic and medical

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

diagnosis datasets to measure the performance of SPGC. All the
experiments were conducted on a computer having Ubuntu 18.04,
83 GB RAM, Intel Xeon(R) CPU E5-2630 v3 2.40 GHz, and no
GPU.
5.1.1 Training

SPGC is implemented mainly with the TensorFlow library *1 in
python, which is an open-source platform developed by Google.
Keras in particular is utilized with a TensorFlow backend for
training a neural network model. Meanwhile, to restrict the
sensitivity during the training, gradients are computed with the
per example gradient operator [25] and then clipped in Ten-
sorFlow. When this is easily implemented, the computational
complexity becomes O(m) relative to batch size m. Surpris-
ingly, by utilizing the gradient computation proposed by Good-
fellow [25], the process is vectorized, more specifically, compu-
tations become faster because parallel computations are available.
The TensorFlow library contains the vectorized map function
for computing the gradient mentioned above, and it is utilized in
our implementation.
5.1.2 Server Communication

A secure multiparty computation protocol often needs a heavy
communication overhead during protocol execution in addition
to the computation itself. The communication process of SPGC
is implemented with the gRPC library *2 in python. The gRPC
library is an open-source framework that can design a communi-
cation environment with a remote computer and measure train-
ing rigorously. Thus, the actual performance of SPGC can be
measured via environments with LAN and WAN settings. Mean-
while, garbled circuits used between servers are implemented
with the TinyGarble library [64] in C++. The noise generation
for differential privacy is directly embedded in the garbled cir-
cuits so that the circuits themselves contain the Gaussian distri-
bution, which is identical to a random seed. Consequently, noise
identical to a random seed is generated in garbled circuits.

5.2 Experimental Setup
5.2.1 Purpose of Experiments

The purpose of our experiments is to evaluate the accuracy and
the training time of SPGC for academic and medical diagnosis
datasets. To do this, we first evaluate the accuracy and training
time of SPGC relative to the amount of noise for differential pri-
vacy. Then, we compare the accuracy and training time of SPGC
with the baselines, namely, non-privacy setting, the use of differ-
ential privacy, and secure multiparty computation.
5.2.2 Baseline

The following settings are utilized as baselines to compare with
the performance of SPGC.
• Non-privacy: Train a model without the privacy guarantee.

Effects on accuracy and computational overhead for train-
ing are evaluated compared to the performance of the Non-
privacy setting. The Non-privacy setting significantly differs
from the setting of SPGC in that it assumes the use of a single
server, which aggregates gradients sent from participants.

• Local differential privacy (LDP): Train a model with a

*1 TensorFlow: https://www.tensorflow.org/
*2 gRPC: https://grpc.io/docs/tutorials/basic/python/

mechanism satisfying local differential privacy (LDP) [17].
LDP is a trivial way for the privacy guarantee in collabo-
rative learning and is also faster than SGPC because it does
not use secure multiparty computation. The performance im-
provement of accuracy and its related overhead on the train-
ing phase for SPGC can be evaluated by comparing them
with the accuracy and training time for LDP.

• Only secure multiparty computation (Only-MPC): For
SPGC, train a model with only garbled circuits and secret
sharing instead of noise generation. Original data is recov-
ered from shares within the garbled circuits. The Only-MPC
setting is identical to a classic construction [43] based on se-
cure multiparty computation. Accordingly, effects on accu-
racy and training time with respect to noise generation for
the differential privacy in SPGC can be evaluated.

Although one might think to compare SPGC with the existing
works [65], [67], their implementations have not been released.
An implementation of CGC [9] was not released, but CGC is the
motivation of SPGC. Thus, based on experimental results de-
scribed below, we compare SPGC with CGC by referring to the
performance described in Ref. [9] in Section 6. As described by
more details later on, we compare only the accuracy of SPGC
with CGC since CGC evaluated only the accuracy on the MNIST
dataset.
5.2.3 Choice of Parameters in SPGC

On Algorithm 1 and Algorithm 2, let the number of participants
be 3, the gradient norm bound C be 1, and N be 16, more specifi-
cally a 16-bit integer is utilized. The standard deviation of a noise

for differential privacy is computed as σ =
√

2 log(1.25
δ

)/ε rela-
tive to parameters ε and δ of the differential privacy [20]. Mean-
while, noise parameters are ε = 0.5, 2.0, and 8.0, which are in
common with CGC [9]. These parameters are used also in ex-
isting privacy-preserving machine learning [1], [71], for instance
the MNIST evaluation in Ref. [1] utilized ε = 0.5, 2.0, and 8.0
whereas the Cancer evaluation in Ref. [71] utilized ε = 8.0. Like-
wise, let δ be 10−3. Parameters ε and δ in SPGC indicate the
privacy level at one step in training. Meanwhile, ε and δ in LDP
indicate the privacy level when a participant generates noise lo-
cally. The privacy levels in both settings may seem to have differ-
ent values, but an adversary can discover a perturbed gradient by
an honest participant in SPGC if the adversary colludes with all
participants except for the honest participant. In particular, SPGC
provides the same privacy level as when only an honest partici-
pant adds noise with a gradient with LDP. We can, therefore,
fairly compare the privacy level of SPGC with that of LDP at one
step in training.
5.2.4 Datasets and Their Architectures

The datasets used in the experiments and their architectures are
shown below.

MNIST: The MNIST dataset contains 70,000 images of hand-
written digits from 0 to 9. In particular, the dataset has 60,000
training samples and 10,000 test samples, each with 784 fea-
tures representing 28×28 pixels in the image. In this experiment,
the training samples are equally divided among three participants
or more specifically 20,000 samples per participant for training.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 2 The architecture used in our experiment for MNIST.

Fig. 3 The architecture used in our experiment for Cancer.

Fig. 4 The architecture used in our experiment for Diabetes.

Furthermore, the batch size for each participant is set to 1,000,
that is, the entire batch size m = 3,000. A 3-layer network con-
sisting of the following structure is utilized as shown in Fig. 2:
(1) a 5×5 convolution layer with 16 outputs per window, a 2−2

stride, ReLU activation function, and padding;
(2) a 1 × 5 × 5 convolution layer with 32 outputs per window, a

1−2−2 stride, no weight sharing on the first axis, and ReLU
activation function;

(3) a dense layer with 10 outputs.
Cancer: The Cancer dataset *3 contains 569 data points with

each point containing 30 real-valued features. The inference task
is to infer whether a tumor is cancerous or benign. In this experi-
ment, the dataset is divided into 390 training samples and 179 test
samples, and then each participant owns 130 training samples for
training. The batch size for each participant is set to 10, that is,
m = 30. We utilized a single full connection layer from 90 to 2
neurons as shown in Fig. 3.

Diabetes: The Diabetes dataset *4 contains 768 data points
with each point containing 8 real-valued features. The inference
task is to infer whether a tumor is diabetic or benign. In this ex-
periment, the dataset is divided into 600 training samples and 168
test samples, and then each participant owns 200 training samples
for training. The batch size for each participant is set to 10, that
is, m = 30. An architecture for Diabetes as shown in Fig. 4 is the
following structure:
(1) a full connection layer with 20 neurons and a Sign activation

function;
(2) a full connection layer with 20 neurons and a Sign activation

function;
(3) a dense layer with 2 outputs.

