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Abstract: As people spend more time indoors owing to the COVID-19 global pandemic, the automatic detection of
indoor human activity has increasingly become of interest to researchers and consumers. Conventional Wi-Fi Chan-
nel State Information (CSI)-based detection provides adequate accuracy; however, they have a deployment constraint
owing to specific hardware and software for full CSI acquisition. This study exploits the Compressed Beamforming
Report (CBR), which is a default form of CSI in IEEE 802.11ac and 11ax, to address the constraint in Wi-Fi CSI-
based methods. The CBRs are shared among most IEEE 802.11ac compliant devices and are easily obtained with
outer sniffers. Our CBR-based Activity Count Estimator (CBR-ACE) is a novel wireless sensing system using CBRs.
The CBR-ACE provides a Raspberry Pi-based tool to easily deploy a new wireless sensing system into existing net-
works, and utilizes the CBR irregularity for automatic detection. From experiments in real-dwelling environments, the
proposed CBR-ACE achieves average estimation errors of 0.97 in the best case.
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1. Introduction

Owing to the COVID-19 pandemic, the number of people
working remotely from their homes and attending lectures has
increased significantly to limit the spread of the infection. Ac-
cording to Ref. [1], approximately 35% of the targeted samples
in the US reported that they recently switched to working from
home. However, the problem of inactivity is rising as people
stay-at-home for a long period. Owing to the physical distanc-
ing restrictions and recommendation for self-isolation at home,
many people are failing to continue with their regular outdoor
exercises; instead, they operate indoor exercise, e.g., repetitive
exercises, such as twisting or push-ups, for improving cognitive
and emotional well-being. Therefore, systems that automatically
detect and continuously measure these indoor exercises will make
it easier for people to manage their activeness and stay healthy.

Some studies have demonstrated an automatic tracking of hu-
man activity. Table 1 lists the pros and cons of the existing
studies on human activity sensing. The typical systems utilize
visual- or sensor-based sensing methods. These methods have
had a significant success in human activity recognition [2] and
wild life tracking [3]. However, the visual-based methods fun-
damentally require Line-of-Sight (LOS) and bright environments
without any obstacles. In addition, the visual-based methods can
cause serious privacy issues. The sensor-based methods are rel-
atively cheap and easy to deploy. With the recent development
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Table 1 Comparison of human activity sensing methods.

of neural networks, sensor-based activity recognition with fairly
high accuracy has been achieved [4], [5]. However, their accuracy
depends on where and how the sensors are set on the environment.
Furthermore, a significant problem that sensor devices experience
is the battery life.

In recent years, wireless sensing methods have been exten-
sively studied as a new sensing method. Wireless sensing can per-
form high-precision sensing while solving the aforementioned is-
sues of the existing sensing methods. Although some studies uti-
lize wireless signals from a high frequency band, such as the Ultra
Wide Band (UWB) [6], most of these wireless sensing methods
are designed for commercial off-the-shelf (COTS) wireless de-
vices. Particularly, they exploit Channel State Information (CSI),
which is defined after the IEEE 802.11n standards as a method
to indicate the channel dynamics between the wireless devices,
for sensing in non-LOS (NLOS) environments and over long dis-
tances. For example, they realized human localization [7], ac-
tivity recognition [8], and fall detection [9] by coping with the
channel dynamics for sensing. Additionally, a recent work pro-
posed Wi-COVID for COVID-19 patient monitoring [10]. Al-
though there are sensing methods using RSSI [11], [12], RSSI
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that can be obtained by COTS devices is coarse-grained and only
one value can be obtained from a single packet, so the method
using CSI can provide more detailed sensing.

However, there are large gaps between the assumed COTS
wireless devices in the existing CSI-based sensing studies and
the recent COTS wireless devices. The COTS wireless devices
in most of these existing methods need to equip a certain type of
Network Interface Card (NIC) such as Intel 5300, which follows
the IEEE 802.11n standard, to obtain full CSI for sensing. How-
ever, the COTS wireless devices are equipped with a variety of
NICs and most of them are compliant with the subsequent stan-
dards, such as IEEE 802.11ac and 11ax. In both IEEE 802.11ac
and 11ax, the full CSI is transformed into eigen space and the
space is quantized into binary to reduce communication over-
head. Although the COTS wireless devices can reconstruct the
compressed eigen space, which refers to Compressed Beamform-
ing Reports (CBRs), by decoding the received binary, its nature
totally differs from the full CSI.

