1BEERALIE S

SWXFEE 7077327 Vol14 No.4 1 (Sep. 2021)

RRBE

e KUEEN Y RIGF S BB FFLIZ 361 5 Type Description

Helper O 52

L Y T 2

2021%F3R16AEXR

WEFEA >4 72— (FFI) B 5EFE0MSFHNTA 77 ) 2T 57000t MATHL. 7
U7 Iy EHOFERL, MWEETEINITIA TITVEEXHFHTELILPELETHL. HETIE
EELMEETHENIFITEECIA T IV EEPREoTCETWLID, Z0L) hFiHEL D FFLH
Eéiﬂfb\% L LBOBESWRIS, SAMSFHEETA 7 7)) SFEROR BRI MR b D L7
D RIZBBHI DA =N L o TLE ) L) MENDH L. AL TIE Type Description Helper & \»

ﬁ”%{?ﬁﬁﬁu@JF HEY 28 e 2 1583 5. ThaosEih l/f_ﬁ”’Z’{TﬁHﬁﬁl D5y, L—FDELIRT HLED
& LREHFHMOEEZ BE 2 A ENTEAS. Type Description Helper 12 WJ%;@@%EHIJ@:—&@%& &
LT22o0)EaERE L. 07— FEMUSEMEITFOH Lon 7 & B |2 2SR I 2 8
L, BHERN— A FEIEY —Aa— F’i’ﬁ%ﬂ"] RN A 2 & RIS A B T 5. RIEER TIT AR
& LT Python BX U EusLisp @ 2 Sifid#E L, ZOM® FFI Z1E$ % & & 12 Type Description
Helper DFEE =T\, ZOFHMEZHER L.

Presentation Abstract

Building Type Description Helper in FFI between High-level

Dynamically Typed Languages

SHOYA IKEZAKIY'® TETSUROU YAMAZAKIY'P)  SHIGERU CHIBAL:2:©)

Presented: March 16, 2021

A foreign function interface (FFI) is a mechanism that enables a programming language to use libraries
written in another foreign language. The FFI is important since the language that does not have access
to the rich libraries that already exist is not considered practical. Recently, the FFI between dynamically
typed languages that have various types is required because a great number of useful libraries are written in
those languages. However, it takes a high cost to describe the type conversion rules between host and library
languages since the rules of it are complex on account of type-richness. We propose a Type Description
Helper that derives the type conversion rules semi-automatically. The Type Description Helper reduces the
number of type conversion rules that users have to write. As the type conversion rules that are derived by
Type Description Helper are incomplete, users have to write the type conversion rules that have not yet
been derived. Type Description Helper derives the type conversion rules in two ways: log-based approach
and type-inference-based approach. The log-based approach derives the type conversion rules dynamically
from the log of foreign function calls. The type-inference-based approach derives the type conversion rules by
analyzing the source code statically. At the same time, it can detect some invalid arguments that cannot be
applied by foreign functions. In this research, we choose Python and EusLisp as an example and implement
FFI and Type Description Helper, then checked that it is useful.

1

This is the abstract of an unrefereed presentation, and it
should not preclude subsequent publication.

TR R B A T2 R e R

Graduate School of Information Science and Technology,

The University of Tokyo, Tokyo 113-8656, Japan

HHE R T 7T 3 2 RS ) ikezaki@csg.ci.i.u-tokyo.ac.jp
Information Processing Society of Japan Special Interest b)  yamazaki@csg.ci.i.u-tokyo.ac.jp
Group on Programming, Chiyoda, Tokyo 101-0062, Japan ) chiba@acm.org

© 2021 Information Processing Society of Japan