*3 Cancer: https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
*4 Diabetes: https://www.kaggle.com/uciml/pima-indians-diabetes-

database

5.3 Results
The inference accuracy and training time of SPGC with each

dataset are described below.
5.3.1 Accuracy

The accuracy of inference of SPGC with the MNIST, Cancer,
and Diabetes datasets is shown in Fig. 5, Fig. 6, and Fig. 7, re-
spectively. Under the non-privacy setting as described in Sec-
tion 5.3.2, the convergence for training is 30 epochs on the
MNIST dataset, 30 epochs on the Cancer dataset, and ten epochs
on the Diabetes dataset.

MNIST: The accuracy of inference is 97.4% under the non-
privacy setting and 97.1% under the Only-MPC setting. In con-
trast, the accuracy of SPGC is 88.6%, 90.5%, and 92.8% for each
noise as presented in Fig. 5 (a), Fig. 5 (b), and Fig. 5 (c), respec-
tively. These results show that SPGC improved accuracy com-
pared to the accuracy of the LDP setting, especially with an in-
tense noise such as ε = 0.5. Meanwhile, the SPGC and the LDP
setting have almost the same accuracy at epoch 18 for ε = 8.0 and
ε = 2.0. This means that, in proportion to the amount of noise,
e.g., in Fig. 5 (a) and Fig. 5 (b), the difference in the accuracy be-
tween LDP and SPGC becomes smaller.

Cancer: Both the non-privacy setting and the Only-MPC set-
ting have 98.3% accuracy. Meanwhile, as shown in Fig. 6 (a) and
Fig. 6 (b), the accuracy of SPGC is 60.3% and 63.1% for ε = 0.5
and ε = 2.0, respectively. In contrast, the accuracy for ε = 8.0
is 92.1%, as shown in Fig. 6 (c). Besides, in a comparison be-
tween SPGC and the LDP setting, as shown in Fig. 6 (a), there is
no difference between those accuracies at epoch 30, which is the
convergence of the training on the Non-privacy setting, when the
amount of noise is large at ε = 0.5. Nevertheless, the accuracy of
SPGC is 92.1%, and the LDP setting is 86.6% when the amount
of noise is small at ε = 8.0. In other words, SPGC has higher
accuracy of inference than the LDP setting.

Diabetes: Both the non-privacy setting and the Only-MPC
setting have 67.2% accuracy. On the other hand, as shown in
Fig. 7 (a), the accuracy by SPGC is 33.9%, which is lower than
the LDP setting. In contrast, in Fig. 7 (b), the accuracy of SPGC
at the convergence of training is 51.8% while that of the LDP set-
ting is 44.0%. Furthermore, in Fig. 7 (c), the accuracy of SPGC
is 64.5% while that of the LDP setting is 61.9%.
5.3.2 Training Time

Training time of SPGC with MNIST, Cancer and Diabetes
datasets are shown in Fig. 11 (a), Fig. 11 (b) and Fig. 11 (c), re-
spectively.

MNIST: SPGC required 115.7 hours while the Only-MPC set-
ting required only 70.1 hours, a difference of 45.6 hours. Mean-
while, there was a 3-hour difference in the training time between
ε = 8.0 and ε = 0.01. The total training time for SPGC is 72
times longer than that of LDP.

Cancer: SPGC required 10.8 hours for the training while the
Only-MPC setting required 6.5 hours, a difference of 4.3 hours.
Meanwhile, there was a 0.4 hour difference in the training time
between ε = 8.0 and ε = 0.01. The total training time for SPGC
is 98 times longer than that of LDP.

Diabetes: SPGC required 1.23 hours for the training while the
Only-MPC setting required 0.80 hours, a difference of 0.44 hours.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 5 Inference accuracy of SPGC with MNIST.

Fig. 6 Inference accuracy of SPGC with Cancer.

Fig. 7 Inference accuracy of SPGC with Diabetes.

Meanwhile, there was a 0.05 hours difference in the training time
between ε = 8.0 and ε = 0.01. The total training time for SPGC
is 21 times longer than that of LDP.

6. Discussion

In this section, we discuss considerations on the accuracy and
training time of SPGC and the effect on the number of partici-
pants.

6.1 Accuracy
Based on the results shown in Section 5.3.1, we discuss the

performance of SPGC in terms of two standpoints, more specifi-
cally the difference in accuracy between SPGC and LDP for each
dataset and those between the Non-privacy setting and the Only-
MPC setting. To do this, we also measure training loss values
as shown in Fig. 8 to Fig. 10. Training loss values represent the
convergence of the training process. The figures show that the
training on each dataset is converged. We note that a periodic
change in the training loss values is often caused by typical train-

ing even in the Non-privacy setting.
Comparing SPGC with the LDP setting, the accuracy of SPGC

on the MNIST dataset is almost the same as the LDP setting for
ε = 8.0. Specifically, a sufficient number of participants is needed
to improve the accuracy of the LDP setting. Since noise is gen-
erated from the Gaussian distribution with a mean of zero, the
amount of noise becomes close to zero when many participants
join the protocols. The number of participants is three in the ex-
perimental setting, and the number of participants is insufficient
to make the amount of noise zero in the LDP setting. There-
fore, LDP achieved the same accuracy for ε = 8.0 as SPGC.
For ε = 0.5, SPGC can provide higher accuracy than LDP be-
cause much noise is provided in the LDP setting. In contrast,
for ε = 8.0, the accuracy of LDP became higher than SPGC af-
ter epoch 23. The result is thought to stem from the bit trunca-
tion caused by the use of secure multiparty computation, more
specifically the use of modulo operations. In this setting, the bit
truncation by the secure multiparty computation affects accuracy
significantly more than the noise itself.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 8 Training loss value of SPGC with MNIST.

Fig. 9 Training loss value of SPGC with Cancer.

Fig. 10 Training loss value of SPGC with Diabetes.

Fig. 11 Training time of SPGC with each dataset.

Likewise, on evaluation of Cancer, SPGC can provide higher
accuracy for ε = 8.0. Meanwhile, for ε = 0.5 and ε = 2.0, the
accuracy of SPGC is decreased in proportion to epochs. The de-
crease was caused because noise for ε = 0.5 and ε = 2.0 are too
strong for the Cancer dataset, as shown in Fig. 6. Samples near
the decision boundary are often misclassified due to these strong
noises. Namely, only the noise for ε = 8.0 is suitable for the
Cancer dataset, and then the relation between SPGC and the LDP

setting is familiar as seen in Fig. 5 (a). Consequently, the figures
show that SPGC can control noise better than LDP.