To fill the gaps, the next generation of wireless sensing sys-
tems, using the COTS wireless devices should realize the follow-
ing functions:
( 1 ) A tool that can reconstruct the CBRs from the binary with-

out requiring a dedicated device for decoding and NICs on
the COTS wireless devices.

( 2 ) A sensing method that can recognize human activity and ex-
ercise only using the CBRs.

Therefore, we propose a novel wireless sensing system,
namely, CBR-based Activity Count Estimator (CBR-ACE).
CBR-ACE consists of two methods to realize the aforementioned
functions. CBR-ACE includes: 1) WiPiCap and 2) ACE. WiP-
iCap realizes Raspberry Pi-based packet sniffer and binary de-
coding to collect the CBRs without the limitation of the NICs
on the COTS wireless devices. WiPiCap not only acquires data,
but also generates time series data from the decoded information.
We make WiPiCap open-source and publicly available. ACE is
a signal processing-based recognition of human exercise, i.e., the
number of repetitive exercises, using the time-series of the CBRs.

The contributions of this paper can be summarized as follows:
( 1 ) To the best of our knowledge, CBR-ACE is the first wireless

sensing system to estimate human activity counts using the
CBRs.

( 2 ) WiPiCap is the first tool to process packet sniffing, binary
decoding, and constructing time-series data for CBRs.

( 3 ) ACE recognizes human exercise using a well-known signal
processing, and thus, a low computational requirement for
the recognition compared with machine and deep learning-
based methods.

( 4 ) CBR-ACE achieves an estimation error of 1.73 on average,
and 0.97 in the best case.

2. Related Works

RF-based Activity Recognition. In RF propagation, radio ir-
regularity rises to a higher level in the presence of human activ-
ity (briefly shown in Fig. 1). For the radar-based system, some
techniques such as Doppler Shift [13] and UWB [14] have been
designed to extract even small movements. In recent years, a fre-

Fig. 1 General model of wireless sensing system in the presence of human
activity.

quency modulated continuous wave (FMCW) radar was adopted
in the research field [15]. However, they required special hard-
ware with high frequency.

To build wireless sensing systems with more familiar devices
with a low cost, Wi-Fi based passive systems are proposed. They
utilize full CSI in IEEE 802.11n for the systems. The full CSI
demonstrates how the input signal is impaired by the channel to
the wireless device in the MIMO communication system. The
main idea of these studies is that channel responses are distorted
by the presence of humans or the humans activity and the corre-
lation between the activity and the full CSI is unique in both the
time- and frequency-domains.

In Ref. [16], full CSI amplitudes are fed to a combination of
three types of deep neural networks (DNNs) for activity recog-
nition. The recognition realized human and receiver locations
with an average accuracy of 97%. The CSI based human Ac-
tivity Recognition and Monitoring system (CARM) [17] models
the correlation between human movements and speed, transfers
CSI amplitude variation into speed information, and recognizes a
given activity using the Hidden Markov Model.

CBR-based Activity Recognition. Although the full CSI-
based sensing exhibit a high accuracy, they inhibit the movement
from the research stage to the commercial development stage ow-
ing to the requirement of specific hardware and software [18],
[19]. The most recent COTS devices are IEEE 802.11ac/ax com-
pliant, and thus support CBRs instead of the full CSI. CBRs are
shared between the transmitter and receiver without encryption,
making them easy to obtain from an external sniffer [20]. It is
obvious that the CBRs are essential for the building of the pas-
sive sensing system based on IEEE 802.11ac/ax standards; how-
ever, there are several challenges in the research field as follows:
( 1 ) Until now, there is no finding on CBRs to be used as an in-

formation source for human activity recognition.
( 2 ) Although we found that the raw CBRs cause low accuracy

from prior experiments, there is no study on how to obtain
effective CBRs from the raw CBRs for the recognition.

( 3 ) Because the radio irregularity differs among the subcarriers,
an adequate subcarrier selection may impact the recognition
accuracy.

So far, there are only a few research studies making efforts
towards building CBR-based sensing. Reference [20] estimates
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the number of walking people through walls using CBRs. In
Ref. [21], the system is developed to localize a person outdoors.
Besides, in our recent work [22], we proposed a direct CBR-to-
image conversion system with the power of Generative Adver-
sarial Networks (GANs). The research studies presented above
realized sensing systems based on CBRs, achieving reasonable
accuracy; however, they all depend on the ability of machine and
deep learning. This means that they need an enough number of
training data sets for sensing.

