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Abstract: We propose an approach called automatic optimize-time validation for binary optimizers. Our approach
does not involve executing the whole program for validation but selecting a small part of code (1 to 100 instructions)
for the target test code. It executes the target code and its optimized code with several input data during binary opti-
mization. One benefit is that we can test a small part of an actual customer’s code during binary optimization. Our
approach can be used to test several input data not included in the target code, which is the most beneficial aspect of
the approach. If the results are the same after execution, we will use the optimized code for the final output code.
If the results differ, we can consider a couple of option, e.g., while developing a binary optimizer, we can abort the
compilation with an error message to easily detect a bug. After a binary optimizer becomes generally available, we
can use the input code for the final output code to maintain compatibility. Our goal is for the output binary code to be
compatible, fast, and small. We focused on how to improve compatibility in this study. We implemented our approach
in our binary optimizer and successfully detected one new bug. We used a very small binary program to observe the
worst case of increased compilation time and output binary file size. Our implementation showed that our approach
increases optimization time by only 0.02% and output binary file size by 8%.
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1. Introduction

A binary optimizer can exploit new hardware features [8] for
old binary code without its source code. In fact, previous binary
optimizers showed good performance improvements. However,
optimizations (regardless of the existence of source code) always
have a compatibility problem. Customers require the same be-
havior of optimized binary code as the input binary code. There-
fore, they do not want to recompile their source code even on new
hardware. Our target programming language is COBOL, which
is often used in financial applications, so compatibility is very
important. Compiler developers verify code by conducting many
tests. However, the generated code highly depends on a combi-
nation of program sentences. This is because optimizations are
performed for those sentences. Therefore, it is not easy to cover
all possible combinations of the code through inhouse tests. We
give such an example in Fig. 7. Because of this, we wanted to test
an actual customer’s code during binary optimization.

We propose an approach called automatic optimize-time vali-
dation for binary optimizers. A binary optimizer has an advantage
in that the input code is also executable. Our approach involves
selecting a small part of code (1 to 100 instructions) for the tar-
get code. It then executes the target code and its optimized code
with several input data during binary optimization. If the results
are the same, we will use the optimized code for the final output
code. If the results differ, we can consider various options, e.g.,
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Fig. 1 Two benefits of testing small part of code.

aborting the compilation with an error message or using the input
code for the final output code to maintain compatibility.

A significant advantage of our approach is that we can test a
small part of an actual customer’s code during binary optimiza-
tion. Figure 1 shows two benefits of testing a small part of code.
If we test procedure ProcA() in Fig. 1-1, it will not be easy to
change input data B for TestTarget(B) because it is read from a
file. In contrast, if we copy a test target of code to ProcTest(B)
and test it as shown in Fig. 1-2, it will be easy to change input data
B. At the customer site, we cannot do such a transformation at the
customer-source-code level, so we do this at the binary-code level
automatically. Therefore, we are able to test several input data not
included in the original binary code. With this approach, the test
time can also be reduced, so we can try more variants of input
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Fig. 2 Characteristics of BCD data on IBM Z architecture.

data.
We are currently focusing on decimal instructions for the tar-

get validation. There are two reasons for this. One reason is that
several decimal instructions are very complex. The other reason
is that there are three types of binary coded decimal (BCD) data:
signed, unsigned, and invalid.

Figure 2 shows the characteristics of these three types. The be-
havior of each instruction is documented for signed and unsigned
data. However, for unsigned and invalid data, the behavior de-
pends on each instruction. Moreover, the behavior for invalid
data is undocumented. Our COBOL compiler generates instruc-
tions for signed data even if a variable is declared as unsigned.
Therefore, a compiler developer tends to consider only signed
data. However, in a COBOL program, we can forcibly assign
any value to a variable. Historically, we have experienced many
problems related to unsigned and invalid data.

Our goal is for the output binary code to be compatible, fast,
and small, and we specifically focused on how to improve com-
patibility in this study. Our goal of compatibility is for the execu-
tion results of input and optimized code to be the same. From this
perspective, the binary optimizer has the benefit of compatibility
compared to compiling from source code to binary, because the
results of binary code compiled by different compilers differ in
some cases, particularly for invalid data area.