Nevertheless, for ε = 0.5 in Diabetes, the accuracy worsens in
proportion to the number of epochs on both SPGC and the LDP
setting. Because this noise is too large relative to the original
data features, inference became entirely random. Meanwhile, for
ε = 2.0 in the evaluation of Diabetes, SPGC improved the accu-
racy after epoch 26 compared to the LDP setting. This improve-

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Table 1 Details on training time: for each dataset, let Training(h) be the training time until convergence,
Offline(h) be gradient computation time as shown in lines 1–5 of Algorithm 1, Online(h) be the
remaining time of Algorithm 1 and Algorithm 2. The values enclosed in () are under the LDP
setting.

MNIST Cancer Diabetes
Offline Online Training Offline Online Training Offline Online Training

ε = 0.01 1.69(1.53) 115.77(0.04) 117.45(1.57) 0.11(0.11) 10.93(0.01) 11.03(0.12) 0.07(0.07) 1.19(0.00) 1.26(0.07)
ε = 0.1 1.66(1.53) 114.47(0.04) 116.13(1.57) 0.11(0.10) 10.50(0.01) 10.61(0.11) 0.07(0.06) 1.20(0.00) 1.27(0.06)
ε = 0.5 1.67(1.55) 114.05(0.04) 115.7(1.59) 0.11(0.10) 10.65(0.01) 10.76(0.11) 0.07(0.06) 1.16(0.00) 1.23(0.06)
ε = 2.0 1.67(1.55) 113.45(0.04) 115.1(1.59) 0.11(0.09) 10.52(0.00) 10.63(0.10) 0.07(0.06) 1.15(0.00) 1.22(0.06)
ε = 8.0 1.67(1.55) 112.78(0.04) 114.5(1.59) 0.11(0.09) 10.53(0.00) 10.63(0.10) 0.07(0.06) 1.14(0.00) 1.21(0.06)

Only-MPC 1.66 70.16 71.82 0.11 6.40 6.51 0.07 0.73 0.80
Non-privacy 1.68 0.05 1.73 0.10 0.01 0.11 0.06 0.00 0.06

ment is thought to stem from greater control of noise by SPGC
than in the LDP setting.

Next, the difference in accuracy between the Only-MPC set-
ting and Non-privacy setting is caused by the bit truncation from
the conversion to the fixed points for modulo operations. More
specifically, in the evaluation of MNIST, the accuracy of the
Only-MPC setting decreased by a few percent because of the bit
truncation since MNIST contains more features than the other
two datasets. Likewise, in the evaluation of Cancer, the bit trun-
cation affected the accuracy for lower epochs than 27. However,
the accuracy of the Only-MPC setting is identical to Non-privacy
at the convergence of the training, which is epoch 30. In contrast,
on the evaluation of Diabetes, the accuracy of the Only-MPC set-
ting is identical to that of Non-privacy because the number of data
samples is small, and there is no sample whose evaluation result
is changed by the bit truncation. This means that the Only-MPC
setting does not affect accuracy for medical diagnosis datasets.

Finally, we compare the accuracy of SPGC with CGC [9]. An
implementation of CGC has not yet been released so we refer
here to the accuracy of the MNIST evaluation described in the
original CGC paper [9]. For instance, the accuracies of CGC are
82.3% for ε = 0.5, 87.8% for ε = 2.0, and 92.1% for ε = 8.0,
respectively. On the other hand, those of SPGC are 88.6% for
ε = 0.5, 90.5% for ε = 2.0, and 92.8% for ε = 8.0, respec-
tively. We believe that the above advantage of SPGC over CGC
is by virtue of our conversion from a floating-point gradient into a
fixed-point gradient, more specifically revising the incorrectness
of CGC. The above advantage becomes more obvious in propor-
tion to the noise parameter ε.

6.2 Training Time
We discuss the effect on the training time for SPGC. According

to Figs. 8–10, the convergence of the training process in SPGC
and the LDP setting is slower than the Non-privacy setting. This
is considered an adverse effect caused by the noise for differential
privacy. Namely, gradients may draw away the convergence due
to the noise generated from the Gaussian distribution. Hence, the
periodic change of the training loss values becomes larger, and
consequently, the convergence becomes slower.

Also, training time increases when an amount of noise in-
creases as shown in Section 5.3.2 in Fig. 11 (a). This increase
is caused by two computations, the gradient computations by
participant in lines 1–4 on Algorithm 1 and the communication
overhead between two servers in line 5 on Algorithm 2. To pro-

Table 2 Communication overhead (GB): for each dataset, these values are
measured between H1 and H2.

MNIST Cancer Diabetes
ε = 0.01 7,758.0 736.9 81.6
ε = 0.1 7,746.9 707.8 78.4
ε = 0.5 7,641.9 711.7 78.9
ε = 2.0 7,641.9 699.8 77.5
ε = 8.0 7,528.2 698.8 77.5

Only-MPC 433.8 39.5 4.4

vide further evidence from the standpoints described above, we
conduct more experiments with additional parameters ε = 0.01,
ε = 0.1 for each dataset, and then discuss the results (includ-
ing those in the previous section) in detail. More specifically, we
measure the computational time for gradients in lines 1–6 on Al-
gorithm 1 and the communication overhead in Algorithm 2. We
show the results in Table 1.

According to Table 1, for all datasets, the computational time
for Algorithm 2 increases in proportion to ε, more specifically
in the amount of noise. In contrast, the computational time for
gradients is almost stable. This means that the training time de-
pends on the operations of the server-side. Indeed, by evaluating
the computational time for the algorithms in detail, we discovered
that the server-side operations consumed about 98% of the total
computational time. Although SPGC needs significantly heav-
ier online results than the LDP setting, we recall that the accu-
racy of the LDP setting deteriorates, as described in Section 6.1.
For instance, for ε = 0.1 on the MNIST evaluation, the accu-
racy of SPGC is 83.6% while the LDP setting is 78%. Likewise,
for ε = 8.0 on the Cancer evaluation, the accuracy of SPGC is
five points higher than the LDP setting. Thus, it is considered
that SPGC still has an advantage because its accuracy is higher in
spite of worse online results.

More specifically, a large majority of the computational time
is caused by communication for garbled circuits between servers.
Table 2 shows results on the communication overhead between
two servers for each dataset and parameter. According to the ta-
ble, the computational cost of SPGC significantly differs from the
Only-MPC setting for all datasets. The difference was caused by
the noise generated within the garbled circuits. Notably, the com-
munication overhead of SPGC becomes more prominent in pro-
portion to the amount of noise, e.g., 433.8 GB at the Only-MPC
setting, 7,528.2 GB at ε = 8.0 and 7,758.0 GB at ε = 0.01.

The reason is that the size of garbled circuits becomes larger
to generate noise for the differential privacy in proportion to the
noise itself. Let σ′ be 2N−1

m σ. To generate noise with N(0, σ′2)

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 12 Effect of the number of participants on accuracy and training time. We measured the accuracy
and the training time for a noise parameter ε = 0.5 on the evaluation of the MNIST dataset by
changing the number of participants.

within garbled circuits, the scaled standard deviation σ′ is mul-
tiplied by the noise generated from the Gaussian distribution
N(0, 1). The size of the circuits increases with respect to a value
of σ′.