3. Compressed Beamforming Reports (CBRs)
in IEEE 802.11ac/ax

In IEEE 802.11n and its successors, Multiple Input Multiple
Output (MIMO) is an essential technique to gain the capacity of
a radio link. Specifically, MIMO can increase the diversity, ar-
ray, and multiplexing gains with the reduction on the co-channel
interference. In an ordinary indoor environment, the transmitted
signals are reflected and attenuated owing to obstacles in indoor
spaces. The environment is also referred to as the “multipath en-
vironment”. The received signal in the multipath environments
is represented as the superposition of multiple transmitted wave-
forms traveling along the different paths before arriving at the re-
ceiver. The main mission of the receiver is to reconstruct original
signals, which are transmitted from each transmission antenna,
from the received signal. IEEE 802.11n solves this problem using
full CSI to estimate a model of the multipath environment. Once
the receiver acquires the full CSIs, the transmitted signal can be
estimated using post-equalization including Zero-Forcing (ZF)
and minimum mean square error (MMSE) equalizations [23].

Although a diversity of the channel dynamics exists in the mea-
sured CSI, the ZF and MMSE equalizations provide coarse esti-
mation about the transmitted signal. To solve the problem in the
post equalizations, recent works take precoding for the transmis-
sion signals. The typical solution is Eigenspace Spatial Division
Multiplication (E-SDM). In E-SDM, a mathematical process re-
ferred to as Singular Value Decomposition (SVD) is applied to
the full CSI, and the resulting right singular matrix is multiplied
by the transmitted signal in advance to form an orthogonal beam
space, so that the receiver can receive signals from each transmis-
sion antenna without interference.

We assume one transmitter and one receiver communicate on
the same and single wireless channel. The number of antenna for
the transmitter and receiver is set as M and N, respectively. In
this case, the received signal can be modeled as:

y = Hx + n, (1)

where x ∈ C1×M and y ∈ C1×N are the signal vectors transmit-
ted by the transmitter and received by the receiver, respectively.
Additionally, n ∈ C1×N is the Additive White Gaussian Noise
(AWGN) vector and H ∈ CN×M is the channel information ma-
trix, i.e., full CSI. The full CSI can be decomposed by SVD as
shown in Eq. (2):

H = UΣVH , (2)

where U and V are the left and right singular matrices, which are

complex and unitary matrices, and Σ is a diagonal matrix whose
ith diagonal element is the singular value of the full CSI. The sin-
gular values are associated with the substream amplitude gains.
Further, VH indicates the Hermitian transpose of the matrix V.
Equation (2) is then substituted into Eq. (1) as:

y = UΣVHx + n. (3)

In E-SDM, the transmitter precodes the transmission signal x
by multiplying the right singular matrix V so that the precoded
signal x̂ is spatially orthogonal and interference-free. In this case,
the received signal is expressed as:

y = Hx̂ + n

= UΣVHVx + n

= UΣx + n.

(4)

Finally, the left singular matrix UH is multiplied to the received
signal to obtain the reconstructed signal of Σx+n. It indicates that
the orthogonal transmission with the substream gains correspond-
ing to the singular values can be made by the eigenbeams. For
the orthogonal transmission, the transmitter and receiver need to
share the right singular matrix V for precoding. Hence, the trans-
mitter transmits (min(M,N))2 complex elements to the receiver
as the metadata. The large communication overhead may cause
rate and power losses in wireless communications.

The recent IEEE 802.11ac/ax compliant COTS Access
Points (APs) and wireless devices introduce Givens Rotation
and quantization for overhead reduction [24]. Let M be equal
or greater than N, and V̂ be the part of up to the mth row and
nth column of matrix VH . Specifically, the matrix V̂ can be
decomposed as follows:

V̂ =

⎡⎢⎢⎢⎢⎢⎢⎣
min(N,M−1)∏

i=1

⎡⎢⎢⎢⎢⎢⎣Di

M∏
l=i+1

GT
li (Ψli)

⎤⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎦ ĨM×N , (5)

where Di and Gli are derived as follows:

Di =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ii−1 0 . . . . . . 0
0 e jφi,i 0 . . . 0
... 0

. . . 0 0
...