Our approach is a type of specification-based testing [2], [4].
It is also known as black-box testing. This is because we do not
know the detailed implementation of our target complex decimal
instructions, particularly for behaviors for invalid data. One dif-
ficulty with our approach is identifying where the inputs and out-
puts (e.g., registers or memory areas) are in the final generated
code. In particular, the optimized code is often a different algo-
rithm from the original instruction and includes work areas, so
we need to distinguish between the real output and work area.
For selecting input data, we use the detailed specifications of the
BCD data format.

We implemented our approach in our binary optimizer and suc-
cessfully detected one new bug. We used a very small binary pro-
gram to observe the worst case of the optimization time and the
output binary file size increasing. Our implementation showed
that our approach increases optimization time by only 0.02% and
output binary file size by 8%.

1.1 Our Contributions
• New optimize-time validation approach for binary opti-

mizers: Our validation approach is used to execute a part

of a binary code with several input data during binary op-
timization then automatically select either the input code or
optimized code based on the validation results in our binary
optimizer. This mechanism allows us to test the optimized
version of an actual customer’s binary code in the binary op-
timization phase. To the best of our knowledge, this is the
first approach of automatically selecting code during binary
optimization based on the validation results.

• Method of executing a part of a binary code as a func-
tion: This method is necessary to execute a part of a binary
code with several input data not included in the input code.
When we want to execute a part of a binary code as a func-
tion, we need to collect input and output information of the
target binary code. We discuss how to execute a part of bi-
nary code as a function in Section 2.

The rest of the paper is organized as follows. In Section 2, we
describe our approach. In Section 3, we introduce actual exam-
ples of applying our approach. In Section 4, we present some
of the results from the implementing our approach in our binary
optimizer. We summarize previous studies in Section 5 and give
concluding remarks in Section 6.

2. Overview of Our Approach

This section describes how we carry out automatic validation
in our binary optimizer.

2.1 High-level Flow Diagrams
Koju et al. [11] proposed an optimization in our binary opti-

mizer. We modified it to validate its optimization results. Fig-
ure 3 shows two high-level flow diagrams of our approach. Note
that the grey boxes are new or modified components for our ap-
proach compared to our original binary optimizer [11]. We modi-
fied both our compiler for high-level programming language and
a binary optimizer.

Figure 3 (1) shows a diagram of our compiler for high-level
programming language. We decide on the target validation code
sequence based on each node of our intermediate language (IL).
We chose a complex and decimal IL node for applying validation.
The number of generated code of the chosen IL node is 1 to 100
instructions. After the code-generation phase, we create mapping
from each IL to generated instructions. This mapping information
is useful for converting instruction sequence to ILs in our binary
optimizer. In addition, we create input and output information for
each target validation code sequence. We use this information to
execute the target code sequence as a function in the binary op-
timizer. Finally, we output the whole optimized binary code and
additional information for some ILs, such as the mapping and I/O
information mentioned above. We call this ‘smart binary’.

Figure 3 (2) shows a diagram of a binary optimizer. Our au-
tomatic validation approach assumes ‘smart binary’ as the input
binary. Otherwise, this feature is disabled. As we mentioned, we
utilize the mapping information to convert instruction sequence
to ILs. In the IL-generation phase, for each validation target, we
create fast and slow paths and generate optimized and input codes
for the fast and slow paths, respectively. We explain it in more
details in Section 2.2. We select each for the final output code
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Fig. 3 High-level flow diagrams of our approach (Grey boxes are new or
modified components).

based on the validation result. For the input code, we read I/O
information from the input smart binary. After code generation,
we create I/O information for the optimized code. Next, we exe-
cute both input and optimized codes with several input data. To
execute a code sequence as a function, we need I/O information.
If the results are the same, we use the optimized code for the final
output code. If the results differ, we use the input code for the
final output code to maintain compatibility. As mentioned above,
we can abort this optimization with an error message to quickly
detect a bug.
2.1.1 Benefit of Binary Optimizer Compared to Compiling

Source Code
For optimization effectiveness, compiling source code is usu-

ally better than using a binary optimizer. However, for compat-
ibility, a binary optimizer is better than compiling source code
because the optimized binary code must behave the same as that
of the input binary code.

