
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

Predicting Next-use Mobile Apps
Using App Semantic Representations

Cheng Chen1,a) TakuyaMaekawa1,b) Daichi Amagata1,c) Takahiro Hara1,d)

Received: December 15, 2020, Accepted: July 7, 2021

Abstract: Using the app usage history of a target user as a basis, this study proposes a novel method for predicting
next-use mobile apps of the user that can assist the user in selecting an app from a list of installed apps. The proposed
method is designed to train a next-use app prediction model using semantic representations of the usage histories of
other users (source users) to deal with the user and app cold-start problems of an app prediction system in which train-
ing data from a target user beginning to use the system and training data related to newly installed or released apps
are considered to be insufficient. We predict the usage of apps by a target user by leveraging the semantic similari-
ties between the apps that are installed on the smartphones of the source users and the apps that are installed on the
smartphone of a target user, permitting us to predict next-use apps regardless of the apps installed in the target user’s
smartphone. We evaluate our method using the actual app usage data collected from 100 participants over a period of
approximately 70 days with 300,000 app usage histories.

Keywords: smartphone, mobile apps, next-use app prediction, pattern recognition

1. Introduction

1.1 Background
As a result of the recent proliferation of smartphones, the num-

ber of available smartphone apps in app stores is rapidly increas-
ing. This huge number and diversity of apps enables the installa-
tion of a large number of apps on a user’s smartphone. In fact,
Bazea-Yates et al. [1] revealed that 96 apps are installed on a
smartphone on average. Although the large number of available
apps makes our lives more convenient, it also introduces a new
challenge in that selecting a particular app from the already in-
stalled apps can be time-consuming. To assist a user in selecting
apps efficiently, methods for predicting a next-use app have been
actively studied in ubiquitous computing, mobile computing, and
recommender system research [2], [3], [4]. These methods can
help the user find apps by providing probable candidates when
the user attempts to show a list of installed app icons. Mobile
apps are often used in conjunction with other relevant apps [5].
For instance, when a user uses a smartphone for his or her busi-
ness, he or she might initially use a word processor app. When
the user wants to send the edited document to others, the next-use
app is likely to be an e-mail app. Considering this fact, a next-use
app can be predicted on the basis of a user’s app usage history.
Some previous studies have used supervised learning methods to
generate predictions based on app usage histories [6], [7].

1 Graduate School of Information Science and Technology, Osaka Univer-
sity, Suita, Osaka 565–0871, Japan

a) chch9278@gmail.com
b) maekawa@ist.osaka-u.ac.jp
c) amagata.daichi@ist.osaka-u.ac.jp
d) hara@ist.osaka-u.ac.jp

1.2 Problems
Supervised learning-based next-use app prediction poses the

following problems.
• User cold-start problem: The prediction model cannot be

trained immediately after a user installs the next-use app-
prediction system because such a user has no usage history.

• App cold-start problem: The prediction model cannot rec-
ommend an app immediately after a user installs a new app
from an app store because the user has no usage history with
this new app.

To alleviate these cold-start problems, some studies have con-
sidered leveraging other users’ (source users) usage histories to
construct a prediction model for a target user [1]. However, using
the usage history of source users also poses various problems, as
follows.
• Apps that are installed on the smartphones of source users

are different from those installed on the smartphones of the
target user, making it difficult to recommend to the target
user apps that are not installed on the smartphones of source
users (especially for newly released apps).

• Apps that are pre-installed by smartphone manufacturers,
such as the setting and camera apps, are difficult to recom-
mend because pre-installed apps are different for different
types of smartphones.

• Apps that are directly installed from Android application
package (APK) files, rather than obtained from an app store,
are difficult to recommend because few users use them.

In our dataset, 16% of the installed apps were categorized as un-
seen apps belonging to one of these three types.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

1.3 Approach
To deal with these problems, we propose a next-use app predic-

tion method based on semantic representations of a smartphone
app. Specifically, for apps that installed from app store, we lever-
age a description of an app to build an app vector that serves as a
semantic representation of the app. For system apps (e.g., camera
app) and apps directly installed from Android application pack-
age (APK) file, we used the title of an app to build an app vector
that serves as a semantic representation of the app. Let us assume
that a target user has installed a newly released puzzle game app.
Even when the usage history for this new app is unavailable in
the usage history of the source users, our approach can recom-
mend this puzzle app to the target user if the usage of semanti-
cally similar puzzle games is contained in the source users’ us-
age history, because it can be assumed that the already installed
puzzle games and the newly released puzzle game exhibit similar
usage patterns. Consequently, we propose introducing semantic
representations of apps, in the form of app vectors, into a predic-
tion model. Because an app vector permits us to build a model
that does not depend on apps that are installed on each user’s
smartphone, apps that are not installed on the source users’ smart-
phones (unseen apps) can be recommended to the target user. To
capture usage patterns of apps effectively, the proposed method
has the following features.
(1) We design the app prediction method based on app vectors

to address the uncertainty of a target user’s next-use apps. A
simple prediction method based on app vectors is assumed
to output a vector showing an estimate of the user’s next-
use app using a regression technique and then to recommend
apps having vectors similar to the estimated vector. This re-
sults in low diversity in a ranked list of recommended apps,
because only apps similar to the estimated vector are in-
cluded in the list. Our method is designed to output a di-
versity of apps by introducing vector representations of apps
into a multi-class classifier that is expected to output diverse
results in a ranked list. Our idea is to convert time series of
app usages by source users into time series of usages of apps
installed in the target user’s smartphone represented in the
1-of-K scheme [8] using semantic similarities between apps,
thereby permitting us to train a multi-class classifier tailored
to the target user that can output a ranked list containing di-
verse apps. This is explained in detail later.

(2) Because usages of apps by a user are considered to com-
prise a time series, we design our method on the basis of
long short-term memory (LSTM) [9] neural networks. How-
ever, our investigation revealed that app usage patterns can
be strongly related to the time intervals of app usages, a fea-
ture impossible to handle with LSTM networks. To deal with
this fact, we propose interval-LSTM (i-LSTM) networks by
modifying gates in a traditional LSTM cell to capture the
time intervals of input data.

(3) Because a trained i-LSTM network on the source users can
be regarded as a user-independent model and does not al-
ways capture the usage pattern of a target user, we period-
ically fine-tune the trained network by leveraging the target
user’s accumulated usage history.

1.4 Contributions
The contributions of this study are as follows.
• We use other users’ (source users) usage histories to alle-

viate the user and app cold-start problems in next-use app
prediction.

• We designed a next-use app prediction architecture based on
deep learning and app semantic representations that can pre-
dict the usage pattern of an app that is not installed on the
source users’ smartphones.

• We evaluate our method using an actual app usage dataset
collected from 100 participants. Surprisingly, for unseen
apps (apps installed on a target user’s smartphone but not in-
stalled on source users’ smartphones), our method achieves
62% accuracy in the top-N recommendation tasks (N = 10).
It is important to note that conventional approaches cannot
predict the usage of such unseen apps.