... 0 e jφM−1,i 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Gli(ψ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ii−1 0 0 0 0
0 cos(ψ) 0 sin(ψ) 0
0 0 Il−i−1 0 0
0 − sin(ψ) 0 cos(ψ) 0
0 0 0 0 IM−l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here, G is Givens rotation matrix in rows l and i. Each Ik is an
k × k identity matrix and ĨM×N is an identity matrix padded with
zeros to fill the additional rows/columns at M � N. Hence any
basis matrix is represented with angle variables of φk,l and ψk,l.

We explain the parameterization procedure with a 4 × 2 ma-
trix V̂ assuming MIMO communication with 4 receiving anten-
nas and 2 transmitting antennas:
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V̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(0)
11 v(0)

12

v(0)
21 v(0)

22

v(0)
31 v(0)

32

v(0)
41 v(0)

42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where v(t)
i j ∈ C is the element in the right singular matrix after the

tth Givens rotation. We first make the elements in the bottom row
to have real and absolute-valued elements as follows:

V̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(0)
11 v(0)

12

v(0)
21 v(0)

22

v(0)
31 v(0)

32

v(0)
41 v(0)

42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
v(0)

41∣∣∣∣v(0)
41

∣∣∣∣ 0

0
v(0)

42∣∣∣∣v(0)
42

∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(1)
11 v(1)

12

v(1)
21 v(1)

22

v(1)
31 v(1)

32∣∣∣v(0)
41

∣∣∣ ∣∣∣v(0)
42

∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Next, we multiply D1 to make the elements in the first column be
real numbers as follows:

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp ( jφ11) 0 0 0
0 exp ( jφ21) 0 0
0 0 exp ( jφ31) 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

exp( jφ11) =
v(1)

11

|v(1)
11 |
, exp( jφ21) =

v(1)
21

|v(1)
21 |
, exp( jφ31) =

v(1)
31

|v(1)
31 |
,

DH
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(1)
11 v(1)

12

v(1)
21 v(1)

22

v(1)
31 v(1)

32∣∣∣v(0)
41

∣∣∣ ∣∣∣v(0)
42

∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(2)
11 v(2)

12

v(2)
21 v(2)

22

v(2)
31 v(2)

32

v(2)
41 v(2)

42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|v(1)
11 | v(2)

12

|v(1)
21 | v(2)

22

|v(1)
31 | v(2)

32

|v(0)
41 | |v(0)

42 |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For the first and second rows of the matrix, we define the Givens
rotation matrix G21 as follows:

G21 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosψ21 sinψ21 0 0
− sinψ21 cosψ21 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

cosψ21 =
|v(1)

11 |√
|v(1)

11 |2 + |v(1)
21 |2

, sinψ21 =
|v(1)

21 |√
|v(1)

11 |2 + |v(1)
21 |2

,

G21DH
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(1)
11 v(1)

12

v(1)
21 v(1)

22

v(1)
31 v(1)

32∣∣∣v(0)
41

∣∣∣ ∣∣∣v(0)
42

∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
|v(1)

11 |2 + |v(1)
21 |2 v(3)

12

0 v(3)
22

|v(1)
31 | v(2)

32

|v(0)
41 | |v(0)

42 |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Similarly, we define G31 and G41 as follows:

G31 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosψ31 0 sinψ31 0
0 1 0 0

− sinψ31 0 cosψ31 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

cosψ31 =

√
|v(1)

11 |2 + |v(1)
21 |2√

|v(1)
11 |2 + |v(1)

21 |2 + |v(1)
31 |2

,

sinψ31 =
|v(1)

31 |√
|v(1)

11 |2 + |v(1)
21 |2 + |v(1)

31 |2
,

G41 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosψ41 0 0 sinψ41

0 1 0 0
0 0 1 0

− sinψ41 0 0 cosψ41

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

cosψ41 =

√∣∣∣v(1)
11

∣∣∣2 + ∣∣∣v(1)
21

∣∣∣2 + ∣∣∣v(1)
31

∣∣∣2, sinψ41 = |v(0)
41 |.

Finally, we obtain a unit vector at the first column by multiplying
G31 and G41 as follows:

G41G31G21DH
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(1)
11 v(1)

12

v(1)
21 v(1)

22

v(1)
31 v(1)

32∣∣∣v(0)
41

∣∣∣ ∣∣∣v(0)
42

∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 v(3)

22

0 v(4)
32

0 v(5)
42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

We conduct similar procedures on the remaining column se-
quentially by calculating D2,G32,G42, and finally obtain an iden-
tity matrix ĨM×N .