For example, assume that two binary codes binA and binB
are compiled from the source code by different compilers. These
two binaries behave the same for the documented specifications.

Fig. 4 How we generate IL code for our validation.

However, for invalid data, binA causes an exception but binB
does not. We experienced such a problem in which the optimized
code will need to behave the same as that of the input binary code.
A previous study [6] also showed such an example. That is, for
these invalid data, optBinA must cause an exception but not for
optBinB. This cannot be achieved by compiling source code.

Therefore, a binary optimizer is beneficial in terms of compat-
ibility. A use case scenario is as follows:
( 1 ) A customer generates a smart binary B from the source code

by using our compiler for high-level programming language
for the computer architecture X.

( 2 ) After several years, a new computer architecture Y becomes
generally available. We also develop a binary optimizer
tuned for Y.

( 3 ) The customer reoptimizes B by using our binary optimizer
in step 2. Our binary optimizer compares the results of exe-
cuting B and its optimized code on Y. Finally, our optimizer
generates compatible and optimized binary code by using a
technique described later in this paper.

2.2 Creating Fast and Slow Paths in IL Level
Figure 4 shows how we generate IL code for our validation.

Along the fast path, we generate IL code corresponding to the
target code we want to test. Along the slow path, we generate
a call IL node to call the input snippet code copied from the in-
put binary (right-hand side of dashed line). Our binary optimizer
optimizes and generates the code for the left-hand side of dashed-
line. After IL-level optimizations and code generation, the results
of executing the binary code of the grey blocks in Fig. 4 are com-
pared.

We generate a No Operation (NOP) instruction for Code
selection first, so the fast path will be executed. If the vali-
dation result for this target code is failure, we generate a jump
instruction to the slow path for Code selection. Currently, the
final code includes both fast and slow paths, but code execution
always goes to either direction at runtime. For future work, we
plan to generate a single path in the final code to reduce the code
size.

For the input binary code, we support the case in which it is
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not contiguous. Our smart binary information has map informa-
tion from an IL node to instructions. Our approach first initial-
izes the copy buffer by NOPs then copies each instruction while
maintaining its offset. Information of input and output registers
and memory areas are included in the input smart binary, so they
are initialized and referred before and after calling the input code.

2.3 Creating I/O Information
To execute a part of a binary code as a function, it is important

to create input and output information (e.g., registers and memory
areas) of the target binary code.

Executing a part of a binary code seems like a trace-based com-
pilation approach [1]. In this section, we explain a significant
difference between that approach and ours. For trace-based com-
pilation, the existing code writes input data before execution and
reads the output data after execution. Therefore, we do not need
to consider what the inputs and outputs are.

In contrast, to execute a part of a binary code as a function, we
need to analyze what the inputs and outputs are. We devised the
following seven sets by using a backward dataflow analysis [15]
and information from the code generator.
• INR: Set of input parameters on registers at an entry point of

the target code sequence
• INM: Set of input parameters on memory areas at an entry

point of the target code sequence
• INM CONST: Set of memory areas having constant data
• OUTR: Set of output registers of the target code sequence
• OUTM: Set of output memory areas of the target code se-

quence
• WORK: Set of the other memory areas accessed by the target

code sequence
• WORK REG: Set of registers used in the target code se-

quence except for INR and base registers
An element of a set of memory areas will have information of

the effective address and its access size. Vector registers in INR or
OUTR will have information of an access area in vector registers.
Binary optimizers or simulators often map registers in the input
code to virtual registers in memory. In this case, we treat the load
or store for a virtual register in memory as a register access in the
input code.