Based on the observation mentioned above, we conclude that
the training time increases significantly due to increasing the
communication overhead relative to noise generation. Dwork
et al. [18] showed that the communication overhead of secret
sharing increases due to the amount of noise for differential pri-
vacy. Our observation about the relationship between garbled cir-
cuits and differential privacy is identical to the result by Dwork
et al., except that we use garbled circuits in collaborative learning.

6.3 Number of Participants
To understand the effect from the number of participants on ac-

curacy and training time, we evaluate SPGC with various partic-
ipants. In our additional experiment, following the experiments
presented in Ref. [67], the accuracy and the training time are mea-
sured on the MNIST dataset for 3, 6, and 8 participants. Further-
more, we additionally measure for 2 and 4 participants. In doing
so, the training data is divided equally among the participants,
e.g., 10,000 data per participant for the 6-participant setting, and
ε = 0.5 is utilized as the noise parameter. The experiment results

are measured until ten epochs and are then compared with the
accuracy and the training time on LDP.
6.3.1 Accuracy

The results on the accuracy are shown in Fig. 12 (a) and
Fig. 12 (b). The accuracy of SPGC is almost stable relative to
the number of participants at epoch 10, while the accuracy on the
LDP setting is worsening. In particular, the accuracy of SPGC is
stable for any number of participants while the LDP setting de-
teriorates by 1.5 points per participant. We thus confirm that the
accuracy of SPGC is independent of the number of participants.

The above result also indicates an advantage of SPGC for the
privacy guarantee. Generally speaking, there is a trade-off be-
tween accuracy and privacy guarantee, and hence the privacy
guarantee may be degraded for the purpose of improving accu-
racy or in other words reducing the noise. This means that reduc-
ing the noise is unnecessary for SPGC because when maintaining
accuracy for any number of participants the privacy guarantee is
also stable. Consequently, the privacy guarantee by SPGC is in-
dependent of the number of participants.
6.3.2 Training time

The results on the training time are shown in Fig. 12 (c) and
Fig. 12 (d). The training time of SPGC is stable relative to the
number of participants because of the following reasons: (1) the

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

total size of the dataset is the same for all settings, and thus the
computational complexity is constant, and (2) all experiments
were conducted on virtual machines via a physical computer, and
thus the process synchronization is not affected. The results on
the training time of SPGC may be different if multiple physical
machines and the WAN environment are utilized. In contrast, the
training time of LDP becomes shorter in proportion to the number
of participants because the training data each participant owns be-
comes small. Meanwhile, the training time with eight participants
was longer than that for six participants, but this was caused by
the vectorized map function. More specifically, in doing paral-
lel computations, the race condition of a computational resource
occurred in the current environment. This race condition is there-
fore thought to make the training time longer.

6.4 Variation of Noise Generation
We discuss further extensions of SPGC from the standpoint

of noise generation below. In this work, we utilized the stan-
dard arguments [20] for the noise generation in the construction
and analyzed the privacy via the composition theorem by Kairouz
et al. [32]. Although we avoided the use of the moment accoun-
tant by Abadi et al. [1] due to prototype implementation, the mo-
ment accountant is potentially available for SPGC. By introduc-
ing the moment accountant, we will be able to find a better trade-
off between accuracy and privacy guarantee. Meanwhile, a typ-
ical way [61] to provide LDP-based collaborative learning is to
adopt the Laplace mechanism for the noise generation, whereas
SPGC has adopted the Gaussian mechanism, whose privacy guar-
antee is stronger than the use of the Laplace mechanism. The use
of such an intense noise is an advantage by virtue of controlling
noise well for SPGC.

6.5 Effect by Clipping Parameter
Clipping parameter C has an enormous impact on the accuracy

because C determines the amount of noise and the clipped gra-
dients. Specifically, when the clipping parameter C is small, the
amount of noise given to gradients is also small. In other words,
the noise becomes large in proportion to the clipping parameter
C while its resultant gradients are close to the proper gradients.
Although a good way to choose C is the use of the median of the
unclipped gradients [1], computing the median between all the
participants’ gradients may be difficult. Consequently, C should
be decided as a common parameter in advance.

To evaluate the effect on the clipping parameter C, we con-
ducted an additional experiment on MNIST for C = 0.5, 1.0, 2.0
at ε = 0.5. The above parameters for C have also been utilized as
a part of the experiment in the existing work [1]. As a result, the
accuracies are 89.6% for C = 0.5, 88.6% for C = 1.0, and 86.8%
for C = 2.0. According to the result, for C = 1.0, the accuracy
deteriorates by 1.8 points compared to C = 2.0. We leave finding
an optimized value of C as an open problem to resolve.

6.6 Limitation
The current construction of SPGC contains several restrictions

on collaborative learning.
First, SPGC is secure only against an honest-but-curious ad-

versary, and a malicious adversary who ignores the protocol is
outside the scope of our work.

Second, SPGC needs the synchronized process to wait for re-
ceiving gradients from all the participants. Related to the syn-
chronized process, SPGC has two underlying restrictions in the
performance. First, the entire training time will become longer
from the standpoint of participants who have already finished the
training. Furthermore, the dynamic participation [67] which al-
lows participants to leave/join a protocol anytime, e.g., even dur-
ing the training, is not supported in SPGC.

Third, additional experimental evaluations are necessary. For
instance, the current experiments were conducted on the local
host environment, and an experiment on the WAN setting is a sub-
ject for future work. Likewise, evaluations with a large dataset
such as CIFAR-10 should be conducted to measure the perfor-
mance of SPGC. Noise parameters suitable for each data should
be discussed since we have not optimized the amount of noise
in the current experiments. We plan to conduct experiments on
these settings in the future.

7. Related Works

In this section, we describe related works on integration of
secure multiparty computation and differential privacy, privacy-
preserving machine learning, differential privacy, and secure mul-
tiparty computation.

7.1 Integration of Secure Multiparty Computation and Dif-
ferential Privacy

Dwork et al. [18] proposed a noisy summation protocol based
on secret sharing and discussed its communication complexity
and circuit depth for secret sharing. Many subsequent works have
focused on basic computations such as median [4], [51], [63] and
summation [26], [53], [60] with respect to the integration of se-
cure multiparty computation and differential privacy. Several ap-
plications, such as a generic architecture for computing statis-
tics [21] and a password protection scheme [45], were also pro-
posed.

In recent years, applications of privacy-preserving methods to
deep learning [9], [65], [67] have been presented. We describe de-
tails of existing protocols below. SPGC was inspired by CGC [9],
which is the closest work to ours. We found a pitfall in CGC
where the training fails as described in Section 4 and revised it,
and thus SPGC is significantly better. Furthermore, the through-
put was improved potentially by introducing fixed-point opera-
tions in the algorithms. Ryffel et al. [56] developed a PyTorch-
based library. Their main motivation is to serve as a public library
that leads researchers to investigate an integration protocol of dif-
ferential privacy and secure multiparty computation. However,
they did not provide experiments on datasets with heavy features
or deep and rigorous discussion. Finally, HybridAlpha [67] and
the work by Truex et al. [65] aim to optimize noise for differential
privacy and mitigate the risks of the privacy leakage. However,
the privacy guarantee of these works weakens as the number of
participants increases, and thus the noise is uncontrollable. Also,
they did not give explicit consideration to the differences in the
performance of protocols with and without differential privacy.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Nonetheless, these works are based on attractive and elegant ap-
proaches in the sense of the use of highly advanced cryptography.
For instance, HybridAlpha is based on functional encryption [5],
and the work by Truex et al. is based on threshold encryption [14].
Readers who are interested in training that leverages advanced
cryptography are advised to read these papers.