G42G32DH
2 G41G31G21DH

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(1)
11 v(1)

12

v(1)
21 v(1)

22

v(1)
31 v(1)

32∣∣∣v(0)
41

∣∣∣ ∣∣∣v(0)
42

∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

Setting an original parameter set, i.e., the rotation angles {φ, ψ},
exactly reconstructs the original matrix V̂. However, the trans-
mission of the original parameter set still causes a large commu-
nication overhead. Therefore, the angle information of φ and ψ
is quantized before transmission. After the angle information is
quantized in some bits, they are serialized across all the subcarri-
ers in a channel and shared between the AP and receiver.

The serialized angles are known as CBR and are contained
in IEEE 802.11ac/ax wireless packets. CBR is not broadcasted.
Each receiver returns CBR in response to a request sent by the AP
it is connected to. If more than one receiver is connected to the
AP, the AP sends a request to each receiver in turn to have them
return the CBR. Here, approximately 10 to 20 CBR packets are
exchanged every second between the AP and wireless devices.
These packets normally propagate over the air without encryp-
tion, thus a third-party sniffer can easily obtain the CBR binary. It
should be noted that the interval is significantly sparse compared
to the existing full CSI-based sensing methods, where those that
are considered full CSI can be acquired more than 100 times ev-
ery second. Moreover, CBR is expected to have a smaller amount
of information than full CSIs because of some mathematical op-
erations.

CBR is the key element to realizing a wireless sensing system
under IEEE 802.11ac/ax standards, although the sparsity, i.e., the
smaller amount of information, of CBR makes it challenging to
use as an alternative information source to the full CSI. Although
we have not yet fully understood the nature of CBRs, we take the
first step forward to address the existing challenges.

4. Proposed System: CBR-ACE

4.1 Overview
We design the CBR-ACE system to count human activity that

is repeated at a constant interval, by leveraging CBR with IEEE
802.11ac compliant devices. The left side of Fig. 2 shows the as-
sumed model of our CBR-ACE. We set one Wi-Fi device and
one Wi-Fi AP in a room. The CBR-ACE assumes that both the
Wi-Fi device and Wi-Fi AP follow the IEEE 802.11ac standard
for packet delivery. A sniffer device, i.e., WiPiCap, is connected
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Fig. 2 Overall structure (left) and procedure (right) of our CBR-ACE. CBR-ACE consists of WiPiCap
and ACE for human exercise recognition using the CBRs.

to the Wi-Fi AP via a Local Area Network (LAN) cable. WiPi-
Cap continuously sends User Datagram Protocol (UDP) packets
to the Wi-Fi device through the Wi-Fi AP to ensure that the Wi-Fi
AP repeatedly requests CBR packets to the Wi-Fi device. Mean-
while, WiPiCap captures the CBR packets between the Wi-Fi de-
vice and Wi-Fi AP at a rate of approximately 10 Hz. A person
repeats an indoor activity at a certain location in the room. CBR-
ACE counts the number of indoor repetitive activities using the
captured CBR packets.

The right side of Fig. 2 shows the overall procedure of the pro-
posed CBR-ACE, which obtains a time-series of the CBRs for
each subcarrier through our WiPiCap. CBR-ACE integrates the
following techniques for accurate counts estimation.
• CBR-ACE utilizes the phase information obtained from the

time-series of the CBRs for counts estimation.
• ACE adopts the bandpass filter and exponential moving-

average (EMA) filter to the raw phase information to elimi-
nate the effect of potential noises.

• CBR-ACE utilizes Kernel Density Estimation (KDE) to de-
termine the estimation result from the results of all the sub-
carriers.

4.2 WiPiCap: Raspberry Pi-based Packet Sniffer and Bi-
nary Decoding

WiPiCap uses a microcomputer, i.e., Raspberry Pi, to realize
CBR packet sniffing as well as CBRs reconstruction without the
modification of the wireless APs and devices. The source code is
available at (https://github.com/watalabo/WiPiCap).

To capture CBR packets using the Raspberry Pi, it is necessary
to switch its wireless NIC into IEEE 802.11 monitor mode in
which all packets (whatever the destination address) are captured
by the NIC without an association with the connected AP. How-
ever, Raspbian, which is a defacto-standard operating system for
the Raspberry Pi hardware, does not provide any means to switch
its NIC into the IEEE 802.11 monitor mode. Therefore, WiPiCap
utilizes the Nexmon firmware patch [25] for CBR packet capture.