Basically, these sets can be computed by conducting a live-
ness analysis [15]. However, it is not easy to analyze memory
accesses from pure binary code. In particular, binary code some-
times includes temporary memory areas for computations. The
use of such areas is often different between the input code and
optimized code. To validate the execution results, we want to
compare only the real outputs of the target code; thus, we need to
distinguish which areas are temporary or real outputs. To distin-
guish them by using an analytical approach, we need to conduct
a whole program analysis to find if a memory area will be read
after the target code sequence. Instead, we obtain information
from the code generator about real inputs and outputs because it
determines which memory area, temporary or real, the output is
in.

For input binary code, our compiler of high-level programming
language embeds this I/O information in a smart binary, as illus-

trated in Fig. 3. Our binary optimizer reads it and creates I/O
information for the optimized code. Our validation technique ex-
ecutes both input and optimized codes based on this I/O informa-
tion during binary optimization.

2.4 Execute Input and Optimized Codes with Several Input
Data

It is not difficult to execute a binary code with a single input
datum included in the input code. However, our goal was to ex-
ecute a binary code with several input data not included in the
input code. The following are steps to execute both input and
optimized codes with several input data:
( 1 ) Compute the minimum and maximum offsets for each base

register from the union of INM, INM CONST, OUTM, and
WORK.

( 2 ) Compute the allocation size and assign an address for each
base register from the minimum and maximum offsets com-
puted in step 1.

( 3 ) Prepare several input test data based on the binary code.
( 4 ) Assign values into elements in INR, INM CONST, INM,

WORK, and WORK REG into registers or allocated mem-
ory area in step 2. We assign constant values for
INM CONST and assign input test data for INR and INM.
We initialize WORK and WORK REG by a specific pattern
(Example: 0xdeadbeef for 4-bytes).

( 5 ) Execute the input and optimized codes with the data assigned
in step 4.

( 6 ) Compare OUTR and OUTM of the input and optimized
codes.

( 7 ) Iterate steps 4 to 6 for each input datum.
With these steps, we can execute a part of a binary code as a

function. Step 4 handles input parameters for the target binary
code, step 5 executes the target binary code, and step 6 handles
outputs.

In addition to the above steps, we need to correctly handle rel-
ative instructions. Our target architecture (IBM Z) has relative
instructions for computing the effective address by the current
instruction address and offset. We copy the target instruction se-
quence to another allocated area to execute it as a function. There-
fore, if there is a relative instruction in the target binary code, we
need to copy the target memory area pointed by the effective ad-
dress of that relative instruction while maintaining its offset.

3. Actual Example of Applying Our Approach

In the previous section, we gave an overview of our approach.
In this section, we give an example of applying it. As we men-
tioned above, we focus on decimal instructions. First, we explain
our target instruction for testing.

3.1 Background of Our Target Decimal Instruction
The IBM Z architecture [7] has ED (edit) and EDMK (edit

and mark) instructions. They perform string formatting such as
sprintf in C language. Figure 5 shows an example using the ED
instruction.

Figure 5 (a) shows COBOL code and its result. The declaration
of the variable OUT specifies the format string. The MOVE state-
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Fig. 5 Example using ED instruction.

ment (1) copies NUM to OUT. As a result, OUT has “*4,321”.
Figure 5 (b) shows the unoptimized version of assembly code

corresponding to (a-1). Surprisingly, a single instruction per-
forms such an operation. Before executing the ED instruction,
the existing code copies the pattern string to R13+288, which
points to the variable OUT. The ED instruction reads the pat-
tern string in the first operand (R13+288) and overwrites it based
on the second operand (R13+236), which points to the variable
NUM. This means that the ED instruction interprets the pattern
string at runtime. Therefore, this instruction is very complex and
slow.