2. Related Work

2.1 Next-use App Prediction
The next-use app prediction task involves predicting the ith app

used by a user when the user’s app usage history through i − 1 is
provided. In many previous studies, the next-use app prediction
problem was formulated as a multi-class classification problem.
We introduce some previous studies related to next-use app pre-
diction. Zou et al. [7] proposed some light-weighted Bayesian
methods to predict a next-use app. Sun et al. [6] used a predic-
tion model that utilized app temporal features such as frequency
and duration. Liao et al. [10] designed a time-based app predic-
tor, extracting some features from the app usage trace, such as
an app’s usage count in the entire usage trace, the usage count in
the temporal bucket, and the frequency of app usage. In contrast,
we attempt to deal with the cold-start problems in next-use app
prediction. Further, our method, based on deep learning, does not
require handcrafted features.

Some other studies used sensor data, such as data from the
global positioning system (GPS), for generating predictions. Shin
et al. [11] proposed a context model for app prediction that used
an extensive variety of contextual information from sensors in a
smartphone and constructed a personalized app-prediction model
based on naive Bayes. Huang et al. [12] explored various types
of contextual information, such as the last used app, time, loca-
tion, and user profile, to predict the user’s app usage [13]. Liao
et al. [14] proposed an app usage prediction framework that uses
both explicit data from mobile sensors and implicit transitions
across app usage. Bazea-Yates et al. [1] collected multiple sen-
sor data from a home screen app Aviate and built a parallel tree-
augmented naive Bayes model to generate predictions. Wang et
al. [15] proposed a long-term app usage forecasting method based
on the contextual information related to location.

2.2 Cold-start Problems in Next-use App Prediction
As mentioned in the introduction, cold-start problems in this

research are divided into two types, the user cold-start problem, in
which a first-time user used the app recommendation system, and
the app cold-start problem, in which a user installed a new app
one his or her smartphone. To solve the user cold-start problem,

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Xu et al. [16] used a user community pattern and learned a target
user’s app usage pattern from similar users when the training data
of the target user was considered to be insufficient. Bazea-Yates et
al. [1] used the app usage information obtained from other users
for generating predictions to alleviate the user cold-start prob-
lem. They used a similar user’s model to predict the behavior
of the new user. They also compared the installed apps of new
and other users to determine similar users. For the app cold-
start problem, Lin et al. [17] proposed a method that accounted
for nascent information obtained from Twitter to provide relevant
recommendations. Natarajan et al. [5] investigated the both app
and user cold-start problems. For the app cold-start problem, they
assumed that a user is more likely to prefer an item belonging to
the same genre than an item belonging to a different genre after
using a series of the same type of items. In accordance with that
assumption, they recommended to a user a new app belonging to
the same genre as that of the previously used apps. For the user
cold-start problem, they created a new user’s usage history based
on a uniform distribution over all the apps. In contrast to the
aforementioned studies, we use high-level app semantic informa-
tion to alleviate the cold-start problem, enabling us to predict the
usage patterns of apps that are not installed on the smartphones
of source users.

2.3 Problems in Next-use App Prediction Architectures in
Existing Studies

As mentioned above, the next-use app prediction problem was
formulated as a multi-class classification problem in many pre-
vious studies. When K apps are installed on a user’s smart-
phone, each app is represented in terms of the 1-of-K scheme [8]
in which an app is represented by a K-dimensional vector, where
one of the elements is one and the remaining elements are zero.
For instance, a K-dimensional vector [0 0 1 0 0 0 . . .] represents
the usage of the third app. A label of the training data for the
prediction model is also represented using the 1-of-K scheme.
Consequently, an output of the prediction model is a K di-
mensional vector. An example of an estimate of the trained
prediction model, i.e., the next-use probability of each app, is
[0.0 0.1 0.3 0.5 . . .], which indicates that the probability for the
second app is 0.1, the probability for the third app is 0.3, and
so on. Based on such an estimate, the top-N apps in terms of
the next-use probabilities are recommended to the user. The pre-
diction model (multi-class classifier) estimates the next-use prob-
ability for each independent app, diversifying the top-N apps.
However, methods based on the 1-of-K scheme do not work when
apps that are installed on the smartphones of a target user are not
available on the smartphones of source users, because the 1-of-K
representation includes only information regarding the identifiers
of apps.

3. Problem Formulation

We use source users’ usage histories to train a prediction model
and then generate predictions for a target user. We define an app,
source users’ U, and target user’s ut as follows:
Definition 1 (App).
A set of apps installed on a user’s smartphone, viz., A =

{
a1̀, a2̀, a3̀, . . . , aǹ, . . . , aK̀

}
, where aǹ is the nth app in the set. In

contrast, the ith used app in a user’s usage history can be repre-
sented as ai. When aǹ is the ith used app, ai becomes equal to aǹ.
A user’s ith used app ai is represented as a semantic vector vai .
The app is also represented as oK

ai
in accordance with the 1-of-K

scheme, where K is the number of dimensions of the vector, i.e.,
the number of apps installed on the user’s smartphone. In addi-
tion, we refer to an app that is not installed on the source users’
smartphones but is installed on the target user’s smartphone as an
unseen app. Furthermore, we refer to an app that is installed on
both the source users’ smartphones and the target user’s smart-
phone as an existing app.
Definition 2 (Source users).
A set of N users U = {u1, u2, u3, . . . , uN}. Each user ui (1 ≤
i ≤ N) has an app usage history with length Mi, viz., Si ={
a1, a2, a3, . . . , aMi

}
.

Definition 3 (Target user).
A user ut � U with usage history of length Mt, viz., St ={
a1, a2, a3, . . . , aMt

}
. When we wish to predict a next-use app,

we do not use all of the usage histories to generate predictions,
because an app that was used in the distant past is likely to ex-
hibit little relation to the latent next-use app. In this study, we
use a sequence of app usage histories of lengths k (1 ≤ k ≤ M),
i.e., s = {ai−k, ai−k+1, . . . , ai−2, ai−1}, to predict a next-use app ai.
Further, the next-use app prediction problem can be defined as
follows:
Definition 4 (App prediction).
Given a series of app usage histories of a target user ut with length
k (1 ≤ k ≤ M), i.e., s =

{
aut ,i−k, aut ,i−k+1, . . . , aut ,i−2, aut ,i−1

}
, the

probability that each app aǹ that is installed on this user’s smart-
phone will be a next-use app, i.e., P(aǹ|s), is calculated. We fur-
ther select the top-N apps to be the next-use app candidates.

4. Next-use App Prediction Method

4.1 Overview
An overview of our proposed method is shown in Fig. 1. The

proposed method has two phases, training and prediction. In the
training phase, we initially compute an app semantic representa-
tion, i.e., an app vector, for each app installed on the source users’
or target user’s smartphones. Further, we utilize the sequences of
usages of apps from the source users’ usage histories to generate
training data that are tailored to the target user by leveraging the
app semantics. That is, we convert the usage of a source user’s
app in the usage history into the usage of a target user’s app that
is semantically similar to the source user’s app. Subsequently, we
train a prediction model for the target user based on a deep neural
network consisting of our modified LSTM on the tailored training
data. In the prediction phase, we use the user’s app usage history
through i − 1 to predict the target user’s ith app usage candidates.
In addition, we periodically update the prediction model using the
accumulated usage history of the target user.