After WiPiCap captures packets between the Wi-Fi AP and Wi-
Fi device, it reconstructs the CBRs for each subcarrier, and then
reconstructs V matrices described in Section 3. It is worth noting

that V metrices are complex matrices and each element includes
amplitude and phase information. In the CBR-ACE, we use the
phase information for the count estimation. Time series data of
phase are obtained as the same number as that of subcarriers.

4.3 ACE: Signal Processing-based Activity Count Estima-
tion

ACE estimates human activity counts using the phase informa-
tion of the CBRs and signal processing. Specifically, it performs
Fourier transform for the time-series of the phase information,
and then estimates the human activity counts from the peak fre-
quency. The proposed ACE does not require training for esti-
mation; hence, it overcomes the computational limitation for the
estimation.

ACE first removes noise from the obtained phase information.
The noise in the CBR is mainly due to the hardware of the access
point or Wi-Fi device and noise from objects other than the mo-
tion of the target person. Because the noise caused by the hard-
ware is bursty and of a large amplitude [26], we adopt the EMA
filter to eliminate burst noises. The EMA filter has a window
size of five packets, i.e., 250 ms, to remove the burst noise, and a
band-pass filter to eliminate the frequency components unrelated
to the activity. ACE considers the activity interval to be approx-
imately 1 Hz; thus, the band-pass filter [27] passes the frequency
components between 0.5 Hz and 1.5 Hz.

If the exercise is repeated at a nearly constant interval, the
power of the frequency component corresponding to the interval
increases. ACE regards the frequency component with the highest
power in each subcarrier as the candidates of the estimated value.

Because each subcarrier experiences a narrowband fading
channel based on the activity, it is important to select adequate
subcarriers for the count estimation. The existing full CSI-based
study selects subcarriers with a larger variance for the recogni-
tion [28] because variance is considered to represent the sensi-
tivity of the subcarrier. However, no obvious correlation exists
between the recognition accuracy and the variance of the CBRs
in each subcarrier from our experiments. Figure 3 shows the rela-
tionship between the variance of the subcarrier and the estimated
exercise counts for one case. Here, the correct number of the
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Fig. 3 Example: relationship between subcarrier variance and
correct/incorrect estimation results.

Fig. 4 Example: distribution of estimation values emerged from all subcar-
riers in a channel. The line in orange color indicates the estimated
probability distribution function estimated by KDE.

repetitive activity is 22. Each dot represents one subcarrier, and
each subcarrier has a variance and estimated counts. The red dots
indicate the adequate subcarriers with no estimation error for the
case. It can be observed that a large variance does not necessar-
ily result in a higher estimation accuracy. However, as shown in
Fig. 4, we also find that the estimates are not completely random,
but have a distribution with a peak near the true value.

From those observations, we regard each subcarrier as a can-

didate, and these candidate values emerge from a certain prob-
ability distribution function. ACE uses KDE to estimate human
exercise counts by utilizing the estimates of all the subcarriers.
Particularly, KDE estimates a continuous distribution from the
distribution of discrete estimates. Let x1, x2, · · · , xn ∈ R be an
independent and identically distributed (i.i.d) sample from a dis-
tribution F with a density f . The KDE of f , also referred to as the
Parzen window estimate, is a nonparametric estimate given by:

f̂ (x) =
1
n

n∑
i=1

Kh (x, xi) , (8)

where Kh is an arbitrary kernel function with bandwidth h. To
ensure f̂ (x) is a density, we assume the kernel function satisfies
the following conditions:

Kh(·, ·) ≥ 0,
∫ ∞

−∞
Kh(x, ·)dx = 1.

Our ACE uses the Gaussian function as a kernel function Kh(x, t):

Kh(x, xi) =
1√
2πh

exp

(
− ||x − xi||2

2h2

)
.

Here, the bandwidth of the kernel h has a strong effect on the

estimated density. If h is too small or too large, the estimated
density f̂ is under or over smoothed. There are some kinds of
criterion to determine h, such as the mean integrated square er-
ror (MISE) [29], Silverman’s rule of thumb [30], and Scott’s rule
of thumb [31]. Because purpose of using KDE in the proposed
ACE is to determine the best estimate from the estimated den-
sity, h is a particularly important factor to ensure the accuracy
of the estimation. We adopt a grid search method to determine
the optimum h. Specifically, we carry out KDE with the different
bandwidths from 1 to 10 in 0.1 intervals and adopt the best band-
width that minimizes the error between the estimated density and
the original discrete density.