7.2 Other Privacy-preserving Machine Learning
There are two kinds of major approaches for privacy-

preserving machine learning, namely, differential privacy-
based learning [1], [47], [61], [63], [72] and secure multiparty
computation-based learning [2], [13], [42], [43], [58], [66]. Dif-
ferential privacy can minimize the computational overhead for
training in contrast to the use of secure multiparty computation.
However, the security during the training itself is not directly sup-
ported. More precisely, in collaborative learning, a large amount
of noise is necessary to guarantee privacy during the training and
hence its resultant accuracy is significantly downgraded. On the
other hand, the secure multiparty computation can protect the
training, but training examples themselves might be leaked from
outputs of the model by attacks on machine learning [23], [62].
Therefore, the use of secure multiparty computation cannot rigor-
ously guarantee the privacy of training examples. Consequently,
both the differential privacy and the secure multiparty computa-
tion should be served jointly. Based on the technical backgrounds
above, the integration protocols [9], [56], [65], [67] described in
the previous section have been proposed.

Meanwhile, several works in literature [6], [7], [11], [16], [31],
[34], [37], [41], [50], [54], [55], [57] provide only the privacy
of inference instead of training. Although the privacy guaran-
tee on training is outside the scope of these works, some of
them [11], [31], [50], [55] have improved the computational per-
formance by combining multiple secure multiparty computation
protocols, such as the combination of secret sharing and garbled
circuits. The latest works [34], [54] provide cryptographic com-
pilers generating code to ensure the computation privacy from
TensorFlow code. Readers interested in the combination of se-
cure multiparty computations for machine learning are advised to
read these papers.

7.3 Differential Privacy
Differential privacy proposed by Dwork et al. [19] has been ex-

tended in many forms so [36], [40], [68]. Local differential pri-
vacy [17] is an extension model of differential privacy whereby
each data owner generates and applies noise to its data, and then
a model on a central server is trained by receiving the data with
noise from each data owner. Local differential privacy is a practi-
cal approach to support training among multiple data owners. A
recent work [44] has found some optimized results for the util-
ity on local differential privacy. These state-of-the-art results on
differential privacy can be used to improve the accuracy of infer-
ence on SPGC in several use cases. The accuracy of inference
on SPGC in several use cases can be improved by utilizing these
state-of-the-art results on differential privacy.

According to the composition theorem [32], the overall privacy
level degrades under the composition of interactive queries where

each query meets a specific differential privacy guarantee. Al-
though protecting a model from the attacks described in the pre-
vious section via the differential privacy is guaranteed in a formal
way [70], Jayaraman and Evans [29] have experimentally proven
that noise can be small enough to prevent such attacks. A vi-
tal issue for future research is finding a practical way to mitigate
accuracy degradation and the privacy guarantee.

7.4 Secure Multiparty Computation
There are three kinds of secure multiparty computation: se-

cret sharing [59], homomorphic encryption [24], and garbled cir-
cuits [69]. These computations can handle different operations.
Secret sharing-based protocols [3], [15], [42] and garbled circuit-
based protocols [15], [42], [64] for example, provide comparison
operations necessary for machine learning. Notably, the garbled
circuits can deal with any circuit and provide support for a wide
range of operations. TinyGarble [64], which is a library of gar-
bled circuits, is utilized in our implementation. In recent years,
developments in secure multiparty computation aim to support
the design of privacy-preserving machine learning [8], [10], [49].

In contrast, homomorphic encryption-based protocols do not
require communication for their computations, but their range of
operations is smaller than the other two protocols. Accordingly,
several works [12], [30], [33] in the past years have focused on
the use of homomorphic encryption. HEAAN [12] is a library
optimized for data analysis that can outperform all previous pro-
tocols. The design and development of a privacy-preserving ma-
chine learning protocol based on these homomorphic encryption-
based protocols will be a challenge for future years.

8. Conclusion

In this paper, we present SPGC, a collaborative learning frame-
work integrating secure multiparty computation and differential
privacy. While existing protocols [65], [67] remove noise for
differential privacy via secure multiparty computation, SPGC
creates noise within the secure multiparty computation. More-
over, SPGC has formally overcome the pitfall of CGC by Chase
et al. [9], in which the training fails. We also conducted exten-
sive experiments with academic and medical diagnosis datasets.
For instance, the training time of SPGC with the Cancer dataset
was carried out in about 10.8 hours until convergence of training,
and SPGC achieved an accuracy of 92.1%, which is 5.6% higher
than that of the naive LDP-based approach. The above higher ac-
curacy of SPGC also indicates that SPGC can provide a privacy
guarantee independent of the number of participants. Our results
also reveal that the training time becomes longer in proportion to
the amount of noise. We are confident that our results can be used
to improve the security and privacy of collaborative learning. In
the future, we plan to conduct additional experiments with more
complicated and more profound architectures, e.g., CIFAR-10.

Acknowledgments This work is supported by the Cabinet
Office (CAO), Cross-ministerial Strategic Innovation Promotion
Program (SIP), Cyber Physical Security for IoT Society (funding
agency: NEDO). We would also like to appreciate anonymous
reviewers for their valuable comments.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

References

[1] Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I.,
Talwar, K. and Zhang, L.: Deep Learning with Differential Privacy,
Proc. CCS, pp.308–318, ACM (2016).

[2] Agrawal, N., Shahin Shamsabadi, A., Kusner, M.J. and Gascón, A.:
QUOTIENT: Two-Party Secure Neural Network Training and Predic-
tion, Proc. CCS, pp.1231–1247, ACM (2019).

[3] Bogdanov, D., Laur, S. and Willemson, J.: Sharemind: A Framework
for Fast Privacy-Preserving Computations, Proc. ESORICS, LNCS,
Vol.5283, pp.192–206, Springer (2008).

[4] Bohler, J. and Kerschbaum, F.: Secure Sublinear Time Differentially
Private Median Computation, Proc. NDSS, Internet Society (2020).

[5] Boneh, D., Sahai, A. and Waters, B.: Functional Encryption: Def-
initions and Challenges, Proc. TCC, LNCS, Vol.6597, pp.253–273,
Springer (2011).

[6] Bourse, F., Minelli, M., Minihold, M. and Paillier, P.: Fast Ho-
momorphic Evaluation of Deep Discretized Neural Networks, Proc.
CRYPTO, LNCS, Vol.10993, pp.483–512, Springer (2018).

[7] Byali, M., Chaudhari, H., Patra, A. and Suresh, A.: FLASH: Fast and
Robust Framework for Privacy-preserving Machine Learning, Proc.
Privacy Enhancing Technologies, Vol.2, pp.459–480 (2020).