4.2 Semantic Representation of App
We assume that we obtain a description of each app from the

app store, which is used to build a semantic app vector. An app
description describes the features of an app and the functions

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 1 Overview of the proposed method.

that are to be provided to users. For instance, a description of
the Facebook app in Google Play is “Keeping up with friends is
faster and easier than ever. Share updates and photos, engage with
friends and Pages, and stay connected to communities important
to you,” describing the characteristics of the Facebook app. In
contrast, a description of the Instagram app in Google Play is
“Instagram is a simple way to capture and share the world’s mo-
ments. Follow your friends and family to see what they’re up to,
and discover accounts from all over the world that are sharing
things you love.” As can be observed from these examples, the
social network service (SNS) apps exhibit semantically similar
descriptions. Therefore, we construct semantic app vectors from
descriptions to calculate the similarities between various apps.
Note that we cannot obtain the descriptions of apps that are pre-
installed or directly installed from APK files. The titles of such
apps are used in place of descriptions. In our proposed method,
we initially perform the morphological analysis of Japanese de-
scriptions based on Ref. [18], because almost all of the apps used
in our experiment are Japanese apps. Therefore, we tokenize
a Japanese description, i.e., text segmentation, to extract words
from it. Further, we select W keywords of an app that represent
the app well from the extracted words, using the importance of
the words computed based on t f -id f . The importance of word w
is computed using t f -id f , as follows:

t f -id f (w) = Frequency(w) · log
N

|d : d � w| + 1
,

where Frequency(w) is the word occurrence frequency of w in
the description, and N is the total number of descriptions of all
apps. Further, we use a word embedding model word2vec [19] to
obtain a word vector for each keyword representing the seman-
tics of the keyword. We use an external pre-trained word2vec
model on Japanese Wikipedia *1 to compute a word vector for
each keyword. Finally, we compute the mean vector of the W

keywords and regard it as the app’s semantic vector. We ignore
keywords that are not present in the external Japanese Wikipedia
corpus. We use this method to build an app semantic vector for
each app on the source users’ or target user’s smartphones. Fig-
ure 2 depicts the semantic vectors of approximately 6,000 apps
constructed using the aforementioned method and projected into
two-dimensional space using t-SNE [20]. Each vector is colored
according to the category that it belongs to on Google Play. We
can observe that approximately all of the apps belonging to the
same categories are grouped and that the distance between apps

*1 http://www.cl.ecei.tohoku.ac.jp/˜m-suzuki/jawiki vector/

Fig. 2 Visualization of the app semantic vectors.

Fig. 3 Visualization of some of the apps around the Facebook app.

belonging to different categories is larger than that for those in
the same category. Figure 3 depicts some of the apps around
the Facebook app. We can observe that several apps around the
Facebook app, such as Tumblr and Google+, belong to the social
category. In addition, Instagram, which belongs to the photogra-
phy category while having social functionalities, is located on the
boundary between the social and photography categories, indi-
cating that the vector representations can capture the fine-grained
semantics of apps.

Note that our method does not use information about categories
of apps on Google Play. This is because all apps do not have cat-
egory information and our preliminary investigation revealed that
using the category information as additional inputs does not im-
prove the next-use app prediction accuracy. This may be because
semantic vectors of apps have already included information sim-
ilar to the category information as shown in Fig. 2.

4.3 Generating Training Data Tailored to a Target User
To deal with the problem of existing studies not being able to

handle unseen apps, we combine multi-class classification based

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

on 1-of-K representations and app semantic vectors. Our basic
idea is to generate training data in the 1-of-K representations,
which can be used for multi-class classification, tailored to a tar-
get user from the source users’ usage histories by using app se-
mantic representations. Let us assume that a series of app usages
obtained from a source user is provided. We obtain a series of K-
dimensional vectors in the 1-of-K representation tailored to the
target user from the series of app usages, where K is the num-
ber of apps that are installed on a target user’s smartphone. Here,
because usages of apps that are installed only on source users’
smartphones are not directly used for predicting app usages by
the target user, the usages of these apps are converted into usages
of apps installed on the target user’s smartphone. We calculate
the semantic similarity between each pair of an app installed on
a target user’s smartphone and an app installed only on source
users’ smartphones based on their semantic representations and
subsequently convert the app usage history of the source users
into a series of 1-of-K representations of a target user’s app based
on the calculated similarities, i.e., the usage of a source user’s app
is converted into the usage of a target user’s app that is semanti-
cally similar to the source user’s app. Usages of apps that are
installed on both the target and source users’ smartphones are not
converted. The converted series of K-dimensional vectors is used
further to train a multi-class classifier (next-use app prediction
model) for the target user.

The procedure of generating training data tailored to a target
user is summarized in Algorithm 1, which is applied to each us-
age sequence of each source user. In essence, we generate prob-
abilistically a variety of sequences of app usages tailored to the
target user from a sequence of usages by a source user to achieve
robust next-use app prediction. An input of the algorithm is a
sequence with length M of a source user’s app usages, and an
output is sequences of app usages with length M tailored to a tar-
get user. After an app usage history with length M tailored to the
target user is obtained, we extract M − (k + 1) sequences of app
usages with length k + 1 from the history and subsequently train
the next-use app predictor on the sequences. Initially, we prepare
the conversion matrices that convert the usage of a source user’s
app into the usage of an app installed on the target user’s smart-
phone (lines 3–9). The detail of the conversion matrices gener-
ation method is explained in Section 4.3.1. Using the matrices,
we probabilistically generate multiple sequences of app usages
tailored to the target user from the sequence of source user app
usages (lines 11–28). The detail of the app usage sequence gen-
eration method is explained in Section 4.3.3. To generate each
output sequence, we probabilistically construct a conversion ta-
ble that describes a mapping from a source user’s app to a target
user’s app (lines 13–24). The detail of the conversion table gen-
eration method is described in Section 4.3.2. Because a mapping
from a source user’s app to a target user’s app computed from
the app semantics is not entirely accurate, we probabilistically
generate a variety of multiple sequences in accordance with the
similarities between apps to train a robust next-app predictor. We
explain the procedures in detail.
4.3.1 Generating Conversion Matrices

In this study, we generate two conversion matrices used to con-

Algorithm 1: Generating training data tailored to
a target user

Input: T : a set of apps from a target user, S: a sequence of app
usages from a source user, θ: a parameter used to control
the quantity of unseen apps in training data

1 D ← ∅
2 /* Extract a set of apps of source user */
3 As ← ExtractAppSet(S)
4 /* Divide target user apps into 2 groups */
5 Ge ← T ∩As /* A set of existing apps */

6 Gu ← T ∩ Ḡe /* A set of unseen apps */

7 /* Creating app conversion matrices */
8 Me ← GenerateConversionMatrix(T ,As,Ge)
9 Mu ← GenerateConversionMatrix(T ,As,Gu)

10 /* Generating P sequences of training data from S
*/

11 repeat
12 /* Initialize app conversion table */

13 T ← ∅
14 for ∀as ∈ As do
15 M ← zero matrix
16 x ← Uniform(0, 1) /* Randomly generate x ∈ [0, 1]

*/

17 if x < θ then
18 M ← Mu

19 else
20 M ← Me

21 /* Generate mapping from a source app to a

target app */

22 at ← ConvertApp(M, as)
23 /* Add mapping from a source app to a target

app */

24 T [as]← at

25 /* Convert S using conversion table T*/
26 Dp ← ConvertSequence(S,T)
27 D ← D∪ {Dp}
28 until repeat the processing P times