From the process described above, ACE calculates the cumu-
lative distribution function (CDF) of the estimated density and
regards the fifty percentile point as the final estimated counts. In
our observation, the fifty percentile point is a better indicator than
the simple median, average, and density peak.

5. Experiments

5.1 Experimental Settings
Implementation: We implemented CBR-ACE on COTS wire-
less devices. We used TP-Link Archer C6 as the Wi-Fi AP, and
MacBook Pro (2020), iPad (5th Generation), and Galaxy Note 10
Lite as the Wi-Fi devices. We installed WiPiCap on the Raspberry
Pi 3 Model B+ with a BCM434355c0 chip. Experiments were
performed in the 5 GHz frequency band with a channel bandwidth
of 80 MHz. Note that our system can work with IEEE 802.11ax
utilizing CBR as well as IEEE 802.11ac. Moreover, in this ex-
periment, only one device is connected to the AP at a time, but
our system can work with multiple devices connected to the AP
at the same time. During the experiments, the average reception
rate of CBR packets was 9.7 Hz. Here, the packet sampling in-
terval is non-uniform owing to the interference caused by other
Wi-Fi devices in the same channel. We used linear interpolation
for the uniform sampling interval. Additionally, the sampling in-
terval was still sufficient enough for the count estimation because
the activity interval was approximately 1 Hz.
Experiment Environment: Figure 5 shows the experiment en-
vironment. The experiment was carried out in a general office
room. One subject stands at either place 1 (P1) or place 2 (P2) in
Fig. 5, and exercises at that place for 30 s. P1 is on the line con-
necting the positions of the Wi-Fi AP and Wi-Fi device, whereas
P2 is outside the line. The experiments were conducted 890 times
for the same subject from October 12, 2020 to October 30, 2020.
Target Activities: Figure 5 shows the target of the three activi-
ties in our experiments: swing, step, and twist. The swing is arm
swinging, the step is a stepping motion, and the twist keeps the
subject’s pelvis stable as the subject rotates the rib cage right and
left. In each experiment, we estimate the number of repetitions
for each activity within 30 s.
Metric: The mean absolute error (MAE) was applied between the
ground-truth number of the repetitions and the estimated number
of the repetition as the recognition accuracy.

5.2 Effect of Filters and KDE
Our ACE assumes an EMA filter and a bandpass filter, and
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Fig. 5 Experiment environment. We set one Wi-Fi AP and one Wi-Fi device in a room, and one subject
repeats a target exercise at place 1 or place 2 for 30 s.

Fig. 6 Accuracy improvement with filters and KDE: our filters and KDE
are effective compared with NF and SAS.

then estimates an optimal value using KDE. To clarify their sig-
nificance in the estimation, we first evaluated the estimation accu-
racy with/without the filters and KDE. Figure 6 shows the MAE
of the comparative methods for each activity using the different
Wi-Fi devices. Here, we used two comparative schemes: no fil-
ters (NF) and filters with the averaged estimated results across all
subcarriers (SAS). When no filter is applied, the average error
is 42.43 times. When the filter is applied and the estimates for
all subcarriers are simply averaged, an average error of 8.6 times
is achieved. On the other hand, the estimation using CBR-ACE
achieves an average error of 1.73 times. Clearly, both the filters
and KDE yield better estimation accuracy irrespective of the ac-
tivities and Wi-Fi devices.

5.3 Effect of Criteria for Count Estimation
We demonstrated that our filters and KDE method realized ac-

curate count estimation using the CBRs. Thereafter, we discussed
the effect of the criteria for the final count decision on the estima-
tion accuracy. We prepared a comparative method (VAR) inspired
by Ref. [28] and implemented the comparative method using the
second highest variance subcarriers for estimation. To unify other
conditions with our CBR-ACE, the filters and their parameters
applied to the time-series of the phase information are the same
as those of the proposed CBR-ACE.