Koju et al. [11] proposed an optimization in our binary opti-
mizer. Because the pattern string is known to be constant, this op-
timization performs a type of specialization. Figure 6 (a) shows
a rough idea of their optimized code. They converted the variable
NUM into a string on the EBCDIC character code then copied
each character to the appropriate position. If the number of digits
of NUM is less than 4, the comma ‘,’ will be replaced with an as-
terisk ‘*’. For example, if the variable NUM is 321, the variable
OUT will be “***321”. Figure 6 (b) shows the actual optimized
code using vector instructions. Their experiments showed that
this optimization improved performance for several benchmarks
by 11% on average. This is because it can eliminate the overhead
of interpreting the pattern string.

While such an optimization greatly improved performance, we
need to consider the compatibility problem. Our goal is to com-
pare the execution results of Fig. 5 (b) and Fig. 6 (b) with several
input data. There are three difficulties in testing such decimal
instructions and these optimized codes: (1) many variations in
the pattern string for the ED instruction, (2) optimization effects
between statements, and (3) three possible types of BCD data
(signed, unsigned, and invalid). For (1), one can imagine that
testing all the coverages of sprintf in C is very difficult. For
(2), we actually observed a problem caused by optimizing com-
putations between statements. In this case, because a problem oc-
curred only with a specific code pattern, it is very difficult to find

Fig. 6 Optimized code of Fig. 5 (b).

a problem through in-house tests. Our approach addresses these
two difficulties by validating actual customer binary code during
binary optimization. For (3), we prepared input test data for three
data types. In the next section, we explain how we prepared the
input test data.

Figure 7 shows an actual example related to (2) and (3) we
experienced. It is not an example of the ED instruction but uses
decimal instructions. In this COBOL program snippet (a), there
are two MOVE statements. The first one internally converts from
packed decimal data to zoned decimal data. The second one con-
verts from zoned decimal data to binary data. The problem oc-
curs by an incorrect IL-level optimization that replaces the source
operand of the second MOVE from a zoned one ZN to a packed one
PK.

Figure 7 (b) and (c) show instruction sequences of these two
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Fig. 7 COBOL example in which optimizing computations between state-
ments caused problem.

MOVE statements for unoptimized and optimized versions, respec-
tively. The third instruction is different. The problem here is that
the fourth instruction CVB supports only signed packed decimal
data. For the unoptimized version (b), the output of the third in-
struction PKA is always a signed packed decimal. However, for
the optimized version (c), the output of the third instruction ZAP
is an unsigned packed decimal if the input is an unsigned one.

The optimized version correctly works only for signed data.
However, this causes an exception if the variable PK has unsigned
packed decimal data. Therefore, the program behavior differs be-
tween the input and optimized code. Note that the variable PK
usually has signed packed decimal data in the common COBOL
program context, even if it was declared as “unsigned”. This sig-
nificantly increases the difficulty of detecting this problem. To re-
produce it, we can forcibly assign unsigned packed decimal data
by using “MOVE x‘0000’ TO A1”. This uses the fact that two
variables A1 and PK point to the same memory area by using the
keyword REDEFINES.

If the second MOVE of the original COBOL program is “MOVE
PK TO BIN”, it will cause an exception for unsigned packed deci-
mal data even with the unoptimized version. Again, let us empha-
size that unsigned packed decimal data are uncommon in COBOL
programs, but a programmer can forcibly assign unsigned data, as
mentioned above. In this case, both the input and optimized codes
behave the same, causing an exception, so there is no problem in
a binary optimizer.

This problem is caused by incorrectly optimizing computations
between statements in a binary optimizer. In other words, this
problem was revealed by the existence of these two statements;
thus, it is difficult to find such a problem through normal test ap-
proaches.

3.2 How We Prepared Input Test Data
Since our target decimal instructions perform on packed deci-

mal data, we focused on the following three types of packed dec-
imal data. For such data, a 4-bit value means one digit or sign.
• Signed packed decimal data: The rightmost 4-bit value

means the sign (0xA to 0xF). The other 4-bit values mean a
digit (0x0 to 0x9). For example, 0x12345B means -12345.

• Unsigned packed decimal data: All the 4-bit values mean a
digit (0x0 to 0x9). For example, 0x123456 means 123456.