Output: D: a set of training sequences tailored to a target user

trol the number of usages of unseen apps that are included in the
training data to be generated, i.e., sequences of app usages tai-
lored to the target user, because the number of usages of unseen
apps to be included in the training data can be typically less than
that of the existing apps that have already been included in se-
quences of source user app usages, degrading the prediction per-
formance related to the usages of unseen apps. More specifically,
we generate a conversion matrix Mu that converts usages of an
app installed only on source users’ smartphones into usages of
unseen apps and another conversion matrix Me that converts us-
ages of an app that is installed only on source users’ smartphones
into usages of existing apps. When we generate a sequence of app
usages tailored to the target user from a sequence of app usages
by a source user, we can generate a sequence containing many
usages of unseen apps by using Mu many times. A conversion
matrix is used to obtain the candidates for target user apps con-
verted from a source user app as follows.

p̂|T | = Mo|As |
as
, (1)

where M is the conversion matrix, o|As |
as

is a |As|-dimensional vec-
tor of a source user’s app as represented using the 1-of-K scheme,
As is a set of apps installed on a source user’s smartphone, and
T is a set of apps installed on a target user’s smartphone. In ad-
dition, p̂|T | is a |T |-dimensional vector that represents the proba-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

bility of converting each respective target user app from as. Here,
we explain the procedures for generating the conversion matrices.
After obtaining a set of apps installed on a source user’s smart-
phone As (line 3), we obtain a set of existing apps Ge (line 5)
and a set of unseen apps Gu (line 6). Using Ge, we generate a
conversion matrix for the existing apps Me (line 8). Me is used to
convert a source user app not installed on the target user’s smart-
phone into an existing app. Furthermore, we generate a conver-
sion matrix for unseen apps Mu using Gu (line 9). Mu is used
to convert a source user’s app that is not installed on the target
user’s smartphone into an unseen app. A conversion matrix M, a
|As| × |T | matrix, can be described as follows.

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 . . . m1|As |

m21 m22 . . . m2|As |
...

...
. . .

...

m|T |1 m|T |2 . . . m|T ||As |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using G (Ge or Gu), a value of each element mi j in the matrix is
calculated according to Algorithm 2. When an app of the source
user as, j is also installed on the target user’s smartphone, the map-
ping from as, j to the target user app at,i is calculated determinis-
tically (lines 4–8) (For example, when at,i is equal to as, j, as, j

is definitely converted into at,i (line 6)). Otherwise, the map-
ping is calculated based on the similarity between at,i and as, j

(lines 10–15). After at,i and as, j are converted into semantic word
vectors (lines 11–12), NormalizedSimilarity(vat,i , vas, j) in the 13th
line calculates the semantic similarity between at,i and as, j based
on cosine similarity as follows:

NormalizedSimilarity(vat,i , vas, j) =
Similarity(vat,i , vas, j)

S
,

where

Similarity(vat,i , vas, j) =
vat,i · vas, j∣∣∣
∣∣∣vat,i

∣∣∣
∣∣∣
∣∣∣
∣∣∣vas, j

∣∣∣
∣∣∣

and S =
∑

n Similarity(vat,n , vas, j). That is, when apps at,i and as, j

are similar with each other, mi j has a large value. We calculate
M for existing and unseen apps as Me and Mu, respectively. For

Algorithm 2: GenerateConversionMatrix

Input: T : a set of apps from a target user, A: a set of apps from a
source user, G: a set of unseen apps or existing apps

1 M ← |A| × |T | zero matrix
2 for i = 1 to |T | do
3 for j = 1 to |A| do
4 if as, j ∈ T then
5 if at,i = as, j then
6 mi j ← 1
7 else
8 mi j ← 0

9 else
10 if at,i ∈ G then
11 vat,i ←Word-Embedding(at,i)
12 vas, j ←Word-Embedding(as, j)
13 mi j ← NormalizedSimilarity(vat,i , vas, j)
14 else
15 mi j ← 0

Output: Conversion matrix M

Me, mi j is zero when at,i is an unseen app (line 15). This indicates
that as, j (which is not installed on the target user’s smartphone)
is converted only into existing apps. In contrast, for Mu, mi j is
zero when at,i is an existing app (line 15). This indicates that as, j

is converted only into unseen apps. In this manner, we can con-
struct Me, which is used to convert an app of the source user not
installed on the target user’s smartphone only into an existing app.
In addition, we can construct Mu, which is used to convert an app
of the source user not installed on the target user’s smartphone
only into an unseen app.
4.3.2 Generating a Conversion Table

We generate a conversion table (dictionary) T probabilistically
using Me and Mu for each iteration, enabling us to create vari-
ous training sequences toward robust next-app estimation. T de-
scribes a mapping from each source user app to a target user app.
For each source user app as, we randomly select a conversion
matrix M: Me or Mu (lines 16–20 in Algorithm 1). In this study,
we use a large θ value to increase the number of usages of un-
seen apps to be included in the training sequences. Using M,
we determine a mapping from as to a target user app (line 22 in
Algorithm 1) in accordance with Algorithm 3.

First, an app a installed on a source users’ smartphone is repre-
sented using the 1-of-K scheme (line 1). Further, we compute the
probability with which each target user app is converted from a in
accordance with Eq. (1) (line 3). Finally, a target user app similar
to a is selected probabilistically based on roulette wheel selection
(line 4). In roulette wheel selection, an item is selected randomly
according to the probability that is associated with each item. In
this study, the probability of the ith app (similarity between a and
the ith app) is stored in the ith element of p̂. In addition, a map-
ping from as to at obtained by ConvertApp() is further added to
T (line 24 in Algorithm 1).
4.3.3 Converting a Sequence of App Usages

Using the conversion table T , we convert the sequence of
source user app usages S into a training sequence tailored to
the target user (line 26 in Algorithm 1) in accordance with Al-
gorithm 4. We convert the sth usage of the source user app as into
a target user app at using the conversion table T (line 4).

Algorithm 3: ConvertApp

Input: M: a conversion matrix, a: an app from a source user
1 oa ← 1-of-K(a) /* 1-of-K representation of a */
2 /* Compute conversion probabilities according to
Equation 1 */

3 p̂← Moa

4 ât ← Roulette-Wheel-Selection(p̂)
Output: an app ât similar to a

Algorithm 4: ConvertSequence

Input: S: a sequence of app usages from a source user, T : a con-
version table

1 St ← array with length |S|
2 for s = 1 to |S| do
3 /* Obtain mapping from as */

4 at ← T [as]
5 St[s]← at

Output: a sequence of app usages tailored to a target user St

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

4.4 Predicting a Next-use App Using a Neural Network
In accordance with the procedure described in Section 4.3, we

obtain multiple training sequences with length k+1 of app usages
in which the k+1th usage is an answer, i.e., a next-use app. Thus,
we train a prediction model to output the k + 1th used app when
a sequence of usages from 1 to k is provided as input. Each app
usage is represented in the 1-of-K scheme with the number of di-
mensions being the number of apps installed on the target user’s
smartphone.
4.4.1 App Usage Time Interval

Here, the time interval of the ith used app and i + 1th used app
in the sequences is not uniform. The time interval has a strong
relation to the usage patterns of apps because an app used just
after another app can relate strongly to the previously used app in
many cases. For example, when a user is on a journey, he or she
might first use a camera app to take a photo of a scenic spot, and
then edit the photo with a graphics editor app. Finally, he or she
will share the edited photo with friends using a social app, e.g.,
Facebook. The three different apps will be used in a short time
and be strongly related. In contrast, when the time interval be-
tween apps in a sequence is too large, the apps might be entirely
unrelated. Suppose that a user used a music app before going to
sleep and then an e-mail app on the next morning. In this case,
the two neighbor apps, the music and e-mail apps, are unrelated.