[8] Chandran, N., Gupta, D., Rastogi, A., Sharma, R. and Tripathi,
S.: EzPC: Programmable and Efficient Secure Two-Party Computa-
tion for Machine Learning, Proc. IEEE EuroS&P, pp.496–511, IEEE
(2019).

[9] Chase, M., Gilad-Bachrach, R., Laine, K., Lauter, K. and Rindal, P.:
Private Collaborative Neural Network Learning (2017) (online), avail-
able from 〈https://eprint.iacr.org/2017/762〉.

[10] Chaudhari, H., Choudhury, A., Patra, A. and Suresh, A.: ASTRA:
High Throughput 3PC over Rings with Application to Secure Predic-
tion, Proc. CCSW, pp.81–92, ACM (2019).

[11] Chaudhari, H., Rachuri, R. and Suresh, A.: Trident: Efficient 4PC
Framework for Privacy Preserving Machine Learning, Proc. NDSS,
The Internet Society (2020).

[12] Cheon, J.H., Kim, A., Kim, M. and Song, Y.: Homomorphic En-
cryption for Arithmetic of Approximate Numbers, Proc. ASIACRYPT,
LNCS, Vol.10624, pp.409–437, Springer (2017).

[13] Dalskov, A., Escudero, D. and Keller, M.: Secure Evaluation of
Quantized Neural Networks, Proc. Privacy Enhancing Technologies,
Vol.2020, No.4, pp.355–375 (2020).

[14] Damgård, I. and Jurik, M.: A Generalisation, a Simpli.cation and
Some Applications of Paillier’s Probabilistic Public-Key System,
Proc. PKC, LNCS, Vol.1992, pp.119–136, Springer (2001).

[15] Demmler, D., Schneider, T. and Zohner, M.: ABY - A Framework
for Efficient Mixed-Protocol Secure Two-Party Computation, Proc.
NDSS, Internet Society (2015).

[16] Dowlin, N., Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M. and Wernsing, J.: CryptoNets: Applying Neural Net-
works to Encrypted Data with High Throughput and Accuracy, Proc.
ICML, pp.201–210 (2016).

[17] Duchi, J.C., Jordan, M.I. and Wainwright, M.J.: Local Privacy and
Statistical Minimax Rates, Proc. FOCS, pp.429–438, IEEE (2013).

[18] Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I. and Naor, M.:
Our Data, Ourselves: Privacy Via Distributed Noise Generation, Proc.
EUROCRYPT, LNCS, Vol.4004, pp.486–503, Springer (2006).

[19] Dwork, C., McSherry, F., Nissim, K. and Smith, A.: Calibrating Noise
to Sensitivity in Private Data Analysis, Proc. TCC, LNCS, Vol.3876,
pp.265–284, Springer (2006).

[20] Dwork, C. and Roth, A.: The Algorithmic Foundations of Differen-
tial Privacy, Foundations and Trends in Theoretical Computer Science,
Vol.9, No.3–4, pp.211–407 (2014).

[21] Eigner, F., Kate, A., Maffei, M., Pampaloni, F. and Pryvalov, I.: Differ-
entially Private Data Aggregation with Optimal Utility, Proc. ACSAC,
pp.316–325, ACM (2014).

[22] Fredrikson, M., Jha, S. and Ristenpart, T.: Model Inversion Attacks
That Exploit Confidence Information and Basic Countermeasures,
Proc. CCS, pp.1322–1333, ACM (2015).

[23] Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D. and Ristenpart, T.:
Privacy in Pharmacogenetics: An End-to-End Case Study of Person-
alized Warfarin Dosing, Proc. USENIX Security, pp.17–32, USENIX
Association (2014).

[24] Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattice, Proc.
STOC, pp.169–178, ACM (2009).

[25] Goodfellow, I.: Efficient Per-Example Gradient Computations (2015).
[26] Goryczka, S. and Xiong, L.: A Comprehensive Comparison of Mul-

tiparty Secure Additions with Differential Privacy, IEEE Trans. De-
pendable and Secure Computing, Vol.14, No.5, pp.463–477 (2017).

[27] Hsu, J.: Composition, Verification, and Differential Privacy
(2018) (online), available from 〈https://justinh.su/files/slides/tpdp18-
invited.pdf〉.

[28] Iwahana, K., Yanai, N., Cruz, J.P. and Fujiwara., T.: SPGC: An In-
tegrated Framework of Secure Computation and Differential Privacy
for Collaborative Learning, Proc. DPM, Lecture Notes in Computer
Science, Springer (2021).

[29] Jayaraman, B. and Evans, D.: Evaluating Differentially Private Ma-
chine Learning in Practice, Proc. USENIX Security, pp.1895–1912,
USENIX Association (2019).

[30] Jiang, X., Kim, M., Lauter, K. and Song, Y.: Secure Outsourced Ma-
trix Computation and Application to Neural Networks, Proc. CCS,
pp.1209–1222, ACM (2018).

[31] Juvekar, C., Vaikuntanathan, V. and Chandrakasan, A.: GAZELLE: A
Low Latency Framework for Secure Neural Network Inference, Proc.
USENIX Security, pp.1651–1668, USENIX Association (2018).

[32] Kairouz, P., Oh, S. and Viswanath, P.: The Composition Theorem for
Differential Privacy, IEEE Trans. Information Theory, Vol.63, No.6,
pp.4037–4049 (2017).

[33] Khedr, A., Gulak, G. and Vaikuntanathan, V.: SHIELD: Scalable
Homomorphic Implementation of Encrypted Data-Classifiers, IEEE
Trans. Computers, Vol.65, No.9, pp.2848–2858 (2016).

[34] Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A. and
Sharma, R.: CrypTFlow: Secure TensorFlow Inference, Proc. IEEE
S&P, pp.1646–1663, IEEE (2020).

[35] Kushilevitz, E., Lindell, Y. and Rabin, T.: Information-theoretically
secure protocols and security under composition, SIAM Journal on
Computing, Vol.39, pp.2090–2112 (2010).

[36] Liu, C., Chakraborty, S. and Mittal, P.: Dependence Makes You
Vulnberable: Differential Privacy Under Dependent Tuples, Proc.
NDSS, pp.21–24, Internet Society (2016).

[37] Liu, J., Juuti, M., Lu, Y. and Asokan, N.: Oblivious Neural Network
Predictions via MiniONN transformations, Proc. CCS, pp.619–631,
ACM (2017).

[38] McSherry, F.D.: Privacy Integrated Queries: An Extensible Plat-
form for Privacy-Preserving Data Analysis, Proc. SIGMOD, pp.19–
30, ACM (2009).

[39] Melis, L., Song, C., De Cristofaro, E. and Shmatikov, V.: Exploiting
Unintended Feature Leakage in Collaborative Learning, Proc. IEEE
S&P, pp.691–706, IEEE (2019).

[40] Mironov, I.: Rényi Differential Privacy, Proc. CSF, pp.263–275, IEEE
(2017).

[41] Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W. and Popa, R.A.:
Delphi: A Cryptographic Inference Service for Neural Networks,
Proc. USENIX Security, pp.2505–2522, USENIX Association (2020).