• Invalid data: Otherwise
As we explained in Section 3.1, the optimization result is af-

fected by the number of digits. For example, there is no differ-
ence between “4321” and “1234” for testing this example. On
the other hand, it is valuable to test “1234” and “0123”. Thus, we
prepared a program to generate the following input data:
• Signed data for each number of digits (plus and minus)
• +0, −0
• Unsigned data for each number of digits (Conditional)
• Invalid data for the largest number of digits
Preparing unsigned data is conditional. At first, we assume that

all tipes of data will be correctly passed for Fig. 6 (b). Therefore,
we prepared unsigned data. However, we found that this opti-
mized code assumes the input code as signed data. This was a
bug, and we fixed it. We disabled unsigned data preparation after
fixing this bug. We will explain it in Section 3.2.1.

The sign value is rotated. For the plus sign, each (0xE, 0xA,
0xF, 0xC) is used. For the minus sign, each (0xB, 0xD) is used.

In the example in Fig. 5 (a), the number of digits of OUT is 5.
As we mentioned, before fixing a bug, we generated all the types
of BCD data for this validation. In this case, our input data gen-
erator prepares the following 19 types of input data.
• 0x12345E (plus data from here)
• 0x01234A
• 0x00123F
• 0x00012C
• 0x00001E
• 0x12345B (minus data from here)
• 0x01234D
• 0x00123B
• 0x00012D
• 0x00001B
• 0x00000E (+0)
• 0x00000B (−0)
• 0x123456 (unsigned data from here)
• 0x012345
• 0x001234
• 0x000123
• 0x000012
• 0x000001
• 0xABCDEF (invalid data)
Currently, a compiler developer needs to implement such an

input data generator. For the complete test, we need to test from
0x000000 to 0xFFFFFF for this example. We limit the number of
test data based on the knowledge of the instruction behavior; the
number of digits is important rather than data value. For future
work, we plan to explore automatic generation of input data based
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Fig. 8 I/O information for input and optimized code.

on the target instruction sequence by using a variant of symbolic
execution or concolic testing.
3.2.1 Changes of Input Test Data after Fixing a Bug

Previously, we always used the optimized code in Fig. 6 (b).
We found that this code correctly works if the input data are
signed packed decimal data. However, this causes an exception
if the input data are unsigned packed decimal data. In the latest
optimized code, if the input variable is not known to be always a
signed one, we generate a test IL to detect if the input is a signed
packed decimal.

In general, when our binary optimizer detects that the source
operand always has the valid sign, it will generate the code as-
suming no unsigned data. In this case, our automatic validation
should also suppress the generation of unsigned data because it
may cause a false positive. The example in Fig. 6 (b) is generated
by assuming no unsigned data. In this example, CDPT instruction
at (2) supports only signed packed decimal data. This will cause
an exception if unsigned packed decimal data arrive. After fixing
this bug, our binary optimizer determines that the source operand
always has the valid sign, so this code works. Therefore, our ap-
proach does not generate unsigned packed decimal data for this
example after fixing this bug.

3.3 Applying Steps in Section 2.3 to Examples
Figure 8 shows I/O information for the input and optimized

codes. In this figure, the elements of a register mean “{Register,
size (from LSB)}”. The elements of a memory mean “{Base regis-
ter, offset, size}”. We can obtain these sets by using the approach
discussed in Section 2.3. For the optimized code in Fig. 6 (b), the
base register GPR2 is computed by the LARL instruction at (1),
which points to a literal pool address. Since we do not need to
prepare data in this case, we do not create I/O information for
GPR2. Because the code generator explicitly generates the LARL
instruction at (1), we can easily find it. As a result, the I/O in-
formation is now very clear. For inputs, we assign test data to
[R13+236] and VR16 for the input and optimized code, respec-
tively. For outputs, we compare the results from [r13+288] and
[r2+288] for the input and optimized code, respectively.

3.4 Applying Steps in Section 2.4 to Examples
Below are the results from applying each step in Section 2.4 to

the different I/O information in Fig. 8.