Figures 4, 5, and 6 show the proportions of five categories of
next-use apps for different time intervals when the last-used app
belongs to the social category in our dataset. We find that apps

Fig. 4 Proportions of next-use app categories after a social
app was used with a time interval of 0–10 min.

Fig. 5 Proportions of next-use app categories after a social
app was used with a time interval of 10–30 min.

Fig. 6 Proportions of next-use app categories after a social
app was used with a time interval of 30–60 min.

belonging to some categories such as social apps are used fre-
quently when the time interval is small. However, when the time
interval increases, the proportions of the social category decrease,
indicating that users tend to stop using social apps and then start
using other kinds of apps when the time interval is large. In con-
trast, when the time interval increases, the proportions of game
category apps increase. Furthermore, regardless of the length of
the time interval, the proportion of the communication category
apps is always larger than 50%, indicating that users always have
an interest in using communication apps.

Figures 7, 8, and 9 show the proportions of the five categories
of next-use apps for different time intervals when the last-used
app belongs to the communication category in our dataset. In-
terestingly, the proportions of apps belonging to the news and
magazines category drastically decrease as the time interval be-
comes large. This means that users frequently check news and
magazines just after they use communication apps. In contrast,
game apps are frequently used when the time interval is large.
In addition, apps belonging to the communication category are
frequently used regardless of the time interval.
4.4.2 Interval-LSTM Model (i-LSTM Model)

Because the app usage history is time-series data, an LSTM
network is a good choice for capturing the temporal features of
the usage history. A traditional LSTM unit uses input, forget,
and output gates to control the balance of saved information from
previous input and new information from the current input. Our
investigation, as described above, revealed that the time interval
of app usages is an important factor in deciding whether to for-

Fig. 7 Proportions of next-use app categories after a communication
app was used with a time interval of 0–10 min.

Fig. 8 Proportions of next-use app categories after a communication
app was used with a time interval of 10–30 min.

Fig. 9 Proportions of next-use app categories after a communication
app was used with a time interval of 30–60 min.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

get saved information or add new information in our task. When
the time interval from the last used app is short, new information
is more important in deciding what app to use next. In contrast,
when the time interval from the last used app is long, saved in-
formation from previously used apps is less useful. However, the
three gates of a traditional LSTM do not consider the time interval
and regards all of the time intervals in the usage history as identi-
cal, preventing the modeling of app usages that relate strongly to
the time interval. Consequently, we design a new LSTM variant
considering the time interval by modifying the input and output
gates as follows.

im = σi(xmWxi + hm−1Whi + ΔmWti + bi)

om = σo(xmWxo + hm−1Who + ΔmWto + bo)

Here, im and om are the input gate’s and output gate’s activation
vectors at time m, respectively. Furthermore, Δm is the time inter-
val, xm is the input usage vector of an app, σi and σo are sigmoid
functions, hm−1 is the output vector at time m − 1, Wxi, Whi, Wti,
Wxo, Who and Wto are weight matrices, and bi and bo are biases.
The traditional LSTM unit has a memory cell that holds past in-
formation and updates the cell state using write, read, and forget
operations using the input, output, and forget gates, respectively.
Therefore, the input gate decides which part of the information in
the cell state is to be updated. In contrast, the output gate decides
which part of the cell state we are going to output. Differently
from a traditional LSTM unit, we add the influence of the time
interval to the input and output gates. In our equations, Δm helps
the input and output gates determine whether the model is to use
more information from previous used apps or new input apps.
The cell state cm and output vector hm are calculated as follows.

cm = (1 − im) � cm−1 + im � c̃m (2)

c̃m = σc(xmWxc + hm−1Whc + bc)

hm = om � σh(cm)

Here, Wxc and Whc are weight matrices, bc is a bias, and σc and
σh are the tanh function. Because introducing the time interval
increases the complexity of the model and is difficult to train, we
use 1 − im in Eq. (2) instead of the forget gate in a traditional
LSTM unit to reduce the complexity of the model inspired by
Ref. [21].
4.4.3 Next-use App Prediction with i-LSTM

In accordance with the data structure of the training data,
we adopt a two-layer many-to-one multi-label classification
model [22] whose input and output are a sequence and a fixed-
size vector, respectively. In our case, the input of the network is
a series of app usage histories represented in the 1-of-K scheme,
and the output is a vector consisting of the class probabilities of
the respective apps, diversifying the predicted apps in a ranked
list. The network consists of an i-LSTM layer with 400 nodes,
a fully connected layer with 800 nodes with the ReLU activation
functions, and an output softmax layer. To reduce overfitting, we
use dropout, a simple regularization technique in which randomly
selected nodes are ignored during training [23]. We train the net-
work using backpropagation based on Adam [24] to minimize the
categorical cross-entropy between estimates and the ground truth.

In the prediction phase, an app usage sequence with length k ob-
tained from the target user is provided as input to the network,
and the network outputs the probability with which each app of
the target user will be a next-use app. Finally, the apps with the
top-N probabilities are chosen as the next-use app candidates.

4.5 Fine-tuning Neural Network
To alleviate the cold-start problems in next-use app prediction,

we leverage the source users’ usage histories to create training
data for the neural network. However, the trained network can
be regarded as a user-independent model and does not always
capture the usage pattern of the target user. Because the app us-
age history of the target user has been accumulated after the user
introduced the next-use app prediction system, we fine-tune the
trained neural network using a low learning rate by leveraging the
target user’s accumulated usage history. The learning rate is a pa-
rameter that controls the rate at which the parameters are updated
in a neural network. In our method, after the usage history of the
target user for a particular period is accumulated, we update the
model using the accumulated history.

5. Evaluation

5.1 Dataset
We collected an app usage dataset using our developed An-

droid app called “context monster” [25]. Our developed app ob-
serves app usages, i.e., app launchings, and records application
IDs as well as timestamps of app usage to be transmitted to a
server computer.

Since some participants app usage history data are not enough
or sparse, we selected 100 participants with the largest app us-
age history data as the experiment participants. Considering the
participants privacy, before the experiment, we remove the user
personal information (e.g., gender, age). Each participant in the
dataset has 3,779 usage history data items on average. The aver-
age duration of the participants’ data collection period was 68.6
days. The average number of installed apps was 60.7. The part of
app category distribution in the dataset is shown in Table 1, the
most used top 5 app categories are COMMUNCATION, GAME,
SOCIAL, NEWS AND MAGAZINES and TOOLS. To obtain
the app semantic representations, we retrieved a description of
each app from Google Play. For apps that were not available on
Google Play, we used the titles of the apps instead of descriptions.

Because the durations of data collected by some participants
were not sufficiently long for performing fine-tuning, we selected
top-twenty participants in terms of the length of the usage history,
and we used their data to evaluate the proposed method. The re-
maining eighty participants’ data are used only as training data.

Table 1 App category distribution.