[42] Mohassel, P. and Rindal, P.: ABY3: A Mixed Protocol Framework for
Machine Learning, Proc. CCS, pp.35–52, ACM (2018).

[43] Mohassel, P. and Zhang, Y.: SecureML: A System for Scalable
Privacy-Preserving Machine Learning, Proc. IEEE S&P, pp.19–38,
IEEE (2017).

[44] Murakami, T. and Kawamoto, Y.: Utility-Optimized Local Differen-
tial Privacy Mechanisms for Distribution Estimation, Proc. USENIX
Security, pp.1877–1894, USENIX Association (2019).

[45] Naor, M., Pinkas, B. and Ronen, E.: How to (Not) Share a Password:
Privacy Preserving Protocols for Finding Heavy Hitters with Adver-
sarial Behavior, Proc. CCS, pp.1369–1386, ACM (2019).

[46] Nasr, M., Shokri, R. and Houmansadr, A.: Comprehensive Privacy
Analysis of Deep Learning: Passive and Active White-box Inference
Attacks against Centralized and Federated Learning, Proc. IEEE S&P,
pp.739–753, IEEE (2019).

[47] Papernot, N., Song, S., Mironov, I., Raghunathan, A., Talwar, K. and
Erlingsson, Ú.: Scalable Private Learning with PATE, Proc. ICLR
(2018) (online), available from 〈https://openreview.net/forum?id=
rkZB1XbRZ〉.

[48] Park, C., Hong, D. and Seo, C.: An Attack-Based Evaluation Method
for Differentially Private Learning Against Model Inversion Attack,
IEEE Access, Vol.7, pp.124988–124999 (2019).

[49] Patra, A., Schneider, T., Suresh, A. and Yalame, H.: ABY2.0:
Improved Mixed-Protocol Secure Two-Party Computation, Proc.
USENIX Security, USENIX Association (2021).

[50] Patra, A. and Suresh, A.: BLAZE: Blazing Fast Privacy-Preserving
Machine Learning, Proc. NDSS, The Internet Society (2020).

[51] Pettai, M. and Laud, P.: Combining Differential Privacy and Se-
cure Multiparty Computation (2015) (online), available from 〈https://
eprint.iacr.org/2015/598〉.

[52] Rahman, M.A., Rahman, T., Laganière, R., Mohammed, N. and Wang,
Y.: Membership Inference Attack against Differentially Private Deep
Learning Model, Transactions on Data Privacy, Vol.11, No.1, pp.61–
79 (2018).

[53] Rastogi, V. and Nath, S.: Differentially Private Aggregation of Dis-
tributed Time-Series with Transformation and Encryption, Proc. SIG-
MOD, pp.735–746, ACM (2010).

[54] Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta, D., Rastogi,
A. and Sharma, R.: CrypTFlow2: Practical 2-Party Secure Inference,

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Proc. CCS, pp.325–342, ACM (2020).
[55] Riazi, M.S., Samragh, M., Chen, H., Laine, K., Lauter, K.E. and

Koushanfar, F.: XONN: XNOR-based Oblivious Deep Neural Net-
work Inference, Proc. USENIX Security, pp.1501–1518, USENIX As-
sociation (2019).

[56] Ryffel, T., Trask, A., Dahl, M., Wagner, B., Mancuso, J., Rueckert, D.
and Passerat-Palmbach, J.: A generic framework for privacy preserv-
ing deep learning, Proc. PPML with NeurIPS (2018).

[57] Sanyal, A., Kusner, M., Gascon, A. and Kanade, V.: TAPAS: Tricks to
Accelerate (encrypted) Prediction As a Service, Proc. ICML, pp.4497–
4506 (2018).

[58] Sav, S., Pyrgelis, A., Troncoso-Pastoriza, J.R., Froelicher, D., Bossuat,
J., Sousa, J.S. and Hubaux, J.: POSEIDON: Privacy-Preserving Feder-
ated Neural Network Learning, Proc. NDSS, Internet Society (2021).

[59] Shamir, A.: How to Share a Secret, Comm. ACM, Vol.22, No.11,
pp.612–613 (1979).

[60] Shi, E., Chan, T.H., Rieffel, E., Chow, R. and Song, D.: Privacy-
preserving aggregation of time-series data, Proc. NDSS, pp.1–17,
Citeseer (2011).

[61] Shokri, R. and Shmatikov, V.: Privacy-Preserving Deep Learning,
Proc. CCS, pp.1310–1321, ACM (2015).

[62] Shokri, R., Stronati, M., Song, C. and Shmatikov, V.: Membership In-
ference Attacks Against Machine Learning Models, Proc. IEEE S&P,
pp.3–18, IEEE (2017).

[63] Smith, A., Thakurta, A. and Upadhyay, J.: Is Interaction Necessary
for Distributed Private Learning?, Proc. IEEE S&P, pp.58–77, IEEE
(2017).

[64] Songhori, E.M., Hussain, S.U., Sadeghi, A.-R., Schneider, T. and
Koushanfar, F.: TinyGarble: Highly Compressed and Scalable Se-
quential Garbled Circuits, Proc. IEEE S&P, pp.411–428, IEEE
(2015).

[65] Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H., Zhang,
R. and Zhou, Y.: A Hybrid Approach to Privacy-Preserving Federated
Learning, Proc. AISec, pp.1–11, ACM (2019).

[66] Wagh, S., Gupta, D. and Chandran, N.: Securenn: 3-party secure com-
putation for neural network training, Proc. Privacy Enhancing Tech-
nologies, Vol.2019, No.3, pp.26–49 (2019).

[67] Xu, R., Baracaldo, N., Zhou, Y., Anwar, A. and Ludwig, H.: Hy-
bridAlpha: An Efficient Approach for Privacy-Preserving Federated
Learning, Proc. AISec, pp.13–23, ACM (2019).

[68] Yang, B., Sato, I. and Nakagawa, H.: Bayesian Differential Privacy on
Correlated Data, Proc. SIGMOD, pp.747–762, ACM (2015).

[69] Yao, A.C.: Protocols for secure computations, Proc. FOCS, pp.160–
164, IEEE (1982).

[70] Yeom, S., Giacomelli, I., Fredrikson, M. and Jha, S.: Privacy Risk
in Machine Learning: Analyzing the Connection to Overfitting, Proc.
CSF, pp.268–282, IEEE (2018).

[71] Yu, L., Liu, L., Pu, C., Gursoy, M.E. and Truex, S.: Differentially Pri-
vate Model Publishing for Deep Learning, IEEE S&P 2019, pp.332–
349, IEEE (2019).

[72] Yu, L., Liu, L., Pu, C., Gursoy, M.E. and Truex, S.: Differentially Pri-
vate Model Publishing for Deep Learning, Proc. IEEE S&P, pp.332–
349, IEEE (2019).

