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A foreign function interface (FFI) is a mechanism that enables a programming language to use libraries
written in another foreign language. The FFI is important since the language that does not have access
to the rich libraries that already exist is not considered practical. Recently, the FFI between dynamically
typed languages that have various types is required because a great number of useful libraries are written in
those languages. However, it takes a high cost to describe the type conversion rules between host and library
languages since the rules of it are complex on account of type-richness. We propose a Type Description
Helper that derives the type conversion rules semi-automatically. The Type Description Helper reduces the
number of type conversion rules that users have to write. As the type conversion rules that are derived by
Type Description Helper are incomplete, users have to write the type conversion rules that have not yet
been derived. Type Description Helper derives the type conversion rules in two ways: log-based approach
and type-inference-based approach. The log-based approach derives the type conversion rules dynamically
from the log of foreign function calls. The type-inference-based approach derives the type conversion rules by
analyzing the source code statically. At the same time, it can detect some invalid arguments that cannot be
applied by foreign functions. In this research, we choose Python and EusLisp as an example and implement
FFI and Type Description Helper, then checked that it is useful.
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