Category App usage percentage
COMMUNICATION 38.4%

GAME 16.8%
SOCIAL 14.8%

NEWS AND MAGAZINES 11.4%
TOOLS 8.5%

PRODUCTIVITY 3.0%
VIDEO PLAYERS 1.7%
PHOTOGRAPHY 0.9%

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 2 Statistics of app usages by test participants.

total # of apps total # of usage sequences
Unseen apps 196 5,399
Existing apps 1,262 184,023

All apps 1,447 189,422

Each test participant had 9,430 usage history data items on aver-
age. The average duration of the test participants’ data collection
period was 82.5 days. The average number of installed apps was
52.8. Table 2 presents the total number of unseen and existing
apps and their usage sequences by the test participants. The us-
age sequence of an unseen app is the usage sequence with length
k whose next-use app, i.e., the answer, is an unseen app (k = 5).
In contrast, the usage sequence of an existing app is the usage
sequence whose next-use app, i.e., the answer, is an existing app.

5.2 Evaluation Methodology
5.2.1 Evaluation Measure

To evaluate the app prediction methods, we used a top-N pre-
diction accuracy metric widely used in studies on next-use app
prediction [7], [10], [11], [12], [16]. If the any app in a set of N

candidate apps is actually the next-use app, we regard the next-
use app to be predicted accurately. The prediction accuracy met-

ric is defined as Accuracy@N =
∑T

i=1 HN
i∑T

i=1 Ai
, where HN

i is the num-
ber of accurately predicted next-use apps for a test user i, when
N candidates are provided, Ai is the total number of test data for
test user i, and T is the number of test users.
5.2.2 Methods

We evaluate the following methods to investigate the effective-
ness of the proposed method.
• MFU (most frequently used): The top-N candidates are the

most frequently used N apps in the training data.
• RankSVM: A ranking method proposed in Ref. [26],

a learning-to-rank algorithm for query-based document
search, is used to obtain the top-N next-use apps. RankSVM
is a pair-wise ranking algorithm that computes a ranking list
based on a pair of candidate items. In other words, the input
to a support vector machine (SVM) is a pair of items, and
the output is the probability that one item is ranked higher
than another. In our case, each item corresponds to a target
user app. Because RankSVM cannot deal with time series,
we concatenate a vector of the latent next-use app and those
of the previously used k apps and use the concatenated vec-
tor as an item. Note that each app is represented by an app
semantic vector using our method.

• One-hot: The neural network architecture is identical to that
of the proposed method. However, the training data are not
tailored to a target user. Each app is represented in the 1-
of-K scheme in which K is the size of the set of all apps
installed on the smartphones of source or target users.

• Word2vec: This method uses a regression technique to out-
put a semantic vector showing an estimate of a next-use app,
as was briefly mentioned in the introduction. The neural net-
work architecture is similar to that of the proposed method.
Each app used in the input and output of the network is rep-
resented by a semantic app vector. In the prediction phase,

Fig. 10 Transitions of Accuracy@N when N is varied.

we calculate the cosine similarity between an output vector
and a semantic vector for each of the apps installed on a tar-
get user’s smartphone. The top-N candidates are the N apps
of the target user with the top-N cosine similarities. The loss
function that is used to train the network is the mean squared
error.

• Proposed: This is the proposed method.
• Proposed (LSTM): This method uses traditional LSTM net-

works instead of i-LSTM networks.
We evaluate the aforementioned methods based on ‘leave-one-

participant-out’ cross validation. We consider one test participant
to be the target user and the remaining nineteen test participants
and eighty training participants as the source users.
5.2.3 Parameter Setting

For an app usage sequence that is provided as input to the neu-
ral network, we set the length of the sequence k to five.

For parameter θ in Algorithm 1, which is used to control the
number of unseen apps to be included in the training data, we set
θ to 0.7 according to the real ratio of unseen apps in the whole
dataset. For the number of iterations P in Algorithm 1, which is
used to control the number of training sequences tailored to a tar-
get user generated from a sequence obtained from a source user,
we set P to ten. The dimension of each app semantic vector gener-
ated by the pre-trained Japanese Wikipedia word2vec model is set
to 200. The number of epochs and batch size for neural network
training are 10 and 1,024, respectively. These parameters are de-
termined based on our preliminary experiment. An approximate
time of 60 minutes was required to train a neural network for each
participant using a server computer with NVIDIA Quadro P6000.

5.3 Results
5.3.1 Accuracy@N

Figure 10 shows the transitions of Accuracy@N for the var-
ious methods when N is varied. Note that fine-tuning was not
performed for Proposed. We will investigate the effects of fine-
tuning later. As shown in the figure, Proposed achieves the best
performance. The poor performance of MFU indicates the diffi-
culties associated with next-use app prediction. Because the apps
used by the participants are diverse, it is difficult to predict the
next-use apps using only information related to the frequency of
usage. The performance of RankSVM is poor because the model
cannot deal with time-series data. In addition, the high dimen-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

sionality of the model’s input vectors can also degrade perfor-
mance. The Accuracy@N for Word2vec does not exhibit a sub-
stantial alteration when N is varied. This result indicates that the
candidate apps provided by Word2vec are not diverse. Word2vec
outputs a semantic vector and selects candidate apps according
to the similarity between an app’s semantic vector and the output
vector, resulting in the low diversity of the app candidates, i.e.,
including only apps similar to the output vector. Therefore, al-
though Word2vec achieves good performance when N is one, the
performance does not increase as N increases. As above, even
when we used semantic representations of apps, we could confirm
that the simple regression-based approach does not work well in
this task. Even when N is one, Proposed outperforms Word2vec
because Proposed generates a variety of training data tailored to
target users from app usage data from source users. Proposed
achieves the optimal performance and outperforms One-hot by
approximately 5%.

Figure 11 shows the Accuracy@N of the methods for the exist-
ing apps. The figure shows that while Proposed outperforms One-
hot by approximately 4% when N is small, the performances of
Proposed and One-hot are nearly identical when N is large. This
is because the neural network architectures of these methods are
identical. However, One-hot cannot capture the relationship be-
tween usages of unseen and existing apps, slightly degrading its
performance.

As shown in Fig. 12, with respect to the Accuracy@N of un-
seen apps, Proposed considerably outperformed the other meth-
ods. Surprisingly, Proposed achieved 54% accuracy when N = 10

Fig. 11 Transitions of Accuracy@N for existing apps when N is varied.

Fig. 12 Transitions of Accuracy@N for unseen apps when N is varied.

even though the usage history of these unseen apps by source
users is not available at all. One-hot and MFU could not pre-
dict the use of unseen apps at all as a result of their architec-
tures. While their accuracies are poor, RankSVM and Word2vec
could also predict the usage of these unseen apps, because these
methods compute app candidates based on the semantics of apps.
However, Proposed, the architecture based on the 1-of-K scheme,
works effectively for this multi-class classification task. Interest-
ingly, even when N is one, Proposed significantly outperforms
Word2vec. This might be because Proposed generates a variety
of training data tailored to target users. Because usages of un-
seen apps are unpredictable, the diverse training data generated
by Proposed greatly contributes to the method performance.
5.3.2 Effect of i-LSTM

We investigate the effect of our i-LSTM model on the next-use
app prediction task. Here, we divide next-use apps that we want
to predict into two types, as follows:
• Short-term next-use app: The time interval between a last-

used and next-use app that we want to predict is shorter than
K minutes.