Appendix

A.1 Lack of Correctness on CGC

We show a lack of correctness on CGC by Chase et al. [9] be-
low. Loosely speaking, there are cases in which gradients of CGC
are not accurately recovered. In particular, for summation of gra-
dients provided by all participants, the summation may be equiv-
alent to −mC or mC, that is, −mC ≤ ∑

i gi ≤ mC. In doing
so, for the use of secret sharing whose modulus is mC, values
of −mC and mC are indistinguishable from each other. In other
words, the training will become incorrect because gradients that
are identical to mC and −mC are dealt with by the same value on
the smod operation. The lack of the correctness described above
is formally shown through Lemma 2 and Theorem 4 as described
below. Here, assume that the L2 norm is utilized as a clipping
norm.

At first, in CGC, let v = {v1, v2, · · · , vn} be data, the clip func-
tion Clip(C, v) be computed as min(1, C

||v|| 2)v and the gradient com-

putation is defined as F′(wt, xi), where wt is the current weight
and xi is a training example, respectively. The aforementioned
gradient computation of CGC is identical to ḡ(xi) = ∇wt L(wt, xi)
of SPGC in this paper.
Lemma 2. For any vector v = {v1, v2, · · · , vn} and C > 0, an ele-

ment yi computed as y = Clip(C, v) is |yi| ≤ C for any i ∈ [1, n].

Proof. We prove the lemma by discussing each case with re-
spect to ||v|| and C.
• For ||v|| ≤ C, the following equation holds:

Clip(C, v) = v = (v1, v2, · · · , vn).

That is, for any vi ∈ {v1, v2, · · · , vn}, |yi| = |vi| holds. Then,
the following inequation holds:

|yi| = |vi| ≤
√
|v1|2 + |v2|2 + · · · + |vn|2 ≤ C,

because of |vi| ≥ 0. Furthermore, when v j = 0 holds
for any j ∈ [1, n]\{i}, |yi| = |vi| = C holds. That is,
|yi| = |vi| ≤ C holds for any vi ∈ {v1, v2, · · · , vn}. Therefore,
for any yi ∈ {y1, y2, · · · , yn}, |yi| ≤ C holds.

• For any ||v|| > C, the following equation holds:

Clip(C, v) =
C
||v|| v =

C√|v1|2 + |v2|2 + · · · + |vn|2 v.
That is, for any vi ∈ {v1, v2, · · · , vn}, |yi| = C√

|v1 |2+|v2 |2+···+|vn |2
|vi|

holds. Then, the following equation holds:

|yi| = C√|v1|2 + |v2|2 + · · · + |vn|2 |vi| ≤
C√|vi|2 |vi| = C,

because of |vi| ≥ 0 holds. Furthermore, when v j = 0
holds for any j ∈ [1, n]\{i}, |yi| = C√

|v1 |2+|v2 |2+···+|vn |2
|vi| = C

holds. That is, |yi| = C√
|v1 |2+|v2 |2+···+|vn |2

|vi| ≤ C holds for any

vi ∈ {v1, v2, · · · , vn}. Therefore, for any yi ∈ {y1, y2, · · · , yn},
|yi| ≤ C holds. �

Next, we show that CGC lacks correctness by presenting a
counterexample where gradients are not accurately recovered to
an original value. Intuitively, since a modulus on CGC is mC,
gradients whose values are mC and −mC are indistinguishable
from each other when gradients are equivalent to mC. This fact is
presented as the following theorem.
Theorem 4. Let a per-example gradient for a sample xi ∈
{x1, x2, · · · , xm} be g̃(xi) = Clip(C, F′(wt, xi)). There is then a

case where a summation of all the gradients is mC and corre-

sponds to −mC in smod operation.

Proof. First, |g̃(xi)| ≤ C holds for per-example gradients com-
puted by each participant in accordance with Lemma 2. Then,
a summation of gradients given from all the participants is com-
puted as

g =

∣∣∣∣∣∣∣
m∑

i=1

g̃(xi)

∣∣∣∣∣∣∣ ≤ mC. (A.1)

Therefore, if g̃(xi) = C holds for any xi ∈ {x1, x2, · · · , xm},
g = mC holds from Equation (A.1). Then, from Theorem 4, for
gradients mC,

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

m∑
i=1

g̃(xi) smod mC = (mC + mC) mod 2mC − mC = −mC

holds from the definition of the smod operation. Gradients with
mC then become −mC by the recovering phase of secure multi-
party computation and therefore the original value mC cannot be
recovered. �

For instance, in case of F′(wt, xi) = {0, · · · , j, 0, · · · , 0} for any
j ∈ R such that j > C holds, g̃(xi) = C holds.

A.2 Proof of Lemma 1

In this appendix, we prove Lemma 1 below. From the assump-
tion where α > mC > 1 holds, α−1

mC > 0 holds. Then, because
|g̃(xi)| ≤ C holds from Theorem 4, the following relationship
holds for g̃(xi):

−C ≤ g̃(xi) ≤ C

⇔ − (α − 1)
m

≤ α − 1
mC
g̃(xi) ≤ (α − 1)

m
.

Then, on a summation of gradients, the following relationship
holds from the relationship described above:

−α + 1 ≤
m∑

i=1

α − 1
mC
g̃(xi) ≤ α − 1

⇔ −α <
m∑

i=1

α − 1
mC
g̃(xi) < α.

Therefore, for any α ∈ N such that α > mC > 1 holds,
|∑m

i
α−1
mC g̃(xi)| < α holds. �

Kazuki Iwahana received B.Eng. degree
in Engineering Science from Osaka Uni-
versity, Japan, in 2020. He has recently
joined an M.S. course in the Graduate
School of Information Science and Tech-
nology at Osaka University, Japan. His re-
search interests include information secu-
rity.

Naoto Yanai received his B. Eng. degree
from The National Institution of Aca-
demic Degrees and University Evalua-
tion, Japan, in 2009, his M.S. Eng. from
the Graduate School of Systems and In-
formation Engineering, the University of
Tsukuba, Japan, in 2011, and his Dr.E. de-
gree from the Graduate School of Systems

and Information Engineering, the University of Tsukuba, Japan,
in 2014. He had been an assistant professor at Osaka University,
Japan, from 2014 to 2021 and is an associate professor at Osaka
University. His research area is cryptography and information
security.

Jason Paul Cruz received his B.S. de-
gree in Electronics and Communications
Engineering and M.S. degree in Elec-
tronics Engineering from the Ateneo de
Manila University, Quezon City, Philip-
pines, in 2009 and 2011, respectively, and
his Ph.D. degree in Engineering from the
Graduate School of Information Science,

Nara Institute of Science and Technology, Nara, Japan in 2017.
He is currently a Specially Appointed Assistant Professor at
Osaka University, Osaka, Japan. His current research interests
include role-based access control, blockchain technology, hash
functions and algorithms, privacy-preserving cryptography, and
Android programming.

Toru Fujiwara received his B.E., M.E.,
and Ph.D. degrees in Information and
Computer Sciences from Osaka Univer-
sity in 1981, 1983, and 1986. In 1986,
he joined the faculty of Osaka University.
Since 1997, he has been a Professor at
Osaka University. He is currently with the
Graduate School of Information Science

and Technology. His current research interests include coding
theory and information security.

c© 2022 Information Processing Society of Japan