( 1 ) Compute the minimum and maximum offsets for each base
register.
( a ) For the input code

• R13: min=236 max=295
( b ) For the optimized code

• R10: min=536 max=559
• R3: min=288 max=295

( 2 ) Compute the allocation size and assign an address for each
base register
( a ) For the input code

• R13: size=60 offset= -236
( b ) For the optimized code

• R10: size=24 offset= -536
• R3: size=8 offset= -256

( 3 ) Prepare several input test data (as discussed in Section 3.2)
( 4 ) Assign input test data in elements of sets

( a ) For the input code
• Assign each test datum into [R13+236]

( b ) For the optimized code
• Assign each test datum into VR16

( 5 ) Execute the input and optimized codes. We execute the code
snippets of Fig. 5 (b) and Fig. 6 (b).

( 6 ) Compare OUTR and OUTM of input and optimized code.
We compare [R13+288] and [R3+288] with length 7.

( 7 ) Iterate steps 4 to 6 for each input datum.
Note that Fig. 6 (b) includes the LARL instruction at (1), which

is a relative instruction. Therefore, we need to copy the target
memory area of this LARL instruction.

We can validate the input and optimized codes with the test
data presented in Section 3.2, which are not included in the origi-
nal input code. These test data include the data that rarely arrive,
and our approach can test this. This is the most beneficial aspect
of our approach.

4. Implementation and Results

4.1 Bug Detected with Our Approach
Previously, we always generated the optimized code in

Fig. 6 (b). As we mentioned in Section 3.2.1, this code correctly
works if the input data are signed packed decimal data. However,
this causes an exception, as shown in Fig. 6 (b)(2), if the input
data are unsigned packed decimal data. In our implementation,
our approach successfully detected this new bug. Our approach
finds the difference of raising an exception between the original
and optimized code for unsigned data. The original code does not
cause an exception, but the optimized one does. Unsigned packed
decimal data are uncommon in COBOL programs even if a vari-
able is declared as unsigned, so detecting such a bug is difficult
through a normal test. In the latest optimized code, if the input
variable is not known to be always a signed one, we generate a
test instruction to detect if the input is a signed packed decimal.

4.2 Optimization-time and File-size Increase with Our Ap-
proach

In this section, we show how much optimization time and bi-
nary file size increase with our approach. We used a very small
binary program compiled from the COBOL program in Fig. 5 (a)
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to observe the worst case. The results for optimization time are
as follows:
• Whole optimization time without our approach: 802.0 ms
• Whole optimization time with our approach: 802.2 ms
We mesured the whole optimization time without and with our

validation approach. Our approach increased optimization time
by only 0.02%. With such a small optimization-time increase,
we can execute two versions of target code sequences (input and
optimized) with several input data.

The results for the binary file-size increase are as follows:
• Disable our validation: 49,152 bytes
• Enable our validation: 53,248 bytes

Our approach increased the output binary file size by 8%. We
generated both the input and optimized codes shown in Fig. 4 in
the final binary codes, even though only either path is executed.
For future work, we plan to reoptimize the input binary code
based on the validation results to generate a single path, though
this would further increase the optimization time compared to that
of the proposed approach.

5. Previous Approaches

There have been several binary optimizers, such as
Dynamo [1], DynamoRIO [3], ADORE [14], COBRA [9],
LLVM [12], and Automatic Binary Optimizer [11]. However,
none used a validation technique to ensure the equivalence of
the input and optimized codes. Our approach uses a validation
technique during binary optimization then selects either the input
code or optimized code based on the validation results.

A trace-based compilation approach is similar to our approach
in the context of executing a part of the generated code. However,
there are two significant differences. First, our approach automat-
ically selects the input or optimized code for the final output code
based on validation result. Second, for a trace-based compilation
approach, given the target trace, existing code prepares its input
data and uses its output data. Therefore, it can validate the target
trace only with the single input datum existing in the input code.
In contrast, our approach executes the target instruction sequence
as a function with several input data that are not included in the
input code. Therefore, we need to identify the places (in regis-
ters and memory areas) for inputs and outputs, as explained in
Section 2.4.