• Long-term next-use app: The time interval between a last-
used and next-use app is equal to or longer than K minutes.

As described in Section 4.4.1, usage patterns of apps are
strongly dependent on their categories. Figures 13 and 14 show
the transitions of Accuracy@N when N varies (K = 10). In
general, the long-term next-use apps are more difficult to predict
than the short-term next-use apps because they have a weak rela-
tion to previously used apps and more randomness. As shown in

Fig. 13 Transitions of Accuracy@N for short-term next-use apps.

Fig. 14 Transitions of Accuracy@N for long-term next-use apps.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

the figures, although the performances of Proposed and Proposed
(LSTM) do not differ when N is small, Proposed outperforms
Proposed (LSTM) by approximately 1% for both the short- and
long-term next-use apps, indicating the advantage of the i-LSTM
model that takes into account the interval of app usages.
5.3.3 Impact of Fine-tuning

Here, we investigate the impact of fine-tuning when fine-tuning
was performed every half month. Figure 15 shows the Accu-
racy@N when we perform fine-tuning, showing approximately
1% improvement as a result of fine-tuning. Specifically, Ac-
curacy@N for unseen apps improves by approximately 5%, as
shown in Figs. 16 and 17, meaning that 62% unseen apps was
predicted successfully when N = 10. Because actual usage his-

Fig. 15 Transitions of Accuracy@N when fine-tuning is performed
and when fine-tuning is not performed.

Fig. 16 Transitions of Accuracy@N for existing apps when fine-tuning is
performed and when fine-tuning is not performed.

Fig. 17 Transitions of Accuracy@N for unseen apps when fine-tuning is
performed and when fine-tuning is not performed.

tories of unseen apps are unavailable in the usage histories of
source users, fine-tuning greatly improves Accuracy@N for un-
seen apps.

Figure 18 shows the transitions of the accuracies when fine-
tuning was performed and not performed. The vertical axis of the
figure depicts the mean accuracy over Accuracy@N (N ranges
from one to ten). As depicted in Fig. 18, the effect of fine-tuning
was limited when the total quantity of additional training data that
were used for fine-tuning was small (≤ 60 days). In particular,
when only half-month or one-month fine-tuning data were used,
fine-tuning deteriorates the performance. This might be because
the overfitting caused by these fine-tuning data. In contrast, when
the total quantity of additional training data used for fine-tuning
was sufficient (> 60), the improvement caused by fine-tuning was
approximately 2%. The use of unseen apps is estimated on the
basis of only the usage patterns of semantically similar apps. Ad-
dition of the actual usage history of the unseen apps by a target
user as training data improved the prediction accuracies of the
unseen apps.
5.3.4 Effects of P

Figure 19 depicts the Accuracy@N for Proposed when P in
Algorithm 1 was varied. In addition, Figs. 20 and 21 depict the
Accuracy@N of existing and unseen apps, respectively, for Pro-
posed when P was varied. Basically, the accuracies increased as
larger P values were used. In particular, the accuracies of the ex-
isting apps when P = 5 were much higher than those obtained
when P = 1. In contrast, because the accuracies for the exist-
ing apps when P = 10 are not very different from those when
P = 5, the P value that yields the upper bound of the accuracy
can be considered to be P = 10. The accuracies of the unseen

Fig. 18 Transitions of average accuracies for Proposed when fine-tuning is
performed and when fine-tuning is not performed.

Fig. 19 Transitions of Accuracy@N for Proposed when P is varied.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 20 Transitions of Accuracy@N of existing apps
for Proposed when P is varied.

Fig. 21 Transitions of Accuracy@N of unseen apps
for Proposed when P is varied.

Fig. 22 Transitions of Accuracy@N for the user-dependent
and Proposed models.

apps when P = 10 are somewhat higher than those that are ob-
served when P = 5. This is because the quantity of training data
for the unseen apps was not sufficient when P = 5.
5.3.5 User-dependent Model

We investigated the prediction performance of a user-
dependent model that was trained on the first half of the usage
history of a participant and then tested it using the latter half for
the same participant. Figure 22 shows the transitions of Accu-
racy@N with varying N. The performance of the user-dependent
model can be regarded as the upper-bound of next-app predic-
tion. Surprisingly, the performance difference between the user-
dependent model and Proposed (fine-tuning) is almost identical
when N < 8. In addition, the performance difference between

the user-dependent model and Proposed is only approximately
1%. This means that the performance of the proposed method is
nearly the same as that of the case in which training data for target
users are fully provided.

5.4 Application and Limitation
The proposed method is expected to apply in smartphone to

help the smartphone makers improving the service quality. The
proposed method can benefit both smartphone developers and
users. For smartphone developers, the proposed method helps
them to pre-load the potential next-use app and close the inactive
background apps to improve the efficiency of system. The smart-
phone developers can choose the top-N next-use app candidates
by our proposed method as the background apps. The real next-
use app has over 80% probability be chosen as the background
app when 10 candidates are given by the proposed method. Fur-
thermore, even the new installed apps without usage history have
62% probability can be selected as the background app when
10 candidates are given, comparing to 20% accuracy of random
guess (random select 10 apps from 50 average installed apps),
proposed method helps to allocate resource of smartphone effi-
ciently. For smartphone users, the proposed method assists them
selecting apps effectively. The large number of installed apps
leads the app selection taking a lot of time. To help user select
the next-use app, many smartphones hint the next-use app can-
didates when a user tries to open a app. Our proposed method
makes the real next-use app has over 80% probability included in
next-use app candidates and even the new installed apps without
usage history have 62% probability successfully selected when 10
candidates are given, which improves user experience. Compare
to the existing methods, our method achieves the same level ac-
curacy in the next-use app prediction problem. Additionally, the
most of existing methods such as Ref. [11] are hard to predict the
new installed apps without history data, our method still achieves
high accuracy to predict the new installed apps. However, when
a new app is installed in a smartphone, the model of the proposed
method has to be trained again to let the new installed app can
be predicted. The retraining process may acquire long time and
large computing resource. In the future, we would like to improve
the proposed method to let the proposed method does not need to
retrain the model when a new app installed.

6. Conclusion

This study proposed a new method for predicting next-use mo-
bile apps based on the app usage history of a target user using the
training data collected from other users (source users). The pro-
posed method makes use of the semantic representations of apps
to predict a target user’s usage of apps that are not installed on
the smartphones of source users. Our experiment, conducted us-
ing the actual app usage data, revealed that the proposed method
achieved an accuracy of 62% (Accuracy@N; N = 10) when pre-
dicting the usage of apps that were not installed on the smart-
phones of source users.

Acknowledgments This work has been partially supported
by JST CREST Grant Number JP-MJCR21F2.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

References

[1] Baeza-Yates, R., Jiang, D., Silvestri, F. and Harrison, B.: Predicting
The Next App That You Are Going To Use, 8th ACM International
Conference on Web Search and Data Mining (WSDM ’15), pp.285–
294 (2015).

[2] Cao, H. and Lin, M.: Mining smartphone data for app usage prediction
and recommendations: A survey, Pervasive and Mobile Computing,
Vol.37, pp.1–22 (2017).