Figure 7 shows the MAE of the proposed CBR-ACE and

Fig. 7 Comparison between the variance based method and proposed CBR-
ACE.

variance-based method [28] for each exercise using the different
Wi-Fi devices. From the figure, the following observations are
made.
• CBR-ACE overwhelms the variance-based method for all

cases.
• A relationship exists between the kind of activities and

recognition accuracy. For example, because of the differ-
ence of degree of freedom, the twist has a lower estimation
accuracy, whereas the step has a higher one.

• CBR-ACE achieves almost the same estimation accuracy re-
gardless of the location and Wi-Fi devices.

For example, our CBR-ACE achieves the best MAE of 0.97, and
the worst MAEs of 2.09 and 2.63 at places 1 and 2, respectively.
However, the variance-based method achieves the best MAE of
1.94, and the worst MAEs of 4.56 and 4.44 at places 1 and 2,
respectively.

5.4 Micro-benchmark: Effect of KDE with Small Number
of Samples

With a larger number of subcarriers, the distribution estimated
by KDE becomes closer to the original discrete distribution, and
similar results can be obtained using either the median of the dis-
crete distribution or that of the estimated distribution. However,
with a limited number of subcarriers, it is expected that KDE is
more effective determinining the optimal estimate, i.e., narrow
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Table 2 Micro Benchmark: KDE has an advantage in terms of the estima-
tion accuracy with a smaller number of samples.

Number of samples Criteria MAE Standard Deviation
10 KDE 2.38 1.79

Median 3.03 2.37
20 KDE 2.04 1.58

Median 2.80 2.34

Table 3 MAE performance using the 40th, 50th, and 60th percentile points
of the estimated density.

Device k-th point MAE Standard Deviation
MacBook Pro 40% 1.99 3.09

50% 1.95 2.16
60% 2.36 2.39

iPad 40% 2.43 3.89
50% 1.78 2.18
60% 1.76 1.72

Galaxy Note 40% 2.09 2.98
50% 1.58 1.62
60% 1.81 1.99

Table 4 Average CBRs acquisition per second for each device.

Device MacBook Pro iPad Galaxy Note
Place 1 10.03 11.00 9.73
Place 2 10.13 8.03 9.60

channel bandwidth such as 20 MHz and 40 MHz.
To verify the effectiveness of KDE with a limited number of

samples, we carried out an estimation with the limited number
of subcarriers. For this benchmark, we select 300 cases from the
experimental data, randomly extract 10 and 20 subcarriers from
234 subcarriers included in the 80 MHz channel, and estimate the
density with ACE. In Table 2, we compare the estimation ac-
curacy using the KDE and median of the samples with the lim-
ited number of samples. KDE yields better estimation accuracy
in terms of the MAE and standard deviation compared with the
median-based method.

5.5 Effect of k-th Percentile Point on Estimation Accuracy
The proposed ACE used the 50th percentile point of the esti-

mated density obtained from the KDE for the activity estimation.
This section discusses the effect of the selected percentile points,
i.e., 40th, 50th, and 60th, on the estimation accuracy. Here, we
compared the MAE and the corresponding standard deviation for
each device across all places and activities.

Table 3 presents the effect of the selected percentile points on
the MAE and standard deviation. The bold ones indicate the best
MAE for each device. It can be observed that the 50th percentile
point achieves the best MAE except for the iPad.

Here, we discuss why the 50th percentile point was not op-
timal for the iPad in terms of the CBR acquisition rate. Table 4
lists the average acquisition rate of the CBR packets in each place
and device. At place 2, it can be observed that the average acqui-
sition rate of the iPad is lower than that of the other devices. In
this case, the proposed CBR-ACE interpolates the CBR packets
to be distributed evenly in time. However, the interpolation may
cause a smaller estimated number of repetitions compared with
the ground-truth number of repetitions, resulting in a larger MAE
at the 50th percentile point.

6. Conclusion and Future Work

We proposed a novel wireless sensing system, CBR-ACE, for
human activity count estimation. To the best of our knowledge,
CBR-ACE is the first wireless sensing system to recognize hu-
man activity counts using the CBRs. The advantage of the CBR-
based system is that it accepts COTS wireless devices, which are
compliant with IEEE 802.11ac and 11ax, with no strict hardware
and software requirements. The experiments show that our CBR-
ACE can realize accurate activity count estimation using filters
and KDE for the measured CBRs.

Future work includes improving the accuracy of CBR-ACE by
combining with machine learning methods. Furthermore, we plan
to acquire CBRs under various environments to discuss the ver-
satility of our CBR-ACE.
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