As mentioned above, our approach is a type of specification-
based testing [2], [4]. It is also known as black-box testing. We
do not know the detailed implementation of our target complex
decimal instructions but know the inputs and outputs for them.
One difficulty with our approach is to identify where the inputs
and outputs are in the final generated code. In particular, the op-
timized code often includes work areas, so we needed to distin-
guish between the real output and work area. For selecting input
data, we used the detailed specifications of the packed-decimal-
data format.

A formal verification technique proves that a program satis-
fies a formal specification of its behavior. For example, LLVM’s
Alive2 [13] successfully detects many bugs. The quality of our
approach depends on input data. If a formal verification technique
can be used, we can solve this problem. However, our target in-

struction is very complex and like a black box. As illustrated in
Fig. 5 (b), the ED instruction performs string formatting, such as
sprintf in C. It is a very complex instruction and interprets the
given pattern string then overwrites it using the given parameter.
Therefore, it is difficult to define a formal specification for this
instruction. In addition, our optimization significantly changes
its algorithm based on a specialization technique. We tried us-
ing the HOL theorem prover [5] to detect the equivalence of two
different algorithms, but our conclusion is that it is very difficult
to detect the equivalence of two different algorithms by using a
formal verification technique.

Symbolic execution [10] is a technique of analyzing a program
to determine what inputs cause each part of a program to be exe-
cuted. If the target code consists of simple instructions, this tech-
nique will be effective in finding which values should be tested.
It usually analyzes the conditions of conditional branches. How-
ever, for our examples, the input code is a single complex instruc-
tion. The optimized code includes two conditional branches, but
the bug we found is not related to them. As mentioned above,
our target architecture (IBM Z) has many complex instructions
including hidden conditional branches. We observed problems
caused by such hidden conditional branches. If we can break
down these instructions into combinations of simple instructions,
a symbolic execution technique may be effective.

Concolic testing [16] is a combination of a symbolic execution
and concrete execution. It executes a target program with input
data then records a path of execution. It attempts to execute an-
other path. The next input value will be computed by the con-
straints of the new path. It iterates until all paths are executed. To
apply this technique to our approach, there is the same problem
of symbolic execution. Since our target architecture has many
complex instructions including hidden conditional branches. This
technique may be effective if we can break them down.

We have two concerns for simply applying symbolic execution
or concolic testing for our purpose. First, an optimized code often
includes a temporary work area. In Fig. 6 (b), the set WORK shows
such work areas. In contrast, the input code in Fig. 6 (a) does
not include such a work area. We do not want to treat it as the
output of the target instruction sequence. Even when using these
techniques, we would need to analyze what the real outputs are.
Second, the target code is still very complex. The ED instruction
should include a large loop to interpret the pattern string. As-
suming that we can represent this loop by using simple instruc-
tions, we next need to automatically specialize this loop with the
given constant pattern string. Finally, we want to find the equiv-
alence between the specialized loop and optimized code. We are
concerned if a better set of input data can be found with these
approaches than with of our approach.

6. Conclusion

We proposed an automatic optimize-time validation approach
for binary optimizers. This approach executes the target code and
its optimized code with several input data during binary optimiza-
tion. One benefit is that we can test a small part of an actual cus-
tomer’s code during binary optimization. We can also test input
data not included in the target code. This is the most beneficial
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aspect of our approach. If the results are the same, we will use
the optimized code for the final output code. If the results differ,
we can abort the optimization with an error message or use the
input code for the final output code to maintain compatibility. We
implemented our approach in our binary optimizer and success-
fully detected one bug. We used a very small binary program to
observe the worst case of increased optimization time and output
binary file size. Our implementation showed that our approach
increased optimization time by only 0.02% and output binary file
size by 8%.

For future work, we plan to reoptimize the input binary code
based on the validation results to generate a single path, though
this would further increase the optimization time compared to that
of the proposed approach. We also plan to explore automatic gen-
eration of input data based on the target instruction sequence by
using a variant of symbolic execution or concolic testing.
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