[3] Do, T.M.T. and Gatica-Perez, D.: Where and what: Using smart-
phones to predict next locations and applications in daily life, Per-
vasive and Mobile Computing, Vol.12, pp.79–91 (2014).

[4] Yan, T., Chu, D., Ganesan, D., Kansal, A. and Liu, J.: Fast App
Launching for Mobile Devices Using Predictive User Context, 10th
International Conference on Mobile Systems, Applications, and Ser-
vices (MobiSys ’12), pp.113–126 (2012).

[5] Natarajan, N., Shin, D. and Dhillon, I.S.: Which App Will You
Use Next?: Collaborative Filtering with Interactional Context, 7th
ACM Conference on Recommender Systems (RecSys ’13), pp.201–208
(2013).

[6] Sun, C., Zheng, J., Yao, H., Wang, Y. and Hsu, D.F.: AppRush: Us-
ing Dynamic Shortcuts to Facilitate Application Launching on Mobile
Devices, ANT/SEIT (2013).

[7] Zou, X., Zhang, W., Li, S. and Pan, G.: Prophet: What App You Wish
to Use Next, 2013 ACM Conference on Pervasive and Ubiquitous
Computing Adjunct Publication (UbiComp ’13), pp.167–170 (2013).

[8] Bishop, C.M.: Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics), Springer (2006).

[9] Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neu-
ral Comput., Vol.9, No.8, pp.1735–1780 (1997).

[10] Liao, Z.-X., Pan, Y.-C., Peng, W.-C. and Lei, P.-R.: On Mining Mo-
bile Apps Usage Behavior for Predicting Apps Usage in Smartphones,
22nd ACM International Conference on Information & Knowledge
Management (CIKM ’13), pp.609–618 (2013).

[11] Shin, C., Hong, J.-H. and Dey, A.K.: Understanding and Prediction of
Mobile Application Usage for Smart Phones, 2012 ACM Conference
on Ubiquitous Computing (UbiComp ’12), pp.173–182 (2012).

[12] Huang, K., Zhang, C., Ma, X. and Chen, G.: Predicting Mobile Appli-
cation Usage Using Contextual Information, 2012 ACM Conference
on Ubiquitous Computing (UbiComp ’12), pp.1059–1065 (2012).

[13] Laurila, J.K., Gatica-Perez, D., Aad, I., Bornet, O., Do, T.-M.-T.,
Dousse, O., Eberle, J., Miettinen, M., et al.: The Mobile Data Chal-
lenge: Big Data for Mobile Computing Research, Mobile Data Chal-
lenge Workshop (MDC) in Conjunction with Pervasive (2012).

[14] Liao, Z.-X., Li, S.-C., Peng, W.-C., Philip, S.Y. and Liu, T.-C.: On the
Feature Discovery for App Usage Prediction in Smartphones, 2013
IEEE 13th International Conference on Data Mining (ICDM ’13),
pp.1127–1132 (2013).

[15] Wang, Y., Yuan, N.J., Sun, Y., Zhang, F., Xie, X., Liu, Q. and Chen,
E.: A Contextual Collaborative Approach for App Usage Forecasting,
2016 ACM International Joint Conference on Pervasive and Ubiqui-
tous Computing (UbiComp ’16), pp.1247–1258 (2016).

[16] Xu, Y., Lin, M., Lu, H., Cardone, G., Lane, N., Chen, Z., Campbell, A.
and Choudhury, T.: Preference, Context and Communities: A Multi-
faceted Approach to Predicting Smartphone App Usage Patterns, 2013
International Symposium on Wearable Computers (ISWC ’13), pp.69–
76 (2013).

[17] Lin, J., Sugiyama, K., Kan, M.-Y. and Chua, T.-S.: Addressing
Cold-start in App Recommendation: Latent User Models Constructed
from Twitter Followers, 36th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’13),
pp.283–292 (2013).

[18] Kudo, T., Yamamoto, K. and Matsumoto, Y.: Applying conditional
random fields to Japanese morphological analysis, 2004 Conference
on Empirical Methods in Natural Language Processing (EMNLP ’04),
pp.230–237 (2004).

[19] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J.:
Distributed Representations of Words and Phrases and their Compo-
sitionality, Advances in Neural Information Processing Systems 26,
pp.3111–3119 (2013).

[20] Maaten, L.v.d. and Hinton, G.: Visualizing data using t-SNE, Journal
of Machine Learning Research, Vol.9, No.Nov, pp.2579–2605 (2008).

[21] Zhu, Y., Li, H., Liao, Y., Wang, B., Guan, Z., Liu, H. and Cai, D.:
What to Do Next: Modeling User Behaviors by Time-LSTM, 26th
International Joint Conference on Artificial Intelligence, IJCAI-17,
pp.3602–3608 (2017).

[22] Lipton, Z.C., Kale, D.C., Elkan, C. and Wetzel, R.C.: Learn-
ing to Diagnose with LSTM Recurrent Neural Networks, CoRR,
Vol.abs/1511.03677 (online), available from 〈http://arxiv.org/abs/
1511.03677〉 (2015).

[23] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and
Salakhutdinov, R.: Dropout: A Simple Way to Prevent Neural

Networks from Overfitting, Journal of Machine Learning Research,
Vol.15, pp.1929–1958 (2014).

[24] Kingma, D.P. and Ba, J.: Adam: A Method for Stochastic Optimiza-
tion, International Conference on Learning Representations (ICLR)
(2015).

[25] Mizuno, S., Osawa, J., Hara, T. and Nishio, S.: A Preference Ex-
traction Method Using Installed Applications and Their Descriptions,
2014 IEEE 33rd International Symposium on Reliable Distributed
Systems Workshops, pp.64–69 (2014).

[26] Joachims, T.: Optimizing Search Engines Using Clickthrough Data,
8th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD ’02), pp.133–142 (2002).

Cheng Chen received his master degree
from Graduate School of Information Sci-
ence and Technology, Osaka University.
His research interests include ubiquitous
and time series forecasting.

Takuya Maekawa is an associate profes-
sor at Osaka University, Japan. His re-
search interests include ubiquitous and
mobile sensing. He received his doctor
degree (Information Science and Technol-
ogy) from Graduate School of Informa-
tion Science and Technology, Osaka Uni-
versity. He serves as a director of IPSJ

(2021–).

Daichi Amagata is an assistant profes-
sor with the Department of Multimedia
Engineering Graduate School of Informa-
tion Science and Technology Osaka Uni-
versity, Osaka, Japan. He received his
B.E., his M.Sc., and his Ph.D. degrees
from Osaka University in 2012, 2014, and
2015, respectively. His research interests

include fast algorithms for query processing and data mining. He
is a member of IEEE.

Takahiro Hara received his B.E., M.E.,
and Dr.E. degrees in Information Sys-
tems Engineering from Osaka University,
Osaka, Japan, in 1995, 1997, and 2000,
respectively. Currently, he is a full Profes-
sor of the Department of Multimedia En-
gineering, Osaka University. His research
interests include databases, mobile com-

puting, social computing, WWW, and wireless networking. He
served and is serving as an associate editor of a number of inter-
national journals such as IEEE Transactions on Vehicular Tech-
nology, IEEE Open Journal of the Computer Society, and IEEE
Access. He is a distinguished scientist of ACM, a senior member
of IEEE, and a member of IEICE.

c© 2021 Information Processing Society of Japan

